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PREFACE

The study of differential equationsis abeautiful application of the ideas and techniques
of calculus to our everyday lives. Indeed, it could be said that calculus was devel-
oped mainly so that the fundamental principles that govern many phenomena could be
expressed in the language of differential equations. Unfortunately, it was difficult to
convey the beauty of the subject in the traditional first course on differential equations
because the number of equations that can be treated by analytic techniquesis very lim-
ited. Consequently, the course tended to focus on technique rather than on concept.

At Boston University, we decided to revise our course, and we wrote this book to
support our efforts. We now approach our course with several goalsin mind. First, the
traditional emphasis on specialized tricks and techniques for solving differential equa-
tions is no longer appropriate given the technology (laptops, ipads, smart phones, ...)
that we carry around with us everywhere. Second, many of the most important differen-
tial equations are nonlinear, and numerical and qualitative techniques are more effective
than analytic techniquesin this setting. Finally, the differential equations courseis one
of the few undergraduate courses where we can give our students a glimpse of the na-
ture of contemporary mathematical research.

The Qualitative, Numeric, and Analytic Approaches

Accordingly, this book is very different from the old-fashioned “cookbook” differen-
tial equations text. We have eliminated many of the specialized techniques for deriving
formulas for solutions, and we have replaced them with topics that focus on the formu-
lation of differential equations and the interpretation of their solutions. To obtain an
understanding of the solutions, we generally attack a given equation from three differ-
ent points of view.

One major approach we use is qualitative. We expect students to be able to visu-
alize differential equations and their solutions in many geometric ways. For example,
we readily use slope fields, graphs of solutions, vector fields, and solution curvesin the
phase plane as tools to gain a better understanding of solutions. We also ask students
to become adept at moving among these geometric representations and more traditional
analytic representations.

Since differential equations are easily studied using a computer, we also empha-
size numerical techniques. DETool s, the software that accompanies this book, pro-
vides students with ample computational tools to investigate the behavior of solutions
of differential equations both numerically and graphically. Even if we can find an ex-
plicit formula for a solution, we often work with the equation both numerically and
qualitatively to understand the geometry and the long-term behavior of solutions. When
we can find explicit solutions easily, we do the calculations. But we always examine the
resulting formulas using qualitative and numerical points of view aswell.

vii
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viii PREFACE

How This Book is Different

There are severa specific ways in which this book differs from other books at this
level. First, we incorporate modeling throughout. We expect students to understand
the meaning of the variables and parameters in a differential equation and to be able to
interpret this meaning in terms of a particular model. Certain models reappear often as
running themes and are drawn from a variety of disciplines so that students with various
backgrounds will find something familiar.

We also advocate adynamical systems point of view. That is, we are always con-
cerned with the long-term behavior of solutions, and using all of the appropriate ap-
proaches outlined above, we ask students to predict this long-term behavior. In addi-
tion, we emphasize the role of parametersin many of our examples, and we specifically
address the manner in which the behavior of solutions changes asthese parametersvary.

It is our philosophy that using a computer is as natural and necessary to the study
of differential equations as is the use of paper and pencil. DETool s should make
the inclusion of technology in the course as easy as possible. This suite of computer
programs illustrates the basic concepts of differential equations. Three of these pro-
grams are solvers which allow the student to compute and graph numerical solutions
of both first-order equations and systems of differential equations. The other 26 tools
are demonstrations that allow students and teachers to investigate in detail specific top-
ics covered in the text. A number of exercises in the text refer directly to these tools.
DETool s isavailable through CengageBrain.com.

As most texts do, we begin with a chapter on first-order equations. However, the
only analytic technique we use to find closed-form solutions is separation of variables
until we discuss linear equations at the end of the chapter. Instead, we emphasize the
meaning of a differential equation and its solutions in terms of its slope field and the
graphs of its solutions. If the differential equation is autonomous, we also discuss its
phase line. This discussion of the phase line serves as an elementary introduction to the
idea of aphase plane, which plays afundamental role in subsequent chapters.

We then move directly from first-order equations to systems of first-order differ-
ential equations. Rather than consider second-order equations separately, we convert
these equations to first-order systems. When these equations are viewed as systems,
we are able to use qualitative and numerical techniques more readily. Of course, we
then use the information about these systems gleaned from these techniques to recover
information about the solutions of the original equation.

We also begin the treatment of systems with a general approach. We do not im-
mediately restrict our attention to linear systems. Qualitative and numerical techniques
work just as easily on nonlinear systems, and one can proceed along way toward under-
standing solutions without resorting to algebraic techniques. However, qualitative ideas
do not tell the whole story, and we are led naturally to the idea of linearization. With
this background in the fundamental geometric and qualitative concepts, we then discuss
linear systemsin detail. Not only do we emphasize the formulafor the general solution
of alinear system, but also the geometry of its solution curves and its relationship to the
eigenvalues and eigenvectors of the system.

While our study of systems requires the minimal use of some linear algebra, itis
definitely not a prerequisite. Because we deal primarily with two-dimensional systems,
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PREFACE ix

we easily develop al of the necessary algebraic techniques as we proceed. In the pro-
cess, we give considerable insight into the geometry of eigenvectors and eigenvalues.

These topics form the core of our approach. However, there are many additional
topics that one would like to cover in the course. Consequently, we have included dis-
cussions of forced second-order equations, nonlinear systems, Laplace transforms, nu-
merical methods, and discrete dynamical systems. In Appendix A, we even have ashort
discussion of Riccati and Bernoulli equations, and Appendix B isan ultra-lite treatment
of power series methods. In Appendix B we take the point of view that power seriesare
an algebraic way of finding approximate solutions much like numerical methods. Oc-
casional surprises, such as Hermite and Legendre polynomials, are icing on the cake.
Although some of these topics are quite traditional, we always present them in a man-
ner that is consistent with the philosophy developed in the first half of the text.

At the end of each chapter, we have included several “labs” Doing detailed nu-
merical experimentation and writing reports has been our most successful modification
of our course at Boston University. Good labs are tough to write and to grade, but we
feel that the benefit to studentsis extraordinary.

Changes in the Fourth Edition

This revision has been our most extensive since we published the first edition in 1998.
In Chapter 1, the table of contents remains the same. However, many new exercises
have been added, and they often introduce models that are new to the text. For exam-
ple, the theta model for the spiking of a neuron appears in the exercise sets of Sections
1.3,1.4, 1.6, and 1.7. The concept of a time constant is introduced in Section 1.1 and
discussed in the context of a blinking light in Section 1.3. The velocity of afreefalling
skydiver is discussed in three exercise sets. In Section 1.1, we discuss terminal veloc-
ity to illustrate the concept of long-term behavior. In Section 1.2, we find the general
solution of the velocity equation using the method of of separation of varibles, and in
Section 1.4, we study these solutions numerically using Euler’s method.

Chapter 2 has undergone a complete overhaul. We added a section (Section 2.7)
on the SIR model. We include this topic for two reasons. First, many of our students
had first-hand experience with the HIN1 pandemic in 2009-2010. Second, many users
of the preliminary edition liked the fact that we discussed nullclinesin Chapter 2. Sec-
tion 2.7 provides some phase plane analysis without going into the detail that is found
inin our section on nullclinesin Chapter 5.

Chapter 2 now has eight sections rather than five. Sections 2.1 and 2.2 are essen-
tially unchanged. Section 2.3 is a short section in which the damped harmonic oscilla-
tor isintroduced. Thismodel is so important that it deserves a section of its own rather
than being buried at the end of a section as it was in previous editions. The remain-
ing analytic techniques that we presented in the previous editions can now be found in
Section 2.4. The Existence and Uniqueness Theorem for systems along with its con-
sequences has its own section (Section 2.6), and the consegquences of uniqueness are
discussed in more detail. The presentations of Euler’s method for systems and Lorenz's
chaotic system are essentially unchanged.

This material is presented in smaller sections to give the instructor more flexibil-
ity to pick and choose topics from Chapter 2. Only Sections 2.1 and 2.2 are absolute
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X PREFACE

prerequisities for what follows. Chapter 2 has always been the most difficult one to
teach, and now instructors can cover as many (or as few) sections from Chapter 2 as
they seefit.

Pathways Through This Book

There are a number of possible tracks that instructors can follow in using this book.
Chapters 1-3 form the core (with the possible exception of Sections 2.8 and 3.8, which
cover systems in three dimensions). Most of the later chapters assume familiarity with
this material. Certain sections such as Section 1.7 (bifurcations), Section 1.9 (integrat-
ing factors), and Sections 2.4-2.7 can be skipped if some care is taken in choosing ma-
terial from subsequent sections. However, the material on phase lines and phase planes,
qualitative analysis, and solutions of linear systemsis central.

A typical track for an engineering-oriented course would follow Chapters 1-3
(perhaps skipping Sections 1.7, 1.9, 2.4, 2.6, 2.7, 2.8, and 3.8). Appendix A (changing
variables) can be covered at the end of Chapter 1. These chapterswill take roughly two-
thirds of a semester. The final third of the course might cover Sections 4.1-4.3 (forced,
second-order linear equations and resonance), Section 5.1 (linearization of nonlinear
systems), and Chapter 6 (Laplace transforms). Chapters 4 and 5 are independent of
each other and can be covered in either order. In particular, Section 5.1 on lineariza-
tion of nonlinear systems near equilibrium points forms an excellent capstone for the
material on linear systems in Chapter 3. Appendix B (power series) goes well after
Chapter 4.

Incidentally, it is possible to cover Sections 6.1 and 6.2 (Laplace transforms for
first-order equations) immediately after Chapter 1. As we have learned from our col-
leaguesin the College of Engineering at Boston University, some engineering programs
teach acircuit theory course that uses the Laplace transform early in the course. Con-
sequently, Sections 6.1 and 6.2 are written so that the differential equations course and
such a circuits course could proceed in parallel. However, if possible, we recommend
waiting to cover Chapter 6 entirely until after the material in Sections 4.1-4.3 has been
discussed.

Instructors can substitute material on discrete dynamics (Chapter 8) for Laplace
transforms. A course for students with a strong background in physics might involve
more of Chapter 5, including a treatment of systems that are Hamiltonian (Section 5.3)
and gradient (Section 5.4). A course geared toward applied mathematics might include
amore detailed discussion of numerical methods (Chapter 7).

Our Website and Ancillaries
Readers and instructors are invited to make extensive use of our web site

http:// math. bu. edu/ odes

At this site we have posted an on-line instructor’s guide that includes discussions of
how we use the text. We have sample syllabi contributed by users at various institu-
tions as well as information about workshops and seminars dealing with the teaching
of differential equations. We also maintain alist of errata. Solution Builder, available
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to instructors who have adopted the text for class use, creates customized, secure PDF
copies of solutions matched exactly to the the exercises assigned for class. The web site
for Solution Builder is

http://ww. cengage. com sol uti onbui | der

The Sudent Solutions Manual contains the solutions to all odd-numbered exercises.

The Boston University Differential Equations Project
This book is a product of the now complete National Science Foundation Boston
University Differential Equations Project (NSF Grant DUE-9352833) sponsored by the
National Science Foundation and Boston University. The goal of that project wasto re-
think the traditional, sophomore-level differential equations course. We are especially
thankful for that support.

Paul Blanchard

Robert L. Devaney

Glen R. Hdll

Boston University
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A NOTE TO THE STUDENT

This book might be different from most of your previous mathematics texts. If you
thumb through it, you will see that there are few “boxed” formulas, no margin notes,
and very few n-step procedures. We wrote the book this way because we think that you
are now at a point in your education where you should be learning to identify and work
effectively with the mathematics inherent in everyday life. As you pursue your careers,
no one is going to ask you to do all of the odd exercises at the end of some employee
manual. They are going to give you some problem with mathematical components that
might be difficult to identify and ask you to do your best with it. One of our goals in
this book is to start preparing you for this type of work by avoiding artificial algorithmic
exercises.

Our intention is that you will read this book as you would any other text, then
work on the exercises, rereading sections and examples as necessary. Even though there
are no template examples, you will find the discussions full of examples. Since one of
our main goals is to demonstrate how differential equations are used to model physical
systems, we often start with the description of a physical system, build a model, and
then study the model to make conclusions and predictions about the original system.
Many of the exercises ask you to produce or modify a model of a physical system, ana-
lyze it, and explain your conclusions. This is hard stuff, and you will need to practice.
Since the days when you could make a living plugging and chugging through computa-
tions are over (computers do that now), you will need to learn these skills, and we hope
that this book helps you develop them.

Another way in which this book may differ from your previous texts is that we
expect you to make judicious use of a computer as you work the exercises and labs. In-
cluded in the software that accompanies this text are solvers that let you compute solu-
tions of differential equations and graph the results. We encourage you to start playing
with them immediately. As far as we know, a computer cannot think for you (yet), but
it can provide you with numerical evidence that is essentially impossible for you to get
in any other way. One of our goals is to give you practice as a sophisticated consumer
of computer cycles as well as a skeptic of computer results.

In this book, solutions of differential equations involve motion of a system over
time—the changes in population over time, the motion of a pendulum, and so forth. It
is therefore important that you be able to visualize how certain systems evolve as time
passes. A static text book is not the ideal mechanism to illustrate motion. Accordingly,
we have included a number of demonstrations in the DETool's software that show the
actual motion associated with differential equations. These demos are fun to use, and
we encourage you to refer to them early and often.

Incidentally, one of the authors is known to have made a mistake or two in his life
that the other two authors have overlooked. So we maintain a very short list of errata
at our web site http://math.bu.edu/odes. Please check this page if you think
that something you have read is not quite right.

Finally, you should know that the authors take the study of differential equations
very seriously. However, we don’t take ourselves very seriously (and we certainly don’t

XV
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xvi ANOTE TO THE STUDENT

take the other two authors seriously). We have tried to express both the beauty of the
mathematics and some of the fun we have doing mathematics. If you think the jokes
are old or stupid, you’re probably right.

All of us who worked on this book have learned something about differential
equations along the way, and we hope that we are able to communicate our appreci-
ation for the subject’s beauty and range of application. We would enjoy hearing your
comments. Feel free to send us e-mail at odes@math.bu.edu. We sometimes get
busy and cannot always respond, but we do read and appreciate your feedback.

We had fun writing this book. We hope you have fun reading it.

G.R.H.,PB., R.L.D.
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-ORDER
DIFFERENTIAL EQUATIONS

\

This book is about how to predict the future. To do so, all we haveisa
knowledge of how things are and an understanding of the rules that govern the
changes that will occur. From calculus we know that change is measured by
the derivative. Using the derivative to describe how a quantity changesis what
the subject of differential equationsisall about.

Turning the rules that govern the evolution of a quantity into a differential
equation is called modeling, and in this book we study many models. Our goal
isto use the differential equation to predict the future value of the quantity
being model ed.

There are three basic types of techniques for making these predictions.
Analytical techniquesinvolve finding formulas for the future values of the
guantity. Qualitative techniques involve obtaining a rough sketch of the graph
of the quantity as afunction of time as well as a description of itslong-term
behavior. Numerical techniques involve doing arithmetic (or having a
computer do arithmetic) that yields approximations of the future values of the
quantity. We introduce and use all three of these approaches in this chapter.
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2 CHAPTER 1 First-Order Differential Equations

1.1 MODELING VIA DIFFERENTIAL EQUATIONS

The hardest part of using mathematics to study an application is the translation from
real life into mathematical formalism. This trandation is usualy difficult because it
involves the conversion of imprecise assumptions into precise formulas. There is no
way to avoid it. Modeling is difficult, and the best way to get good at it is the same way
you get to play Carnegie Hall—practice, practice, practice.

What Is a Model?

It is important to remember that mathematical models are like other types of models.
The goal is not to produce an exact copy of the “real” object but rather to give arepre-
sentation of some aspect of the real thing. For example, a portrait of a person, a store
mannequin, and a pig can al be models of a human being. None is a perfect copy of
a human, but each has certain aspects in common with a human. The painting gives
a description of what a particular person looks like; the mannequin wears clothes as a
person does; and the pig is alive. Which of the three modelsis “best” depends on how
we use the model—to remember old friends, to buy clothes, or to study biology.

We study mathematical models of systems that evolve over time, but they of-
ten depend on other variables as well. In fact, real-world systems can be notoriously
complicated—the popul ation of rabbits in Wyoming depends on the number of coyotes,
the number of bobcats, the number of mountain lions, the number of mice (alternative
food for the predators), farming practices, the weather, any number of rabbit diseases,
etc. We can make a model of the rabbit population simple enough to understand only
by making simplifying assumptions and lumping together effects that may or may not
belong together.

Once we've built the model, we should compare predictions of the model with
data from the system. If the model and the system agree, then we gain confidence that
the assumptions we made in creating the model are reasonable, and we can use the
model to make predictions. If the system and the model disagree, then we must study
and improve our assumptions. In either case we learn more about the system by com-
paring it to the model.

The types of predictions that are reasonable depend on our assumptions. If our
model is based on precise rules such as Newton's laws of motion or the rules of com-
pound interest, then we can use the model to make very accurate quantitative predic-
tions. If the assumptions are less precise or if the model is a simplified version of the
system, then precise quantitative predictions would be silly. In this case we would
use the model to make qualitative predictions such as “the population of rabbits in
Wyoming will increase....” Thedividing line between qualitative and quantitative pre-
diction isitself imprecise, but we will see that it is frequently better and easier to make
qualitative use of even the most precise models.

Some hints for model building

The basic steps in creating the model are:
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1.1 Modeling via Differential Equations 3

Step 1 Clearly state the assumptions on which the model will be based. These assump-
tions should describe the relationships among the quantities to be studied.

Step 2 Completely describe the variables and parameters to be used in the model—
“you can't tell the players without a score card.”

Step 3 Use the assumptions formulated in Step 1 to derive equations relating the quan-
titiesin Step 2.

Step 1 is the “science” step. In Step 1, we describe how we think the physical sys-
tem works or, at least, what the most important aspects of the system are. In some
cases these assumptions are fairly speculative, as, for example, “rabbits don’t mind be-
ing overcrowded.” In other cases the assumptions are quite precise and well accepted,
such as “forceis equal to the product of mass and acceleration.” The quality of the as-
sumptions determines the validity of the model and the situations to which the model
is relevant. For example, some population models apply only to small populations in
large environments, whereas others consider limited space and resources. Most im-
portant, we must avoid “hidden assumptions’ that make the model seem mysterious or
magical.

Step 2 is where we name the quantities to be studied and, if necessary, describe
the units and scales involved. Leaving this step out is like deciding you will speak your
own language without telling anyone what the words mean.

The quantities in our models fall into three basic categories: the independent
variable, the dependent variables, and the parameters. In this book the indepen-
dent variable is almost alwaystime. Timeis“independent” of any other quantity in the
model. On the other hand, the dependent variables are quantities that are functions of
the independent variable. For example, if we say that “position is a function of time,”
we mean that position is a variable that depends on time. We can vaguely state the goal
of a model expressed in terms of a differential equation as “Describe the behavior of
the dependent variabl e as the independent variable changes.” For example, we may ask
whether the dependent variable increases or decreases, or whether it oscillates or tends
to alimit.

Parameters are quantities that do not change with time (or with the independent
variable) but that can be adjusted (by natural causes or by a scientist running the exper-
iment). For example, if we are studying the motion of a rocket, the initial mass of the
rocket is a parameter. If we are studying the amount of ozone in the upper atmosphere,
then the rate of release of fluorocarbons from refrigeratorsis a parameter. Determining
how the behavior of the dependent variables changes as we adjust the parameters can
be the most important aspect of the study of amodel.

In Step 3 we create the equations. Most of the models we consider in this book
are expressed mathematically as differential equations. In other words, we expect to
find derivatives in our equations. Look for phrases such as “rate of change of ...” or
“rate of increase of ...,” sincerate of change is synonymous with derivative. Of course,
aso watch for “velocity” (derivative of position) and “acceleration” (derivative of ve-
locity) in models from physics. The word is means “equals’ and indicates where the
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4 CHAPTER 1 First-Order Differential Equations

equality lies. The phrase “ A is proportional to B” means A = kB, wherek isa propor-
tionality constant (often a parameter in the model).

When we formulate a model, we follow the advice of Albert Einstein: “Make
everything as simple as possible, but not simpler.” In this case, we make the algebra as
simple as possible. For example, when modeling the velocity v of a cat falling from a
tall building, we could assume:

« Air resistance increases as the cat’s velocity increases.*

This assumption says that air resistance provides a force that counteracts the force of
gravity and that this force increases as the velocity v of the cat increases. We could
choose kv or kv? for the air resistance term, wherek is the friction coefficient, a param-
% eter. Both expressionsincrease as v increases, so they satisfy the assumption. However,
we most likely would try kv first because it is the simplest expression that satisfies the

assumption. In fact, it turns out that kv yields a good model for falling bodies with
Figure 1.1 low densities such as snowflakes, but kv? isamore appropriate model for dense objects
Well prepared cat. such as raindrops (see Exercise 12).

Now we turn to a series of models of population growth based on various as-
sumptions about the species involved. Our goal here is to study how to go from a set
of assumptions to a model that involves differential equations. These examples are not
state-of -the-art models from population ecology, but they are good onesto consider ini-
tially. We a so begin to describe the analytic, qualitative, and numerical techniques that
we use to make predictions based on these models. Our approach is meant to be illus-
trative only; we discuss these mathematical techniques in much more detail throughout
the entire book.

T
;\‘\,

Unlimited Population Growth

An elementary model of population growth is based on the assumption that
» Therate of growth of the population is proportional to the size of the population.

Note that the rate of change of a population depends on only the size of the population
and nothing else. In particular, limitations of space or resources are ignored. This as-
sumption is reasonable for small populations in large environments—for example, the
first few spots of mold on a piece of bread or the first European settlers in the United
States.

*In 1987, veterinarians at Manhattan's Animal Medical Center conducted a study of cats that had fallen
from high-rise buildings (“High-Rise syndromein cats’ by W. O. Whitney and C. J. Mehlhaff, in Journal of
the American Veterinary Medical Association, Vol. 191, No. 11, 1987, pp. 1399-1403). They found that 90%
of the cats that they treated survived. More than one-half suffered serious injuries, and more than one-third
required life-saving treatments. However, slightly under one-third did not require any treatment at all.

Counterintuitively, this study found that cats that fell from heights of 7 to 32 stories were less likely to die
than catsthat fell from 2 to 6 stories. One might assume that falling from a greater distance gives the cat more
time to adopt a Rocky-the-flying-squirrel pose.

Of course, this study suffers from one obvious design flaw. That is, data was collected only from cats that
were brought into clinics for veterinary care. It is unknown how many cats died on impact.

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1.1 Modeling via Differential Equations 5

Because the assumption is so simple, we expect the model to be simple as well.
The quantities involved are

t = time (independent variable),
P = population (dependent variable), and

k = proportionality constant (parameter) between the rate
of growth of the population and the size of the population.

The parameter k is often called the “ growth-rate coefficient.”

The units for these quantities depend on the application. If we are modeling the
growth of mold on bread, then t might be measured in days and P (t) might be either
the area of bread covered by the mold or the weight of the mold. If we are talking about
the European population of the United States, then t probably should be measured in
yearsand P (t) in millions of people. In this case we could let t = 0 correspond to any
time we wanted. The year 1790 (the year of the first census) is a convenient choice.

Now let’s express our assumption using this notation. The rate of growth of the
population P isthe derivatived P /dt. Being proportional to the population is expressed
as the product, kP, of the population P and the proportionality constant k. Hence our
assumption is expressed as the differential equation

dp
—— —kP.
dt

In other words, the rate of change of P is proportional to P. Note that, since the units
associated to both sides of the equation much agree, we see that the units associated to
the growth-rate coefficient k are 1/time.

Thisequationisour first example of adifferential equation. Associated withit are
a number of adjectives that describe the type of differential equation that we are con-
sidering. In particular, it is afirst-order equation because it contains only first deriva-
tives of the dependent variable, and it is an ordinary differential equation because it
does not contain partial derivatives. In thisbook we deal only with ordinary differential
equations.

We have written this differential equation using the d P /dt Leibniz notation—the
notation that we tend to use. However, there are many other ways to express the same
differential equation. In particular, we could also write this equation as P’ = kP or as
P = kP. The“dot” notation is often used when the independent variableistimet.

What does the model predict?

More important than the adjectives or how the equation is written is what the equation
tells us about the situation being modeled. Since d P /dt = kP for some constant k,
dP/dt = 0if P = 0. Thusthe constant function P (t) = 0 isasolution of the differen-
tial equation. This special type of solution is called an equilibrium solution because it
is constant forever. In terms of the population model, it corresponds to a speciesthat is
nonexistent.
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6 CHAPTER 1 First-Order Differential Equations

If P(tg) # 0 at sometimetp, then
dpP

— =k P(t 0.

it (to) #
at tgp. As aconsequence, the population is not constant. If k > 0 and P(tg) > 0, we
have dP

at timet = tp and the population is increasing (as one would expect). Ast increases,
P(t) becomes larger, so d P /dt becomes larger. In turn, P(t) increases even faster.
That is, the rate of growth increases as the population increases. We therefore expect
that the graph of the function P (t) might ook like Figure 1.2.

Thevalueof P(t) att = Oiscaled an initial condition. If we start with a dif-
ferent initial condition we get a different function P (t) asisindicated in Figure 1.3. If
P (0) is negative (remembering k > 0), wethen havedP /dt < Ofort = 0, s0 P(t) is
initially decreasing. Ast increases, P (t) becomes more negative. The graphs below the
t-axisare mirror images of the graphs above the t-axis, although they are not physically
meaningful because a negative population doesn’t make much sense.

Our analysis of the way in which P(t) increases ast increasesis called a qual-
itative analysis of the differential equation. If all we care about is whether the model
predicts “ population explosions,” then we can answer “yes, aslong as P (0) > 0"

Analytic solutions of the differential equation
If, on the other hand, we know the exact value Py of P (0) and we want to predict the
value of P (10) or P (100), then we need more precise information about function P (t).

P P
P(®)
PO
é
Figure 1.2 Figure 1.3
The graph of afunction that satisfies the The graphs of several different functions
differential equation that satisfy the differential equation
dpP dpP
— =kP. — =kP.
dt dt
Itsinitia valueatt = 0is P(0). Each hasadifferent valueatt = 0.
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1.1 Modeling via Differential Equations 7

The pair of equations

dp
G =kP. PO =Py

iscalled an initial-value problem. A solution to theinitial-value problem is afunction
P (t) that satisfies both equations. That is,

P
dd_t =kP fordlt and P(0) = Po.

Consequently, to find a solution to this differential equation we must find a function
P (t) whose derivative is the product of k with P(t). One (not very subtle) way to find
such a function is to guess. In this case, it is relatively easy to guess the right form
for P (t) because we know that the derivative of an exponential function is essentially
itself. (We can eliminate this guesswork by using the method of separation of variables,
which we describe in the next section. But for now, let’sjust try the exponential and see
where that leads us.) After a couple of tries with various forms of the exponential, we
see that

P(t) =X

is afunction whose derivative, d P /dt = kek!, is the product of k with P (t). But there
are other possible solutions, since P (t) = cek! (where ¢ isa constant) yieldsd P /dt =
c(kekt) = k(cek') = kP (t). Thusd P /dt = kP for all t for any value of the constant c.

We have infinitely many solutions to the differential equation, one for each value
of ¢. To determine which of these solutions is the correct one for the situation at hand,
we use the given initial condition. We have

Po=PO) =c-ek0=c.e®=c.1=c.
Consequently, we should choose ¢ = Py, so asolution to the initial-value problem is
P(t) = PeX!.

We have obtained an actual formulafor our solution, not just a qualitative picture of its
graph.

The function P (t) is called the solution to the initial-value problem as well as a
particular solution of the differential equation. The collection of functions P (t) = cek!
is called the general solution of the differential equation because we can use it to find
the particular solution corresponding to any initial-value problem. Figure 1.3 consists
of the graphs of exponential functions of the form P (t) = cek! with various values of
the constant ¢, that is, with different initial values. In other words, it is a picture of the
general solution to the differential equation.
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8 CHAPTER 1 First-Order Differential Equations

The U.S. Population
As an example of how this model can be used, consider the U.S. census figures since
1790 givenin Table 1.1.

Let’s see how well the unlimited growth model fits this data. We measuretimein
years and the population P (t) in millions of people. We also lett = 0 bethe year 1790,
so theinitial conditionis P (0) = 3.9. The corresponding initial-value problem

dP
T _kP, PO =3
it , (0) =3.9,

has P (t) = 3.9ek! asa solution. We cannot use this model to make predictions yet be-
cause we don’t know the value of k. However, we are assuming that k is a constant, so
we can use theinitial condition along with the popul ation in the year 1800 to estimatek.

If we set
5.3 = P(10) = 3.9¢X10,
then we have
5.3
k-10 _ 29
¢ =39
5.3
10k = In( ==
n (3.9)
k ~ 0.03067.

Table 1.1
U.S. census figures, in millions of people (see www . census . gov)

Year t Actud  P(t) = 3.9%%% | veqr t Actud  P(t) = 3.9¢0:0%067
1790 0 3.9 3.9 1930 140 123 286
1800 10 5.3 5.3 1940 150 132 388
1810 20 72 72 1950 160 151 528
1820 30 9.6 958 1960 170 179 717
1830 40 13 13 1970 180 203 975
1840 50 17 18 1980 190 227 1,320
1850 60 23 25 1990 200 249 1,800
1860 70 31 33 2000 210 281 2,450
1870 80 39 45 2010 220 3,320
1880 90 50 62 2020 230 4,520
1890 100 63 84 2030 240 6,140
1900 110 76 114 2040 250 8,340
1910 120 91 155 2050 260 11,300
1920 130 106 210
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1.1 Modeling via Differential Equations 9
Thus our model predicts that the United States population is given by
P (t) = 3.9e00%087

Aswe see from Figure 1.4, thismodel of P (t) does a decent job of predicting the pop-
ulation until roughly 1860, but after 1860 the prediction is much too large. (Table 1.1
includes a comparison of the predicted values to the actual data.)

Our model is fairly good provided the population is relatively small. However,
as time goes by, the model predicts that the population will continue to grow without
any limits, which obviously cannot happen in the real world. Consequently, if we want
a model that is accurate over a large time scale, we should account for the fact that
populations exist in afinite amount of space and with limited resources.

2] Figure 1.4
250+ . The dots represent actual census data and the
L solid line is the solution of the exponential
. growth model
1257 o 4P _ 0.03067P.
. dt
< Timet ismeasured in years since the
100 200

Limited Resources and the Logistic Population Model

To adjust the exponential growth popul ation model to account for alimited environment
and limited resources, we add the assumptions:

« |f the population is small, the rate of growth of the population is proportional to its
size.

o If the population is too large to be supported by its environment and resources, the
population will decrease. That is, the rate of growth is negative.

For this model, we again use

t = time (independent variable),
P = population (dependent variable),

k = growth-rate coefficient for small
populations (parameter).

However, our assumption about limited resourcesintroduces another quantity, the
size of the population that corresponds to being “too large” This quantity is a second
parameter, denoted by N, that we call the carrying capacity of the environment. In
terms of the carrying capacity, we are assuming that P (t) isincreasing if P(t) < N.
However, if P(t) > N, weassumethat P (t) is decreasing.
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10 CHAPTER 1 First-Order Differential Equations
Using this notation, we can restate our assumptions as:

1. C(lj—I: ~ kP if P issmall.

2.IfP>N,d—P<0.
dt

We also want the model to be “algebraically simple,” or at least as simple as pos-
sible, so we try to modify the exponential model as little as possible. For instance, we
might look for an expression of the form

dpP

— =k - (something) - P.

dt
We want the “something” factor to be closeto 1 if P issmall, but if P > N we want
“something” to be negative. The simplest expression that has these properties is the
function

N
Note that this expression equals 1 if P = 0, and it is negative if P > N. Thus our

model is dp b

This is called the logistic population model with growth rate k and carrying capac-
ity N. It isanother first-order differential equation. This equation is said to be nonlin-
ear because its right-hand sideis not a linear function of P asit was in the exponential
growth model.

(something) = (1 - E) .

Qualitative analysis of the logistic model

Although thelogistic differential equation isjust slightly more complicated than the ex-
ponential growth model, there is no way that we can just guess solutions. The method
of separation of variables discussed in the next section produces a formula for the so-
[ution of this particular differential equation. But for now, we rely solely on qualitative

F(P) methods to see what this model predicts over the long term.
First, let
f(P)=k(1 P P
B N
denote the right-hand side of the differential equation. In other words, the differential
equation can be written as
P dP P
0 —=f(P)=k(1-—)P.
’\\ dt (P < N )

Figure 1.5 We can derive qualitative information about the solutions to the differential equation
Graph of theright-hand side  from aknowledge of whered P /dt iszero, whereit is positive, and where it is negative.
f(P)=k(@— P/N)P of the If we sketch the graph of the quadratic function f (see Figure 1.5), we see that it

logistic differential equation.  crosses the P-axis at exactly two points, P = O and P = N. In either case we have
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1.1 Modeling via Differential Equations 11

dP/dt = 0. Since the derivative of P vanishesfor al t, the population remains con-
stantif P = 0or P = N. That is, the constant functions P(t) = Oand P(t) = N are
solutions of the differential equation. These two constant solutions make perfect sense:
If the population is zero, the population remains zero indefinitely; if the population is
exactly at the carrying capacity, it neither increases nor decreases. As before, we say
that P = 0and P = N areequilibria. The constant functions P(t) = Oand P(t) = N
are called equilibrium solutions (see Figure 1.6).

P Figure 1.6
The equilibrium solutions of the logistic
differential equation

dpP P

The long-term behavior of the population is very different for other values of the
population. If the initial population lies between 0 and N, then we have f (P) > 0.
In this case the rate of growth dP /dt = f(P) is positive, and consequently the pop-
ulation P (t) isincreasing. Aslong as P (t) lies between 0 and N, the population con-
tinues to increase. However, as the population approaches the carrying capacity N,
dP/dt = f(P) approaches zero, so we expect that the population might level off asit
approaches N (see Figure 1.7).

If P(O) > N, thendP/dt = f(P) < 0, and the population is decreasing. As
above, when the population approaches the carrying capacity N, dP/dt approaches
zero, and we again expect the population to level off at N.

Finally, if P(0) < O (which does not make much sense in terms of populations),
we also havedP/dt = f(P) < 0. Again we see that P (t) decreases, but this time it
does not level off at any particular value sinced P /dt becomes more and more negative
as P (t) decreases.

Thus, just from a knowledge of the graph of f, we can sketch a number of dif-
ferent solutions with different initial conditions, al on the same axes. The only infor-
mation that we need isthe fact that P = Oand P = N are equilibrium solutions, P (t)
increasesif 0 < P < N and P(t) decreasesif P > N or P < 0. Of course the
exact values of P (t) at any given time t depend on the values of P (0), k, and N (see

Figure 1.8).
P Figure 1.7
Solutions of the logistic differential
\ equation
dP P
P=N - = -
I appr(?achl ng the equilibrium
P—0 t  solution P = N.
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12 CHAPTER 1 First-Order Differential Equations

P Figure 1.8
Solutions of the logistic differentia
equation
P=N — dP P
—=k(1-—)P
i~ (- %)
P_0 t approaching the equilibrium solution

P = N and moving away from the
equilibrium solution P = 0.

Predator-Prey Systems

No specieslivesin isolation, and the interactions among species give some of the most
interesting models to study. We conclude this section by introducing a simple predator-
prey system of differential equations where one species“eats’ another. The most obvi-
ous difference between the model here and previous models is that we have two quan-
tities that depend on time. Thus our model has two dependent variables that are both
functions of time. Since both predator and prey begin with “p,” we call the prey “rab-
bits’ and the predators “foxes,” and we denote the prey by R and the predators by F.
The assumptions for our model are:

« If no foxes are present, the rabbits reproduce at a rate proportional to their popula-
tion, and they are not affected by overcrowding.

» The foxes eat the rabbits, and the rate at which the rabbits are eaten is proportional
to the rate at which the foxes and rabbits interact.

« Without rabbits to eat, the fox population declines at a rate proportional to itself.

» The rate at which foxes are born is proportional to the number of rabbits eaten by
foxes which, by the second assumption, is proportional to the rate at which the foxes
and rabbits interact.*

To formulate this model in mathematical terms, we need four parameters in ad-
dition to our independent variable t and our two dependent variables F and R. The
parameters are

a = growth-rate coefficient of rabbits,

B = constant of proportionality that measures the number
of rabbit-fox interactions in which the rabbit is eaten,

y = death-rate coefficient of foxes,
§ = constant of proportionality that measures the
benefit to the fox population of an eaten rabbit.

When we formulate our model, we follow the convention that «, 8, y, and § are all
positive.

*Actually, foxes rarely eat rabbits. They focus on smaller prey, mostly mice and especially grasshoppers.
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1.1 Modeling via Differential Equations 13

Our first and third assumptions above are similar to the assumption in the unlim-
ited growth model discussed earlier in this section. Consequently, they give terms of
theform R inthe equation for dR /dt and —y F (since the fox population declines) in
the equation for d F /dt.

The rate at which the rabbits are eaten is proportiona to the rate at which the
foxes and rabbits interact, so we need a term that models the rate of interaction of the
two populations. We want aterm that increasesif either R or F increases, but it should
vanish if either R = 0 or F = 0. A simple term that incorporates these assumptions
is RF. Thus we model the effects of rabbit-fox interactionson d R /dt by aterm of the
form —BRF. The fourth assumption gives asimilar term in the equation for d F/dt. In
this case, eating rabbits helps the foxes, so we add aterm of theform §RF.

Given these assumptions, we obtain the model

dR
—aR — BRF

dt
(fj—lt: =—yF +46RF.
Considered together, this pair of equations is called a first-order system (only first
derivatives, but more than one dependent variable) of ordinary differential equations.
The system is said to be coupled because the rates of change of R and F depend on
both R and F.

It is important to note the signs of the terms in this system. Because 8 > O,
the term “—BRF" is nonpositive, so an increase in the number of foxes decreases the
growth rate of the rabbit population. Also, since§ > 0, theterm “§RF” is nonnegative.
Consequently, an increase in the number of rabbits increases the growth rate of the fox
population.

Although this model may seem relatively simpleminded, it has been the basis of
some interesting ecological studies. In particular, Volterra and D’ Ancona successfully
used the model to explain the increase in the population of sharksin the Mediterranean
during World War | when the fishing of “prey” species decreased. The model can also
be used as the basis for studying the effects of pesticides on the populations of predator
and prey insects.

A solution to this system of equations is, unlike our previous models, a pair of
functions, R(t) and F(t), that describe the populations of rabbits and foxes as func-
tions of time. Since the system is coupled, we cannot simply determine one of these
functions first and then the other. Rather, we must solve both differential equations
simultaneously. Unfortunately, for most values of the parameters, it is impossible to
determine explicit formulas for R(t) and F(t). These functions cannot be expressed
in terms of known functions such as polynomials, sines, cosines, exponentials, and the
like. However, as we will see in Chapter 2, these solutions do exist, although we have
no hope of ever finding them exactly. Since analytic methods for solving this system
are destined to fail, we must use either qualitative or numerical methods to study R(t)
and F(t).
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14 CHAPTER 1 First-Order Differential Equations

The Analytic, Qualitative, and Numerical Approaches

Our discussion of the three population models in this section illustrates three differ-
ent approaches to the study of the solutions of differential equations. The analytic ap-
proach searches for explicit formulas that describe the behavior of the solutions. Here
we saw that exponential functions give us explicit solutions to the exponential growth
model. Unfortunately, a large number of important equations cannot be handled with
the analytic approach; there simply is no way to find an exact formula that describes
the situation. We are therefore forced to turn to alternative methods.

One particularly powerful method of describing the behavior of solutions is the
qualitative approach. This method involves using geometry to give an overview of the
behavior of the model, just as we did with the logistic population growth model. We
do not use this method to give precise values of the solution at specific times, but we
are often able to use this method to determine the long-term behavior of the solutions.
Frequently, thisisjust the kind of information we need.

The third approach to solving differential equationsis numerical. The computer
approximates the solution we seek. Although we did not illustrate any numerical tech-
niques in this section, we will soon see that numerical approximation techniques are a
powerful tool for giving us intuition regarding the solutions we desire.

All three of the methods we use have certain advantages, and al have drawbacks.
Sometimes certain methods are useful while others are not. One of our main tasks as
we study the solutions to differential equations will be to determine which method or
combination of methods works in each specific case. In the next three sections, we
elaborate on these three techniques.

EXERCISES FOR SECTION 1.1

In Exercises 1 and 2, find the equilibrium solutions of the differential equation speci-

fied.
L4y _y+3 , &y _ ®-D(y?-2)
dt T 1-—y Tdt y2—4

3. Consider the population model

dP P
5 = 04P (1—ﬁ),

where P (t) isthe population at timet.
(a) For what values of P isthe population in equilibrium?
(b) For what values of P isthe population increasing?
(c) For what values of P isthe population decreasing?
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1.1 Modeling via Differential Equations 15

4. Consider the population model

dP P P
— =03(1-=—)[=-1|P
o =03(+ ) (1)
where P (t) isthe population at timet.
(a) For what values of P isthe population in equilibrium?

(b) For what values of P isthe population increasing?
(c) For what values of P isthe population decreasing?

5. Consider the differential equation

dy 3 2

pri y® —ye —12y.
(a) For what values of y isy(t) in equilibrium?
(b) For what values of y isy(t) increasing?

(c) For what values of y is y(t) decreasing?

In Exercises 6-10, we consider the phenomenon of radioactive decay which, from ex-
perimentation, we know behaves according to the law:

The rate at which a quantity of a radioactive isotope decays is proportiona to
the amount of the isotope present. The proportionality constant depends only
on which radioactive isotopeis used.

6. Model radioactive decay using the notation

t = time (independent variable),

r(t) = amount of particular radioactive isotope
present at timet (dependent variable),

—) = decay rate (parameter).

Note that the minus sign is used so that A > 0.
(a) Using this notation, write amodel for the decay of a particular radioactive iso-
tope.
(b) If the amount of the isotope present at t = 0 is ro, State the corresponding
initial-value problem for the model in part (a).

7. The half-life of a radioactive isotope is the amount of time it takes for a quantity of
radioactive material to decay to one-half of its original amount.
(a) The half-life of Carbon 14 (C-14) is 5230 years. Determine the decay-rate pa-
rameter A for C-14.

(b) The haf-life of lodine 131 (I-131) is 8 days. Determine the decay-rate param-
eter for 1-131.
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16 CHAPTER 1 First-Order Differential Equations

(c) What are the units of the decay-rate parametersin parts (a) and (b)?

(d) To determine the half-life of an isotope, we could start with 1000 atoms of the
isotope and measure the amount of time it takes 500 of them to decay, or we
could start with 10,000 atoms of the isotope and measure the amount of time it
takes 5000 of them to decay. Will we get the same answer? Why?

8. Carbon dating is amethod of determining the time elapsed since the death of organic
material. The assumptionsimplicit in carbon dating are that

» Carbon 14 (C-14) makes up aconstant proportion of the carbon that living mat-
ter ingests on aregular basis, and

« once the matter dies, the C-14 present decays, but no new carbon is added to
the matter.

Hence, by measuring the amount of C-14 still in the organic matter and comparing
it to the amount of C-14 typically found in living matter, a“time since death” can be
approximated. Using the decay-rate parameter you computed in Exercise 7, deter-
mine the time since death if

(a) 88% of the original C-14 isstill in the material.
(b) 12% of the original C-14 is till in the material.
(c) 2% of theoriginal C-14 is till in the material.
(d) 98% of the original C-14 is till in the material.

Remark: There has been speculation that the amount of C-14 available to living
creatures has not been exactly constant over long periods (thousands of years). This
makes accurate dates much trickier to determine.

9. Engineers and scientists often measure the rate of decay of an exponentially decay-
ing quantity using its time constant. The time constant t is the amount of time that
an exponentially decaying quantity takes to decay by afactor of 1/e. Because 1/e
is approximately 0.368, t is the amount of time that the quantity takes to decay to
approximately 36.8% of its original amount.

(a) How are the time constant ¢ and the decay rate A related?

(b) Express the time constant in terms of the half-life.

(¢) What are the time constants for Carbon 14 and lodine 1317?

(d) Given an exponentially decaying quantity r(t) with initial value ro = r(0),
show that its time constant is the time at which the tangent line to the graph
of r(t)/ro a (0, 1) crosses the t-axis. [Hint: Start by sketching the graph of
r(t)/ro and the line tangent to the graph at (0, 1).]

(e) It is often said that an exponentially decaying quantity reaches its steady state
in five time constants, that is, att = 5r. Explain why this statement is not
literally true but is correct for al practical purposes.
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1.1 Modeling via Differential Equations 17

10. The radioactive isotope 1-131 is used in the treatment of hyperthyroidism. When
administered to a patient, 1-131 accumulates in the thyroid gland, where it decays
and kills part of that gland.

(a) Suppose that it takes 72 hours to ship 1-131 from the producer to the hospital.
What percentage of the original amount shipped actually arrives at the hospi-
tal? (See Exercise 7.)

(b) If the1-131 is stored at the hospital for an additional 48 hours before it is used,
how much of the original amount shipped from the producer is left when it is
used?

(c) How long will it take for the 1-131 to decay completely so that the remnants
can be thrown away without special precautions?

11. MacQuarie Island is a small island about half-way between Antarctica and New
Zedland. Between 2000 and 2006, the population of rabbits on the island rose from
4,000 to 130,000. Model the growth in the rabbit population R(t) at timet using an

exponential growth model

dR
— =kR
dt ’

wheret = 0 corresponds to the year 2000. What is an appropriate value for the
growth-rate parameter k, and what does this model predict for the population in the
year 2010. (For more information on why the population of rabbits exploded, see
Review Exercise 22 in Chapter 2.)

12. The velocity v of afreefalling skydiver is well modeled by the differential equation

- — kp?
m m mg — kv,
where m isthe mass of the skydiver, g isthe gravitational constant, and k isthe drag
coefficient determined by the position of the diver during the dive. (Note that the
constantsm, g, and k are positive.)

(a) Perform a qualitative analysis of this model.

(b) Calculate the terminal velocity of the skydiver. Express your answer in terms
of m, g, and k.

Exercises 1315 consider an elementary model of the learning process. Although hu-
man learning is an extremely complicated process, it is possible to build models of cer-
tain simple types of memorization. For example, consider a person presented with a
list to be studied. The subject is given periodic quizzes to determine exactly how much
of the list has been memorized. (The lists are usualy things like nonsense syllables,
randomly generated three-digit numbers, or entries from tables of integrals.) If we let
L (t) be the fraction of the list learned at time t, where L = 0O corresponds to knowing
nothing and L = 1 corresponds to knowing the entire list, then we can form a simple
model of thistype of learning based on the assumption:

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



18 CHAPTER 1 First-Order Differential Equations

e Therated L /dt isproportiona to the fraction of the list |eft to be learned.

Since L = 1 corresponds to knowing the entire list, the model is

dL

wherek isthe constant of proportionality.

13. For what valueof L, 0 < L < 1, doeslearning occur most rapidly?

14. Suppose two students memorize lists according to the model

dL
Tt 21 —L).
(a) If one of the students knows one-half of the list at timet = 0 and the other
knows none of the list, which student islearning more rapidly at thisinstant?
(b) Will the student who starts out knowing none of the list ever catch up to the
student who starts out knowing one-half of the list?

15. Consider the following two differential equations that model two students' rates of
memorizing apoem. Aly’srateis proportional to the amount to be learned with pro-
portionality constant k = 2. Beth’'srateis proportional to the square of the amount to
be learned with proportionality constant 3. The corresponding differential equations
are

dd% —2(1—-La) and dd% —3(1-Lp)%
where L a(t) and L (t) are the fractions of the poem learned at time t by Aly and
Beth, respectively.
(a) Which student has a faster rate of learning at t = O if they both start memoriz-
ing together having never seen the poem before?
(b) Which student has a faster rate of learning at t = O if they both start memoriz-
ing together having already learned one-half of the poem?
(c) Which student has a faster rate of learning at t = O if they both start memoriz-
ing together having already learned one-third of the poem?

16. The expenditure on education in the U.S. is given in the following table. (Amounts
are expressed in millions of 2001 constant dollars.)

Year Expenditure Year Expenditure Year Expenditure
1900 5,669 1940 39,559 1980 380,165
1910 10,081 1950 67,048 1990 535,417
1920 12,110 1960 114,700 2000 714,064
1930 30,700 1970 322,935

(a) Let s(t) = spek! be an exponential function. Show that the graph of Ins(t) as
afunction of t isaline. What isits slope and vertical intercept?

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1.1 Modeling via Differential Equations 19

(b) Is spending on education in the U.S. rising exponentially fast? If so, what is
the growth-rate coefficient? [Hint: Use your solution to part (a).]

17. Suppose a species of fish in a particular lake has a population that is modeled by
the logistic population model with growth rate k, carrying capacity N, and time t
measured in years. Adjust the model to account for each of the following situations.

(a) One hundred fish are harvested each year.
(b) One-third of the fish population is harvested annually.

(c) The number of fish harvested each year is proportional to the square root of the
number of fishin the lake.

18. Suppose that the growth-rate parameter k = 0.3 and the carrying capacity N = 2500
in the logistic population model of Exercise 17. Suppose P (0) = 2500.

(a) If 100 fish are harvested each year, what does the model predict for the long-
term behavior of the fish population? In other words, what does a qualitative
analysis of the model yield?

(b) If one-third of the fish are harvested each year, what does the model predict for
the long-term behavior of the fish population?

19. The rhinoceros is now extremely rare. Suppose enough game preserve land is set
aside so that there is sufficient room for many more rhinoceros territories than there
are rhinoceroses. Consequently, there will be no danger of overcrowding. However,
if the population istoo small, fertile adults have difficulty finding each other when it
istime to mate. Write a differential equation that models the rhinoceros population
based on these assumptions. (Note that there is more than one reasonable model that
fits these assumptions.)

20. While it is difficult to imagine a time before cell phones, such atime did exist. The
table below gives the number (in millions) of cell phone subscriptionsin the United
States from the U.S. census (see www . CENSUS . gOV).

Year Subscriptions Year Subscriptions Year Subscriptions
1985 0.34 1993 16 2001 128
1986 0.68 1994 24 2002 141
1987 1.23 1995 34 2003 159
1988 21 1996 44 2004 182
1989 35 1997 55 2005 208
1990 53 1998 69 2006 233
1991 7.6 1999 86 2007 250
1992 11 2000 110 2008 263

Let s(t) be the number of cell phone subscriptions at time t, measured in years since
1989. The relative growth rate of s(t) isits growth rate divided by the number of
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subscriptions. In other words, the relative growth rateis

1 ds
s(t) dt”
and it is often expressed as a percentage.
(a) Estimate the relative growth rate of s(t) att = 1. That is, estimate the relative

rate for the year 1990. Express this growth rate as a percentage. [Hint: The
best estimate involves the number of cell phones at 1989 and 1991.]

(b) In general, if a quantity grows exponentially, how does its relative growth rate
change?

(c) Also estimate the relative growth rates of s(t) for the years 1991-2007.

(d) How long after 1989 was the number of subscriptions growing exponentially?

(e) In general, if aquantity grows according to alogistic model, how doesits rela-
tive growth rate change?

(f) Using your results in part (c), calculate the carrying capacity for this model.
[Hint: Thereis more than one way to do this calculation.]

21. For the following predator-prey systems, identify which dependent variable, x or y,
is the prey population and which is the predator population. |s the growth of the
prey limited by any factors other than the number of predators? Do the predators
have sources of food other than the prey? (Assume that the parameters «, 8, y, 3,
and N areall positive.)

dx dx x2

(a) a:—ax+ﬁxy (b) a:ax—aﬁ—ﬂxy
dy _ dy _
E—VV—SXY a—yy+8xy

22. In the following predator-prey population models, x represents the prey, and y rep-

resents the predators.

L dx . X

0] E_Sx—3xy (i) —t_x—8xy
dy 1 dy _
a_—2y+§xy a_—2y+6xy

(a) Inwhich system doesthe prey reproduce more quickly when there are no preda-
tors (when y = 0) and equal numbers of prey?

(b) In which system are the predators more successful at catching prey? In other
words, if the number of predators and prey are equal for the two systems, in
which system do the predators have a greater effect on the rate of change of the
prey?

(c) Which system requires more prey for the predators to achieve a given growth
rate (assuming identical numbers of predatorsin both cases)?
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1.2 Analytic Technique: Separation of Variables 21

23. The following systems are models of the populations of pairs of species that ei-
ther compete for resources (an increase in one species decreases the growth rate of
the other) or cooperate (an increase in one species increases the growth rate of the
other). For each system, identify the variables (independent and dependent) and the
parameters (carrying capacity, measures of interaction between species, etc.) Do
the species compete or cooperate? (Assume all parameters are positive.)

(@ dx x?2 (b) dx
dy dy
E=VY+5XY E=ay—ﬂxy

1.2 ANALYTIC TECHNIQUE: SEPARATION OF VARIABLES

What Is a Differential Equation and What Is a Solution?

A first-order differential equation is an equation for an unknown function in terms of its
derivative. Aswe saw in Section 1.1, there are three types of “variables’ in differential
equations—the independent variable (almost always t for time in our examples), one
or more dependent variables (which are functions of the independent variable), and the
parameters. This terminology is standard but a bit confusing. The dependent variable
is actually afunction, so technically it should be called the dependent function.

The standard form for afirst-order differential equationis

dy
=2 — f,y).
it t,y)

Here the right-hand side typically depends on both the dependent and independent vari-
ables, although we often encounter cases where either t or y ismissing.

A solution of the differential equation is a function of the independent variable
that, when substituted into the equation as the dependent variable, satisfies the equation
for al values of the independent variable. That is, a function y(t) is a solution if it
satisfies dy/dt = y/(t) = f(t, y(t)). Thisterminology doesn't tell us how to find
solutions, but it does tell us how to check whether a candidate function is or is not a
solution. For example, consider the simple differential equation

dy
E—y

We can easily check that the function y1(t) = 3e! isasolution, whereas y»(t) = sint is
not asolution. The function y;(t) is a solution because

dys _ d@eh) _

t_
el 3¢ =y; foralt.
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22 CHAPTER 1 First-Order Differential Equations

On the other hand, y2(t) isnot a solution since
dys . d(sint) .
dt ~—  dt

and certainly the function cost is not the same function as y2(t) = sint.

ost,

Checking that a given function is a solution to a given equation
If we look at a more complicated equation such as
dy y2-1

dt — t24+2t°
then we have considerably more trouble finding a solution. On the other hand, if some-
body hands usafunction y(t), then we know how to check whether or not it isasolution.

For example, suppose we meet three differential equations textbook authors—say
Paul, Bob, and Glen—at our local espresso bar, and we ask them to find solutions of this
differential equation. After afew minutes of furious calculation, Paul says that

yi(t)y =14t
isasolution. Glen then says that
yo(t) =1+ 2t
isasolution. After several more minutes, Bob says that
ys() =1

isasolution. Which of these functions is a solution? Let's see who is right by substi-
tuting each function into the differential equation.
First we test Paul’s function. We compute the left-hand side by differentiating
y1(t). We have
dy;  d@d+1t)
dt ~—  dt
Substituting y () into the right-hand side, we find

1

i) -1  @A+H?2—-1 242t

t24+2t t2+2t 242t

The left-hand side and the right-hand side of the differential equation are identical, so
Paul is correct.

To check Glen's function, we again compute the derivative

dy; d(l+2t)

at ~—  dt

With y»(t), the right-hand side of the differential equationis

1

2.

(Y202 -1 (@+20)2-1 42+4t 4t+1)
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1.2 Analytic Technique: Separation of Variables 23

The left-hand side of the differential equation does not equal the right-hand side for
al t since the right-hand side is not the constant function 2. Glen’s function is not a

solution.
Finally, we check Bob's function the same way. The left-hand sideis
dys _ d@ _
dt — dt

because y3(t) = lisaconstant. The right-hand sideis

ya)?—1  1-1
242t t242t
Both the left-hand side and the right-hand side of the differential equation approaches
zero for all t. Hence, Bob’s function is a solution of the differential equation.

The lessons we learn from this example are that a differential equation may have
solutions that ook very different from each other algebraically and that (of course) not
every function isasolution. Given afunction, we can test to see whether it isa solution
by just substituting it into the differential equation and checking to see whether the left-
hand side is identical to the right-hand side. Thisis a very nice aspect of differential
equations. We can always check our answers. So we should never be wrong.

Initial-Value Problems and the General Solution

When we encounter differential equations in practice, they often come with initial
conditions. We seek a solution of the given equation that assumes a given value at
a particular time. A differential equation along with an initial condition is called an
initial-value problem. Thus the usual form of an initial-value problem is

dy

a = f(t’ y)v y(to) = YO-

Herewe are looking for afunction y(t) that isasolution of the differential equation and
assumes the value yg at time tg. Often, the particular time in questionist = 0 (hence
the name initial condition), but any other time could be specified.
For example,

d .

d—i’ — 1263 _2sint, y(0) =3,
is an initial-value problem. To solve this problem, note that the right-hand side of the
differential equation dependsonly ont, not ony. We are looking for a function whose
derivative is 12t3 — 2sint. Thisisatypical antidifferentiation problem from calculus,
so all we need to do isto integrate this expression. We find

/(12t3 —2sint)dt = 3t* + 2cost +c,

where ¢ is aconstant of integration. Thus the solution must be of the form

y(t) = 3t* + 2cost + c.
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24 CHAPTER 1 First-Order Differential Equations

We now usethe initial condition y(0) = 3 to determine ¢ by
3=y(0) =3-0"+20c0s0+c=0+2-1+c=2+c.

Thusc = 1, and the solution to thisinitial-value problem is y (t) = 3t* + 2 cost + 1.
The expression
y(t) = 3t* + 2cost + ¢

is called the general solution of the differential equation because we can useit to solve
any initial-value problem whatsoever. For example, if the initial conditionisy(0) = r,
then we choose ¢ = 7 — 2 to solve the initial-value problem dy/dt = 12t3 — 2sint,
y(0) =m.

Separable Equations

Now that we know how to check that a given function is a solution to a differential
equation, the question is. How can we get our hands on a solution in the first place?
Unfortunately, it is rarely the case that we can find explicit solutions of a differen-
tial equation. Many differential equations have solutions that cannot be expressed in
terms of known functions such as polynomials, exponentias, or trigonometric func-
tions. However, there are afew special types of differential equations for which we can
derive explicit solutions, and in this section we discuss one of these types of differential

equations.
Thetypical first-order differential equation is given in the form
dy
— = f(t,y).
it t,y

The right-hand side of this equation generally involves both the independent variable t
and the dependent variable y (although there are many important examples where either
the t or the y ismissing). A differential equation is called separable if the function
f (t, y) can be written as the product of two functions: one that depends on t alone and
another that depends only on'y. That is, a differential equation is separable if it can be

written in the form d

y

— =g()h(y).
at g®h(y)

For example, the differential equation

dy
—~ =t
at 7
is clearly separable, and the equation

dy
kA t
ac =yt

is not. We might have to do a little work to see that an equation is separable. For

instance,
dy t+1

dt  ty +t
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1.2 Analytic Technique: Separation of Variables 25

is separable since we can rewrite the equation as

dy  (t+1)H (t+1 1
dt  tiy+1 \ t y+1)°
Two important types of separable equations occur if either t or y is missing from
the right-hand side of the equation. The differential equation

dy

i g
is separable since we may regard the right-hand side as g(t) - 1, where we consider 1 as
a(very simple) function of y. Similarly,

dy
at - h(y)

is also separable. This last type of differential equation is said to be autonomous.
Many of the most important first-order differential equations that arise in applications
(including al of our models in the previous section) are autonomous. For example, the
right-hand side of the logistic equation

d_szP<1—E)
dt N

depends on the dependent variable P alone, so this equation is autonomous.

How to solve separable differential equations
Tofind explicit solutions of separable differential equations, we use atechnique familiar
from calculus. To illustrate the method, consider the differential equation

dy t
dt — y2’

Thereisatemptation to solve this equation by simply integrating both sides of the equa-
tion with respect to t. Thisyields

/dydt /—dt
t
y(t):/th.

Now we are stuck. We can’'t evaluate the integral on the right-hand side because we
don’'t know the function y(t). Infact, that is precisely the function we wish to find. We
have simply replaced the differential equation with an integral equation.

and, consequently,
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26 CHAPTER 1 First-Order Differential Equations

We need to do something to this equation before we try to integrate. Returning to
the original differential equation
dy t
dt — y2’
we first do some “informal” algebra and rewrite this equation in the form
y2dy = tdt.

That is, we multiply both sides by y2 dt. Of course, it makes no sense to split up dy/dt
by multiplying by dt. However, this should remind you of the technique of integration
known as u-substitution in calculus. We will soon see that substitution is exactly what
we are doing here.

We now integrate both sides. the left with respect to y and the right with respect

tot. We have
/yzdy = /tdt,
which yields
3 2
y> ot
E =5 + C.

Technically there is a constant of integration on both sides of this equation, but we can
lump them together as a single constant ¢ on the right. We may rewrite this expression

& 1/3
3t2
y(t) = <7 + 3C> ;

and since ¢ is an arbitrary constant, we may write this even more compactly as

where k is an arbitrary constant. As usual, we can check that this expression really is
a solution of the differential equation, so despite the questionable separation we just
performed, we do obtain infinitely many solutions.

Note that this process yields many solutions of the differential equation. Each
choice of the constant k gives a different solution.

What is really going on in our informal algebra
If you read the previous example closely, you probably became nervous at one point.
Treating dt as avariable is atip-off that something alittle more complicated is actually
going on. Hereisthereal story.

We began with a separable equation

dy _
a g®h(y),
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and then rewroteit as
1 dy
= =09(.
h(y) dt
This equation actually has afunction of t on each side of the equals sign because y isa

function of t. So wereally should writeit as

dy
h(y(t))ﬁ om.

In thisform, we can integrate both sides with respect to t to get

1 / (t)dt.
h(y(®) dt g

Now for the important step: We make a*“ u-substitution” just asin calculus by replacing
the function y(t) by the new variable, say y. (In this case, the substitution is actually a
y-substitution.) Of course, we must also replace the expression (dy/dt) dt by dy. The
method of substitution from calculus teIIs us that

——dy,
h(y(t» @ / hy)
and therefore we can combine the last two equations to obtain

——dy = t) dt.
7= [ a0

Hence, we can integrate the left-hand side with respect to y and the right-hand side with
respect to t.

Separating variables and multiplying both sides of the differential equation by dt
is simply a notational convention that helps us remember the method. It isjustified by
the argument above.

Missing Solutions

If it is possible to separate variables in a differential equation, it appears that solving
the equation reduces to a matter of computing several integrals. Thisis true, but there
are some hidden pitfalls, as the following example shows. Consider the differential
equation ’
ay
=Y

Thisis an autonomous and hence separable equation, and its solution looks straightfor-
ward. If we separate and integrate as usual, we obtain

dy
/?=f“

1
—Z=t+c
y
®) = ———.
ya t+c
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28 CHAPTER 1 First-Order Differential Equations

We are tempted to say that this expression

¢ 1
Y=~ +c
is the general solution. However, we cannot solve al initial-value problems with solu-
tions of this form. In fact, we have y(0) = —1/c, so we cannot use this expression to
solve theinitial-value problem y(0) = 0.

What’'s wrong? Note that the right-hand side of the differential equation vanishes
if y = 0. So the constant function y(t) = 0 is a solution to this differential equa-
tion. In other words, in addition to those solutions that we derived using the method
of separation of variables, this differential equation possesses the equilibrium solution
y(t) = Ofor all t, and it isthis equilibrium solution that satisfies the initial-value prob-
lem y(0) = 0. Even though it is “missing” from the family of solutions that we obtain
by separating variables, it is a solution that we need if we want to solve every initial-
value problem for this differential equation. Thus the general solution consists of func-
tions of theform y(t) = —1/(t + ¢) together with the equilibrium solution y(t) = 0.

Getting Stuck

As another example, consider the differential equation

dy _
dt — 14y2

Asbefore, this equation is autonomous. So we first separate variables to obtain

14y?
dy = dt.
1
—+y|d :/dt,
[Ges)o

y2
In|y|+?=t+c.

Then we integrate
which yields

But now we are stuck; there is no way to solve the equation

y2
In —=t+c
lyl+ > +
for y alone. Thus we cannot generate an explicit formulafor y. We do, however, have
an implicit form for the solution which, for many purposes, is perfectly acceptable.

Even though we don’'t obtain explicit solutions by separating variables for this
equation, we can find one explicit solution. The right-hand sideis zero if y = 0. Thus
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1.2 Analytic Technique: Separation of Variables 29

the constant function y(t) = O for al t is an equilibrium solution. Note that this equi-
librium solution does not appear in the implicit solution we derived from the method of
separation of variables.

There is another problem that arises with this method. It is often impossible to
perform the necessary integrations. For example, the differential equation

is autonomous. Separating variables and integrating we get

1
dy = [ dt.
/seC(yz) g /
/cos(yz)dyzfdt.

Theintegral on the left-hand side is difficult, to say the least. (In fact, thereis a special
function that was defined just to give us a name for thisintegral.) The lesson is that,
even for autonomous equations

In other words,

dy
at f(y),

carrying out the required algebra or integration is frequently impossible. We will not
be able to rely solely on analytic tools and explicit solutions when studying differential
equations, even if we can separate variables.

A Savings Model

Suppose we deposit $5000 in a savings account with interest accruing at the rate of 2%
compounded continuously. If we let A(t) denote the amount of money in the account
at timet, then the differential equation for A is

A
dA = 0.02A.
dt
Aswe saw in the previous section, the general solution to this equation is the exponen-

tial function
A(t) = ce®0%,

wherec = A(0). Thus A(t) = 5000e%-%2 js our particular solution.
Assuming interest rates never change, after 10 years we will have

A(10) = 5000e°? ~ 6107

dollarsin thisaccount. That isanice little nest egg, so we decide we should have some
funin life. We decide to withdraw $500 (mad money) from the account each year in a
continuous way beginning in year 10. How long will this money last? Will we ever go
broke?
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30 CHAPTER 1 First-Order Differential Equations

The differential equation for A(t) must change, but only beginning in year 10.
For 0 <t < 10, our previous model works fine. However, fort > 10, the differential
equation becomes

d—A = 0.02A — 500.
dt

Thus we really have a differential equation of the form

dA B 0.02A fort < 10;
dt | 0.02A—-500 fort > 10,

whose right-hand side consists of two pieces.

To solve this two-part equation, we solve the first part and determine A(10). We
just did that and obtained A(10) ~ 6107. Then we solve the second equation using
A(10) ~ 6107 astheinitial value. This equation is also separable, and we have

f dA _/dt
0.02A — 500 ’

We calculate this integral using substitution and the natural logarithm function. Let
u = 0.02A — 500. Then du = 0.02d A, or 50du = d A since 0.02 = 1/50. We obtain

50du
[

50Injul =t +c1

501n|0.02A — 500 = t + c1,

for some constant c;.
Att = 10, we know that A ~ 6107. Thusatt = 10,

(ii_tA = 0.02A — 500 ~ —377.9 < 0.

In other words, we are withdrawing at a rate that exceeds the rate at which we are earn-
ing interest. Since dA/dt at t = 10 is negative, A will decrease and 0.02A — 500
remains negative for all t > 10. If 0.02A — 500 < O, then

10.02A — 500] = —(0.02A — 500) = 500 — 0.02A.

Consequently, we have
50In(500 — 0.02A) =t + c;.

Since dividing by 50 is the same as multiplying 0.02, we get

In(500 — 0.02A) = 0.02(t + c1).
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1.2 Analytic Technique: Separation of Variables 31
We exponentiate and obtain

500 — 0.02A = e %2t +ev

— ,e002

where ¢, = %921, Solving for A, we have

500 — c,e0-02
A= 02C
0.02
— 50 (500 - c2e°~°2t) — 25000 — c3e%0?

where cz = 50c,. (Although we have been careful to spell out the relationships among
the constants ¢, ¢2, and c3, we need only remember that c3 is a constant that is deter-
mined from the initial condition.)

Now we use the initial condition to determine c3. We know that

6107 ~ A(10) = 25000 — c3e2%210 ~ 25000 — c3(1.2214).
Solving for c3, we obtain ¢z ~ 15468. Our solutionfort > 10is
A(t) ~ 25000 — 15468002

We see that
A(11) ~ 5726
A(12) ~ 5336

and so forth. Our account is being depleted, but not by that much. In fact, we can find
out just how long the good times will last by asking when our money will run out. In
other words, we solve the equation A(t) = O for t. We have

0 = 25000 — 15468¢%92
which yields

15468

After letting the $5000 accumulate interest for ten years, we can withdraw $500 per
year for more than twenty years.

t =501In <25000> ~ 24.01.

A Mixing Problem

The name mixing problem refers to a large collection of different problems where two
or more substances are mixed together at various rates. Examples range from the mix-
ing of pollutants in alake to the mixing of chemicalsin avat to the diffusion of cigar
smoke in the air in aroom to the blending of spicesin aserving of curry.
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32 CHAPTER 1 First-Order Differential Equations

Mixing in a vat
Consider alarge vat containing sugar water that is to be made into soft drinks (see Fig-
ure 1.9). Suppose:

A B
ﬁ r e Thevat contains 100 gallons of liquid. Moreover, the amount flowing in isthe same
as the amount flowing out, so there are always 100 gallonsin the vat.
e Thevat is kept well mixed, so the sugar concentration is uniform throughout the vat.
e Sugar water containing 5 tablespoons of sugar per gallon enters the vat through
pipe A at arate of 2 gallons per minute.
c * Sugar water containing 10 tablespoons of sugar per gallon enters the vat through
pipe B at arate of 1 gallon per minute.
» Sugar water leaves the vat through pipe C at arate of 3 gallons per minute.

Figure 1.9 To make the model, we let t be time measured in minutes (the independent vari-

Mixing vat. able). For the dependent variable, we have two choices. We could choose either the
total amount of sugar, S(t), in the vat at time t measured in tablespoons, or C(t), the
concentration of sugar in the vat at time t measured in tablespoons per gallon. We de-
velop the model for S, leaving the model for C as an exercise for the reader.

Using the total sugar S(t) in the vat as the dependent variable, the rate of change
of S isthe difference between the amount of sugar being added and the amount of sugar
being removed. The sugar entering the vat comes from pipes A and B and can be easily
computed by multiplying the number of gallons per minute of sugar mixture entering
the vat by the amount of sugar per gallon. The amount of sugar leaving the vat through
pipe C at any given moment depends on the concentration of sugar in the vat at that mo-
ment. The concentration is given by S/100, so the sugar leaving the vat is the product
of the number of gallons leaving per minute (3 gallons per minute) and the concentra-
tion (S/100). The model is

ds S

— = 2.5 1.0 - 3.-—.

dt &2 T = 100
sugar in suger in M&

frompipe A from pipe B from pipe C
That is,
as 0 3S 2000 - 3S
dt 100 100
To solve this equation analytically, we separate and integrate. We find
ds dt

2000 — 35S 100
In|2000 — 35| 't

3 10 %@
3t
In|2000 — 3S| = —— — 3¢
| | 100 1

In|2000 — 3S| = —0.03t + cy,
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1.2 Analytic Technique: Separation of Variables 33
where c, = —3c1. Exponentiating we obtain
|2000 _ 38| — e(—0.03t+02) — Cse—0.03t’

where ¢z = e®. Note that this means that c3 is a positive constant. Now we must be
careful. Removing the absolute value signsyields

2000 — 3S = +cge 003,

where we choose the plus sign if S(t) < 2000/3 and the minus sign if S(t) > 2000/3.
Therefore we may write this equation more simply as

2000 — 3S = c4e 003t

where ¢4 is an arbitrary constant (positive, negative, or zero). Solving for S yields the
general solution

2000
S(t) = ce 003 4 ——
3
where ¢ = —c4/3 isan arbitrary constant. We can determine the precise value of c if

we know the exact amount of sugar that isinitially in the vat. Note that, if ¢ = 0, the
solutionissimply S(t) = 2000/3, an equilibrium solution.

EXERCISES FOR SECTION 1.2

1. Bob, Glen, and Paul are once again sitting around enjoying their nice, cold glasses
of iced cappucino when one of their students asks them to come up with solutions to
the differential equation

dy _y+1
dt — t+1
After much discussion, Bob says y(t) = t, Glen says y(t) = 2t + 1, and Paul says

y(t) =t2—2.
(a) Who isright?
(b) What solution should they have seen right away?

2. Make up adifferential equation of the form

dy
2 =2y —t
at y —t+9g(y)

that has the function y(t) = e asasolution.

3. Make up adifferential equation of theformdy/dt = f (t, y) that hasy(t) = e’ asa
solution. (Try to come up with one whose right-hand side f (t, y) depends explicitly
onbotht andy.)
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4. In Section 1.1, we guessed solutions to the exponential growth model d P /dt = kP,
where k is a constant (see page 6). Using the fact that this equation is separable,
derive these solutions by separating variables.

In Exercises 5-24, find the general solution of the differential equation specified. (You
may not be able to reach the ideal answer of an equation with only the dependent vari-
able on the left and only the independent variable on the right, but get as far as you

can.)

5.f:|—3t’=(ty)2 6.3—¥=t4y 7.3—¥=2y~|—1
8.3—¥=2—y 9.3—¥=e‘y 10.3—1(:1+x2
1l.z—¥=2ty2+3y2 12.%:5 13.3-1’:%
14.3—¥=t$/? 15'(31_1/=2yi—1 16.3-1’:23’:1
17.z—¥=y(1—y) 18.3—}::%;)/2 19.3—:=t2v—2—2v+t2
20.3—1’=m 21.3—¥=1iyy2 22.3—¥=y2—4
23.%’:% 24.j—§=secy

In Exercises 25-38, solve the given initial-value problem.

25. z—)t( =—xt, x(0) =1/V7 26. ?j—)t/ =ty, y0) =3

27. ?Ti/ =—y2, y0) =1/2 28. ‘3—¥ =t%y%, yO0) =-1
2. z—i' —y2 y0) =0 30. % = ﬁ y(0) =4
31. z—i' =2y+1 y0=3 32. 2—3; =ty?+2y%, y0 =1
33.2—?:)(4:%, X(0) = —2 34.%: 1_yy2, y(0) = -2
35. Z—i’ =2+ Dt, yO =1 36. Z—i’ = 23/%3 y(0) =1
7. z—i' —2y2 +32% yl)=-1 38 i—f - y2y+ > 0 = -2
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1.2 Analytic Technique: Separation of Variables 35

39. A 5-gallon bucket is full of pure water. Suppose we begin dumping salt into the
bucket at arate of 1/4 pounds per minute. Also, we open the spigot so that 1/2
gallons per minute leaves the bucket, and we add pure water to keep the bucket full.
If the salt water solution is aways well mixed, what is the amount of salt in the

bucket after
(@ 1minute? (b) 10 minutes? (c) 60 minutes?
(d) 1000 minutes? (e) avery, verylongtime?

40. Consider the following very simple model of blood cholesterol levels based on the
fact that cholesterol is manufactured by the body for use in the construction of cell
walls and is absorbed from foods containing cholesterol: Let C(t) be the amount (in
milligrams per deciliter) of cholesterol in the blood of a particular person at time t
(in days). Then

ac _ ki(N — C) + koE
rTE 1(N = C) +kaE,
where

N = the person’s natural cholesterol level,

k1 = production parameter,

E = daily rate at which cholesterol is eaten, and
ko = absorption parameter.

(a) Suppose N = 200, k; = 0.1, ko = 0.1, E = 400, and C (0) = 150. What will
the person’s cholesterol level be after 2 days on this diet?

(b) With theinitial conditions as above, what will the person’s cholesterol level be
after 5 days on this diet?

(c) What will the person’s cholesterol level be after along time on this diet?

(d) High levels of cholesterol in the blood are known to be a risk factor for heart
disease. Suppose that, after a long time on the high cholesterol diet described
above, the person goes on a very low cholesterol diet, so E changesto E =
100. (Theinitia cholesterol level at the starting time of this diet is the result
of part (c).) What will the person’s cholesterol level be after 1 day on the new
diet, after 5 days on the new diet, and after avery long time on the new diet?

(e) Suppose the person stays on the high cholesterol diet but takes drugs that block
some of the uptake of cholesterol from food, so k> changes to ko, = 0.075.
With the cholesterol level from part (c), what will the person’s cholesterol level
be after 1 day, after 5 days, and after avery long time?

41. A cup of hot chocolateisinitially 170° F and is left in aroom with an ambient tem-
perature of 70° F. Suppose that at timet = 0O it iscooling at arate of 20° per minute.
(a) Assume that Newton's law of cooling applies: The rate of cooling is propor-
tional to the difference between the current temperature and the ambient tem-
perature. Write an initial-value problem that models the temperature of the hot
chocolate.
(b) How long doesiit take the hot chocolate to cool to atemperature of 110° F?
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36 CHAPTER 1 First-Order Differential Equations

42. Suppose you are having adinner party for alarge group of people, and you decide to
make 2 gallons of chili. The recipe callsfor 2 teaspoons of hot sauce per gallon, but
you misread the instructions and put in 2 tablespoons of hot sauce per gallon. (Since
each tablespoon is 3 teaspoons, you have put in 6 teaspoons per gallon, which is a
total of 12 teaspoons of hot sauce in the chili.) You don’t want to throw the chili
out because there isn't much else to eat (and some people like hot chili), so you
serve the chili anyway. However, as each person takes some chili, you fill up the
pot with beans and tomatoes without hot sauce until the concentration of hot sauce
agrees with the recipe. Suppose the guests take 1 cup of chili per minute from the
pot (there are 16 cups in a galon), how long will it take to get the chili back to the
recipe’s concentration of hot sauce? How many cups of chili will have been taken
from the pot?

43. In Exercise 12 of Section 1.1, we saw that the velocity v of afreefalling skydiver is
well modeled by the differential equation

— —mg — kv?
m— = Mg — kv,

wherem isthe mass of the skydiver, g isthe gravitational constant, and k isthe drag
coefficient determined by the position of the driver during the dive.
(a) Find the general solution of this differential equation.

(b) Confirm your answer to Exercise 12 of Section 1.1 by calculating the limit of
v(t) ast — oo.

1.3 QUALITATIVE TECHNIQUE: SLOPE FIELDS

Finding an analytic expression (in other words, finding aformula) for asolution to a dif-
ferential equation is often a useful way to describe a solution of a differential equation.
However, there are other ways to describe solutions, and these alternative representa-
tions are frequently easier to understand and use. In this section we focus on geomet-
ric techniques for representing solutions, and we develop a method for visualizing the
graphs of the solutions to the differential equation

dy

at = f,y).

The Geometry of dy/dt = f (t,y)

If the function y(t) isasolution of the equation dy/dt = f (t, y) and if its graph passes
through the point (t1, y1) where y; = y(t1), then the differential equation says that
the derivative dy/dt at t = t; is given by the number f(t1, y1). Geometrically, this
equality of dy/dt att = t; with f(ty, y1) means that the slope of the tangent line to
the graph of y(t) at the point (t1, y1) is f(t1, y1) (see Figure 1.10). Note that there is
nothing special about the point (t1, y1) other than the fact that it is a point on the graph

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1.3 Qualitative Technique: Slope Fields 37

y y
(t1, y1)
d \
/ \

- t - \ t
Figure 1.10 Figure 1.11

Slope of the tangent at the point (t1, y1) If y = y(t) isasolution, then the slope
isgiven by thevalue of f (t1, y1)- of any tangent must equal f (t, y).

of the solution y(t). The equality of dy/dt and f (t, y) must hold for all t for which
y(t) satisfies the differential equation. In other words, the values of the right-hand side
of the differential equation yield the slopes of the tangents at all points on the graph of
y(t) (see Figure 1.11).

Slope Fields

This simple geometric observation leads to our main device for the visualization of the
solutions to afirst-order differential equation
dy
— = f(t,y).
at t,y)
If we are given the function f (t, y), we obtain a rough idea of the graphs of the solu-
tions to the differential equation by sketching its corresponding slope field. We make
slope of minitangent this sketch by selecting points in the ty-plane and computing the numbers f (t, y) at
lineis f(t,y) AW these points. At each point (t, y) selected, we use f (t, y) to draw a minitangent line
whose slopeis f (t, y) (see Figure 1.12). These minitangent lines are also called slope

y ,,,,,,,,,,,,
T marks. Once we have alot of slope marks, we can visualize the graphs of the solutions.
| For example, consider the differential equation
|
| dy
‘ — =y —t.
t% at 7
In other words, the right-hand side of the differential equation is given by the function
Figure 1.12 f(t,y) = y —t. To get some practice with the idea of a slope field, we sketch its
The slope of the minitangent  slope field by hand at a small number of points. Then we discuss a computer-generated
at the point (t, y) is version of this slope field.
determined by the right-hand Generating slope fields by hand is tedious, so we consider only the nine pointsin

side f (t, y) of the

differential equation. thety-plane. For example, at the point (t, y) = (1, —1),wehave f(t,y) = f(1, -1) =

—1 — 1= —2. Therefore we sketch a“small” line segment with slope —2 centered at
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Nancy Kopell (1942- ) received her doctorate in mathematics at the
University of California, Berkeley, where she wrote her thesis under the direc-
tion of Stephen Smale. She is one of the leading figures in the world in the
use of differential equations to model natural phenomena. Kopell has em-
ployed techniques similar to those that we study in this book to tackle such
diverse problems as spontaneous pattern formation in chemical systems and

the networks of neurons that govern rhythmic motion in animals and other
oscillations in the central nervous system.

For her work, she has received numerous awards, including a MacArthur
Fellowship “genius grant” in 1990. In 1996, she was elected to the National
Academy of Sciences. She is currently professor of mathematics and founding
director of the Center for BioDynamics (and the authors’ colleague) at Boston
University.

the point (1, —1) (see Figure 1.13). To sketch the slope field for all nine points, we use
the function f (t, y) to compute the appropriate slopes. The results are summarized in
Table 1.2. Once we have these values, we use them to give a sparse sketch of the slope
field for this equation (see Figure 1.13).

Sketching slope fields is best done using a computer. Figure 1.14 is a sketch of
1r the slope field for this equation over the region —3 <t < 3and -3 < y < 3inthe
ty-plane. We calculated values of the function f (t, y) over 25 x 25 points (625 points)
in that region.

! — t A glance at this slope field suggests that the graph of one solutionisaline passing
-1 1 through the points (—1, 0) and (0, 1). Solutions corresponding to initial conditions that
are below this line seem to increase until they reach an absolute maximum. Solutions
1 corresponding to initial conditions that are above the line seem to increase more and
more rapidly.

Fi In fact, in Section 1.8 we will learn an analytic technique for finding solutions of
igure 1.13 . : . ) ; ) :
A “sparse” dopefield this equation. We will see that the general solution consists of the family of functions

generated from Table 1.2. y(t) =t + 1+ ce',

where ¢ is an arbitrary constant. (At this point it is important to emphasize that, even
though we have not studied the technique that gives us these solutions, we can till

Table 1.2
Selected slopes corresponding to the differential equationdy/dt =y —t
(t,y) f(t,y) t.y) ft,y) t,y) f(t,y)
(-1,1) 2 0,1 1 1,1 0
(=1, 0) 1 (0, 0) 0 (1,0 -1
(-1 -1 0 0, -1 -1 1, -1 -2
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1.3 Qualitative Technique: Slope Fields 39

check to see whether these functions are indeed solutions. If y(t) =t + 1 + ce!, then
dy/dt = 1+ce'. Also f(t,y) =y —t = (t+1+cel) —t = 1+ ce'. Henceall of
these functions are solutions.)

In Figure 1.15 we sketch the graphs of these functionswithc = -2, —1, 0, 1, 2,
3. Note that each of these graphs is tangent to the slope field. Also note that, if ¢ = 0,
the graph isaline whose slopeis 1. It goes through the points (—1, 0) and (0, 1).

y
31
24*
Y-+
f } S E— i =t
-3 -2 -1 1 .2 3
-1+
-2
_3,‘L
Figure 1.14 Figure 1.15
A computer-generated version of the The graphs of six solutionsto
slopefield fordy/dt =y —t. dy/dt =y —t superimposed on its

slope field.

Important Special Cases

I et

—

t1

Figure 1.16

If the right-hand side of the
differential equationisa
function of t alone, that is,

dy

dt
then the slope marksin the
slope field are determined
solely by their t-coordinate

= f(,

From an analytic point of view, differential equations of the forms

dy dy
— = f(t d —=f
at (t an at (y)
are somewhat easier to consider than more complicated equations because they are sep-

arable. The geometry of their slopefieldsis equally special.

Slope fields for dy/dt = f(t)

If the right-hand side of the differential equation in question is solely afunction of t, or
in other words, if dy/dt = f(t), the Slope at any point is the same as the slope of any
other point with the same t-coordinate (see Figure 1.16).

Geometrically, this implies that all of the slope marks on each vertica line are
parallel. Whenever aslopefield has this geometric property for all vertical linesthrough-
out the domain in question, we know that the corresponding differential equation is re-
aly an equation of the form

Yot

a7
(Note that finding solutions to this type of differential equation is the same thing as
finding an antiderivative of f (t) in calculus.)
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40 CHAPTER 1 First-Order Differential Equations

J For example, consider the slope field shown in Figure 1.17. We generated this
slope field from the equation
dy
2 _ 2
dt '
t and from calculus we know that
y(t) =/2tdt =t?+c,
where ¢ is the constant of integration. Hence the general solution of the differential
equation consists of functions of the form
Figure 1.17
The slope field for y(t) =t>+c.
dy — 2t In Figure 1.18 we have superimposed graphs of such solutions on this field. Note that
dt all of these graphs simply differ by a vertical translation. If one graph is tangent to
Note the parallel slopesalong  the slope field, we can get infinitely many graphs—all tangent to the slope field—by
vertical lines. translating the original graph either up or down.
y Slope fields for autonomous equations

\/ In the case of an autonomous differential equation
dy
\ / =1
t

the right-hand side of the equation does not depend on the independent variablet. The
slopefield in this caseis also somewhat specia. Here, the slopesthat correspond to two

different points with the same y-coordinate are equal. That is, f(t1,y) = f(t2,y) =
f (y) since the right-hand side of the differential equation depends only ony. In other
words, the slope field of an autonomous equation is parallel along each horizontal line

Figure 1.18 (see Figure 1.19).

Graphs of solutions to For example, the slope field for the autonomous equation
dy _ dy
a = =AY

superimposed on its slopefield. js given in Figure 1.20. Note that, along each horizontal line, the slope marks are paral-
lel. Infact,if 0 < y < 1, thendy/dt ispositive, and the tangents suggest that a solution

y Figure 1.19
If the right-hand side of the differential
equation isafunction of y aone, that is, if

Y2 o 7 AL e A S AL Ll — dy
2 f ,
at )
T e e then the slope marks in the slope field are

determined solely by their y-coordinate.
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1.3 Qualitative Technique: Slope Fields 41

with 0 < y < lisincreasing. On the other hand, if y < Oorif y > 1, thendy/dt is
negative and any solution with either y < O or y > 1 isdecreasing.

We have equilibrium solutionsat y = O and at y = 1 since the right-hand side
of the differential equation vanishes along these lines. The slope field is horizontal all
along these two horizontal lines, and therefore we know that these lines are the graphs
of solutions. Solutions whose graphs are between these two lines are increasing. Solu-
tionsthat are above theliney = 1 or that are below theline y = 0 are decreasing (see

Figure 1.21).
y y
2+ 2+
1+ T /
| % t / % t
-1 1 -1 1
i uE 1+
Figure 1.20 Figure 1.21
The slopefield for dy/dt = 4y(1 —y). The graphs of five solutions superimposed

on the slope field for dy/dt = 4y(1 —y).

The fact that autonomous equations produce slope fields that are parallel along
horizontal lines indicates that we can get infinitely many solutions from one solution
simply by translating the graph of the given solution left or right (see Figure 1.22). We
will make extensive use of this simple geometric observation about the solutions to au-
tonomous equations in Section 1.6.

y Figure 1.22
\ The graphs of three solutions to an autonomous
equation, that is, an equation of the form

dy
— = f(y).
/ / =t
t Note that each graph is a horizontal trandate of
the others.
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42 CHAPTER 1 First-Order Differential Equations

Analytic versus Qualitative Analysis

For the autonomous equation
dy

we could have used the analytic techniques of the previous section to find explicit for-
mulas for the solutions. In fact, we can perform all of the required integrations to deter-
mine the general solution (see Exercise 17 on page 34). However, these integrations are
complicated, and the formulas that result are by no means easy to interpret. This points
out the power of geometric and qualitative methods for solving differential equations.
With very little work, we gain alot of insight into the behavior of solutions. Although
we cannot use qualitative methods to answer specific questions, such as what the exact
value of the solution is at any given time, we can use these methods to understand the
long-term behavior of a solution.

Theseideas are especialy important if the differential equation in question cannot
be handled by analytic techniques. As an example, consider the differential equation

dy 2,10
—= =¥/ 04gn?y.
dt y
This equation is autonomous and hence separable. To solve this equation analytically,
we must evaluate the integrals

dt.
./ eyz/losm2 /

However, the integral on the left-hand side cannot be evaluated so easily. Thus we re-
sort to qualitative methods. The right-hand side of this differential equation is positive
except if y = nx for any integer n. These specia lines correspond to equilibrium
solutions of the equation. Between these equilibria, solutions must aways increase.
From the lope field, we expect that their graphs either lie on one of the horizontal lines
y = nx or increase from one of these lines to the next higher ast — oo (see Fig-
ure 1.23). Hence we can predict the long-term behavior of the solutions even though
we cannot explicitly solve the equation.

y Figure 1.23
The slope field and graphs of solutions

ﬁ— for the differential equation
dy
y2/10
-// at =e sin?y.
é ‘ t Thelines y = nx arethe graphs of the
- /T‘ equilibrium solutions, and between these
-J lines, all solutions are increasing.
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1.3 Qualitative Technique: Slope Fields 43

Although the computer pictures of solutions of this differential equation are con-
vincing, some subtle questions remain. For example, how do we really know that these
pictures are correct? In particular, for dy/dt = eY*/2°sin?y, how do we know that
the graphs of solutions do not cross the horizontal lines that are the graphs of the equi-
librium solutions (see Figure 1.23)? Such a solution could not cross these lines at a
nonzero angle since we know that the tangent line to the solution must be horizontal.
But what prevents certain solutions from crossing these lines tangentially and then con-
tinuing to increase?

For the differential equation

dy

a = vad=y
we can eliminate these questions because we can evaluate all of the integrals and check
the accuracy of the pictures using analytic techniques. But using analytic techniques to
check our qualitative analysis does not work if we cannot find explicit solutions. Be-
sides, having to resort to analytic techniques to check the qualitative results defeats the
purpose of using these methods in the first place. In Section 1.5 we discuss powerful
theorems that answer many of these questions without undue effort.

The Mixing Problem Revisited

Recall that in the previous section (page 32) we found precise analytic solutions for the
differential equation

dS 2000 — 3S

dt 100 °
where S describes the amount of sugar in avat at timet. We found that the general
solution of this equation was

S(t) = ce 003 4 @,
3
where c is an arbitrary constant.

Using the slope field of this equation, we can easily derive a qualitative descrip-
tion of these solutions. In Figure 1.24, we display the slope field and graphs of selected
solutions. Note that, as expected, the slope field is horizontal if S = 2000/3, the equi-
librium solution. Slopes are positiveif S < 2000/3 and negative if S > 2000/3. So

S Figure 1.24

8001 The slope field and graphs of afew
solutions of

700+ dS _ 2000-—3s

dt — 100

600 The horizontal lineis the graph of the
equilibrium solution S(t) = 2000/3 for
al t. Solutions below the equilibrium value

500 Si) N 8 5 1% 0 t areincreasing, and solutions above that

value are decreasing.
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44 CHAPTER 1 First-Order Differential Equations

we expect solutions to tend toward the equilibrium solution ast increases. This quali-
tative analysis indicates that, no matter what the initial amount of sugar, the amount of
sugar in the vat tends to 2000/3 ast — oo. Of course, we obtain the same informa-
tion by taking the limit of the general solution ast — oo, but it is nice to see the same
result in a geometric setting. Furthermore, in other examples, taking such alimit may
not be as easy asin this case, but qualitative methods may still be used to determine the
long-term behavior of the solutions.

An RC Circuit

The simple electric circuit pictured in Figure 1.25 contains a capacitor, aresistor, and a
voltage source. The behavior of the resistor is specified by a positive parameter R (the
“resistance”), and the behavior of the capacitor is specified by a positive parameter C

R (the “capacitance”).* The input voltage across the voltage source at time't is denoted
ANV by V (t). Thisvoltage source could be a constant source such as a battery, or it could be
asource that varies with time such as alternating current. In any case, we consider V (t)

V(t) C— to be afunction that is specified by the circuit designer. In other words, it is part of the

design of the circuit.

The quantities that specify the behavior of the circuit at a particular timet are the
current i (t) and the voltage across the capacitor v (t). In this example we are interested
Figure 1.25 in the voltage vc(t) across the capacitor. From the theory of electric circuits, we know

Circuit diagram with resistor, . (+) satifies the differential equation
capacitor, and voltage source.

dv
Rcd—tc +ve = V(b).

If we rewritethisin our standard form dv./dt = f (t, v¢), we have

d Uc \ (t) — U¢
dt  RC

We use dlope fields to visualize solutions for four different types of voltage sources

V (). (If you don’t know anything about electric circuits, don’t worry; Paul, Bob, and

Glen don't either. In examples like this, al we need to do is accept the differential

equation and “go with it.”)

Zero input

If V(t) = Ofor al t, the equation becomes
dve _ —ve
dt  RC’

A slopefield for a particular choice of R and C isgiven in Figure 1.26. We see clearly
that all solutions “decay” toward vc = O ast increases. If there is no voltage source,

*The usua units are ohms for resistance and farads for capacitance. In this section and in Section 1.4, we
chose values of of R and C so that the numbers in the examples work out nicely. A 1 farad capacitor would
be extremely large.
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1.3 Qualitative Technique: Slope Fields 45

the voltage across the capacitor v (t) decays to zero. This prediction for the voltage
agrees with what we obtain analytically since the general solution of this equation is
ve(t) = voe VRC where vg is the initial voltage across the capacitor. (Note that this
equation is essentially the same as the exponential growth model that we studied in
Section 1.1, and consequently we can solve it analytically by either guessing the correct
form of asolution or by separating variables—see Exercise 20.)

ve Figure 1.26
6 Slopefield for
dve _ _ ve
dt ~ RC
3 & with R = 0.5and C = 1, and the graph of

the solution with initial value v¢ (0) = 6.
The time constant 7 for this equation
exponentially decaying solutionist = 0.5.
(For more information about time

f f f f — t  constants, see Exercise 9in Section 1.1.)

Constant nonzero voltage source

Suppose V (t) is a nonzero constant K for all t. The equation for voltage across the

capacitor becomes

duc K — ¢

dt ~ RC °
This equation is autonomous with one equilibrium solution at v = K. The slope field
for this equation shows that all solutions tend toward this equilibrium as t increases
(see Figure 1.27). Given any initial voltage v (0) across the capacitor, the voltage v, (t)

tendsto the value v = K astime increases.

ve Figure 1.27
6 Slopefield for
dl)c _ K — Ve
dt ~ RC
forR=05,C =1,and K = 3, and the
3 graphs of three solutions with different initial

conditions. The time constant for this
equation is the same as the time constant for
the equation in Figure 1.26.

We could find aformula for the general solution by separating variables and inte-
grating, but we leave this as an exercise (see Exercise 21).
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46 CHAPTER 1 First-Order Differential Equations

On-off voltage source
SupposeV (1) = K > 0for0 <t < 3,butatt = 3, thisvoltageis“turned off,” perhaps
by someone flicking alight switch. Then V (t) = Ofort > 3. Our differential equation

is
K_UC i
dvc_V(t)—vc_ R forO<t <3
dt ~  RC | -
—e fort > 3.
RC

The right-hand side is given by two different formulas depending on the value of t.
We can see this discontinuity in the slope field for this equation (see Figure 1.28). It
resembles Figures 1.26 and 1.27 pasted together along the vertical linet = 3. Sincethe
differential equation is not defined at t = 3, we must add an additional assumption to
our model. We assume that the voltage v (t) isacontinuous functionat t = 3.

The particular solution with the initial condition v¢(0) = K isconstant fort < 3,
but for t > 3 it decays exponentially. Solutions with v¢(0) # K move toward K for
t < 3, but then decay toward zero fort > 3. We could find formulasfor the solutions by
first calculating ve(t) for t < 3, and then using the value v¢ (3) to solve the equation for
t > 3(see Section 1.2). We again leave this derivation as an exercise (see Exercise 22).

ve Figure 1.28

6 Slopefield for
dvc _ V(t) — Uc
3 dt ~  RC

for V (t), which “turns off” at t = 3 for

R =05, C =1,and K = 3, aong with
‘ — t  graphs of three solutions with different initial

3 6 conditions.

A flashing light
The circuit in Figure 1.25 can be modified to produce a flashing light such as those that
are used on cell phone towers and flashing road hazard signs (see Figure 1.29). The
V(t) ==C |Lamp| switch periodically opensand closes. It is open for aninterval of time To. (The letter o
stands for open. The constant Tp is not an initial value.) After the switch is open for
the time interval To, the switch closes and remains closed for a different (and shorter)
interval Tc, where the letter ¢ stands for closed. When the switch is open, the capacitor

Figure 1.29 . . ) .
Circuit diagram for aflashing 'S charging according to the equation
||ght dUC _ V(t) — U¢

dt RC
where V (t) is the voltage source. If V (t) is aconstant K and vg is the initial value
ve(0), then v (t) satisfies the initial-value problem
dve K=
dt ~ RC
The voltage v satisfiesthis equationfor 0 <t < Tp.
At time T, the switch closes and the light turnson. Whilethe lampislit, it actsas

ve(0) = vo.

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1.3 Qualitative Technique: Slope Fields 47

aresistor in parallel with the other resistor. Let R be the resistance that is due solely
to the lamp, then it can be shown that the differential equation that governs v; over the
timeinterval To <t < To+ Tcis

de K R+ R,
dt ~ RC RR.C J©

Note that increased resistance due to the lamp causes v; to decrease faster than it in-
creased when the switch was open.

The light switch remains closed over the interval To < t < To + T¢, and we
pick T¢ so that ve(To + Tc) = vo. In other words, we pick T¢ so that the voltage v¢
is periodic with period To + Tc (see Figure 1.30). For this example, the slope field is
discontinuous along infinitely many vertical lines, that is, thelinest = To,t = To+Tg,
t =2To+ Tg,t = 2(To + Tg), ... (see Figure 1.30).

Figure 1.30

The graph of the solution and its
corresponding slope field for the flashing
light example in the case where R = 0.5,

RL =0.25,C =1,and K = 2.5. Inthis
case, we havemade To = 1 and T¢ = 0.7, so
the solution is periodic with period 1.7.

To +Te 2(To + To)

Combining Qualitative with Quantitative Results

When only knowledge of the qualitative behavior of the solution is required, sketches
of solutions obtained from slope fields can sometimes suffice. In other applications
it is necessary to know the exact value (or amost exact value) of the solution with a
given initial condition. In these situations analytic and/or numerical methods can’t be
avoided. But even then, it is nice to have graphs of the solutions.

EXERCISES FOR SECTION 1.3

In Exercises 1-6, sketch the slope fields for the differential equation as follows:
(a) Pick afew points (t, y) withboth —2 <t < 2and -2 < y < 2 and plot the
associated slope marks without the use of technology.
(b) Use HPGSolver to check these individual slope marks.
(c) Make amore detailed drawing of the slope field and then use HPGSo I ver to con-
firm your answer.
For more details about HPGSo I ver and other programs that are part of the DETools
package, see the description of DETools inside the front cover of this book.

dy dy dy

1. -2 =t? 2. 2 =t’+1 L= =1-2
at to+t it te+ 3dt y
dy 5 dy dy

4.5_4y S.E_Zy(l—y) G.E—y+t+l
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48 CHAPTER 1 First-Order Differential Equations

In Exercises 7-10, a differential equation and its associated slope field are given. For
each equation,

(a) sketch anumber of different solutions on the slope field, and
(b) describe briefly the behavior of the solution with y(0) = 1/2 ast increases.

You should first answer these exercises without using any technology, and then you
should confirm your answer using HPGSolver.

dy dy
7. —3y1— 8. 2 —2y—t
G =AY =
y y
| |
2+ 2T
} \
1‘L o
|
% p— E— ot
} } } — t
> 1 } 1 2 -2 -1 1 2
\
1t -1+
| |
|
|
dy . 1 dy .
9.a—<y+§>(y~|—t) 10. 2 = (t+ Dy
y y
2;+ 2+
|
14 14
o= t R e —— t
-2 —1 1 2 -2 -1 1 2
_1Ak _1A
_2+ _2*
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1.3 Qualitative Technique: Slope Fields 49

11. Suppose we know that the function f (t, y) is continuous and that f (t, 3) = —1 for
al t.

(a) What doesthisinformation tell us about the slopefield for the differential equa-
tiondy/dt = f(t,y)?

(b) What can we conclude about solutions y (t) of dy/dt = f(t, y)? For example,
if y(0) < 3,cany(t) — oo ast increases?

12. Suppose the constant function y(t) = 2 for al t isasolution of the differential equa-
tion
dy
— = f(,y).
it (t,y)

(a) What does thistell you about the function f (t, y)?

(b) What does thistell you about the slope field? In other words, how much of the
slope field can you sketch using this information?

(c) What does thistell you about solutions with initial conditions y(0) # 2?

13. Suppose we know that the graph to the right f(t)

is the graph of the right-hand side f (t) of

the differential equation N /
dy t
— = f(t).
dt © / N

Give a rough sketch of the slope field that
corresponds to this differential equation.

14. Suppose we know that the graph to the right f(y)
is the graph of the right-hand side f (y) of
the differential equation ﬂ\
dy /
— = f(y.

Give a rough sketch of the slope field that
corresponds to this differential equation.

15. Consider the autonomous differential equation

ds
— =5%_-25% 45,
dt *

(a) Make arough sketch of the slope field without using any technol ogy.

(b) Using this drawing, sketch the graphs of the solutions S(t) with theinitial con-

ditions S(0) = 1/2, S(1) = 1/2, S(0) = 1, S(0) = 3/2,and S(0) = —1/2.
(c) Confirm your answer using HPGSolver.
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50 CHAPTER 1 First-Order Differential Equations

16. Eight differential equations and four slope fields are given below. Determine the
equation that corresponds to each slope field and state briefly how you know your
choiceis correct. You should do this exercise without using technology.

dy dy dy

. .. dy .
= 2 —_— = 2 —_ —_—= 3 2 —_— = — 2
0 ge=y+y @) o=y -y (i) F=y+y (v T =2-1
dy 2 o dyY o Lody o dy o
(v)a_ty—i-ty (w)a_t + toy (vii) dt_t—i-ty (viii) dt_t 2
(a) , (b) y
2+ 2
|
1+ 1+
e e e ; : 1
-2 -1 1 2 -2 =1 1 2
=3 1
24 _ol
(© y (d) y
2 2
1 1
R e R e t A ¢
—2 -1 1 2 -2 -1 1 2
-1 -1
=2 -2

17. Suppose we know that the graph below is the graph of asolution to dy/dt = f(t).

(a) How much of the slope field can

y
you sketch from this information? y0 =1
[Hint: Note that the differential
equation dependsonly on't.]

t
(b) What can you say about the solu-
tion with y(0) = 2? (For example,
can you sketch the graph of this so-

lution?)
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1.3 Qualitative Technique: Slope Fields 51
18. Suppose we know that the graph below is the graph of asolutionto dy/dt = f (y).

(a) How much of the slope field can y
you sketch from this information? \
[Hint: Note that the equation is au- y(0) =3
tonomous.]

(b) What can you say about the solu-
tion with y(0) = 2? Sketch this
solution.

19. The spiking of a neuron can be modeled* by the differential equation

do
Fr =1-—cosé + (14 cosH)I (1),

where | (t) isthe input. Often the input function I (t) isaconstant |. When 6 isan
odd multiple of 7, the neuron spikes.
(a) Using HPGSolver, sketch three slope fields, one for each of the following
valuesof I: 11 = —-0.1, I, =0.0,and I3 = 0.1.
(b) Calculate the equilbrium solutions for each of these three values.

(c) Using the slope field, describe the long-term behavior of the solutions in each
of the three cases.

20. By separating variables, find the general solution of the differential equation

dUC B Uc

dt  RC’
where R and C are constants. Then check your answer by substituting it back into
the differential equation.

21. By separating variables, find the general solution of the differential equation
dUC K — Uc

dt ~ RC
where R, C, and K are constants. Then check your answer by substituting it back
into the differential equation.

22. By separating variables, find the solution of theinitial-value problem
dve V() — v
dt ~  RC

where R = 0.5, C = 1.0, and V (t) is the function that is constantly 3fort < 3
and O for t > 3. Then check your answer by substituting it back into the differential

equation. [Hint: Do this exercise in two steps. First, solve the equation fort < 3.
Then use the value v¢ (3) to state another initial-value problem.]

Uc(o) =6

*This model is often referred to as the theta model, but it is also called the Ermentrout-Kopell canonical
model. See “Parabolic bursting in an excitable system coupled with a slow oscillation” by G. B. Ermentrout
and N. Kopell, in SIAM J. Applied Math, Vol. 44, 1984, pp. 1133-1149.
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52 CHAPTER 1 First-Order Differential Equations

1.4 NUMERICAL TECHNIQUE: EULER'S METHOD

The geometric concept of a slope field as discussed in the previous section is closely
related to afundamental numerical method for approximating solutions to a differential
equation. Given an initial-value problem

dy

at = f(t,y), y(o) = Yo,

we can get a rough idea of the graph of its solution by first sketching the slope field
in the ty-plane and then, starting at the initial value (to, yo), sketching the solution by
drawing a graph that is tangent to the slope field at each point along the graph. In this
section we describe a numerical procedure that automates this idea. Using a computer
or a calculator, we obtain numbers and graphs that approximate solutions to initial-
value problems.

Numerical methods provide quantitative information about solutions even if we
cannot find their formulas. There is also the advantage that most of the work can be
done by machine. The disadvantage is that we obtain only approximations, not precise
solutions. If we remain aware of this fact and are prudent, numerical methods become
powerful tools for the study of differential equations. It is not uncommon to turn to
numerical methods even when it is possible to find formulas for solutions. (Most of
the graphs of solutions of differential equationsin thistext were drawn using numerical
approximations even when formulas were available.)

The numerical technique that we discuss in this section is called Euler’s method.
A more detailed discussion of the accuracy of Euler’s method aswell as other numerical
methods is given in Chapter 7.

Stepping along the Slope Field
To describe Euler’s method, we begin with the initial-value problem

dy
it t,y), y(o)=yo

Since we are given f (t, y), we can plot its slope field in the ty-plane. The idea of the
method is to start at the point (tg, yo) in the slope field and take tiny steps dictated by
the tangentsin the slope field.

We begin by choosing a (small) step size At. The slope of the approximate so-
[ution is updated every At units of t. In other words, for each step, we move At units
along thet-axis. The size of At determinesthe accuracy of the approximate solution as
well as the number of computations that are necessary to obtain the approximation.

Starting at (to, Yo), our first step is to the point (t1, y1) wheret; = tg + At and
(t1, y1) is the point on the line through (tg, yo) with slope given by the slope field at
(to, Yo) (see Figure 1.31). At (t1, y1) we repeat the procedure. Taking a step whose size
along the t-axisis At and whose direction is determined by the slope field at (t1, y1),
we reach the new point (t2, y2). The new timeis given by t = t1 + At and (t2, y2)
is on the line segment that starts at (t1, y1) and has slope f (1, y1). Continuing, we
use the slope field at the point (t, yk) to determine the next point (tt1, Yk+1). The
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1.4 Numerical Technique: Euler's Method 53

sequence of values yp, Y1, Y2, ... Servesas an approximation to the solution at the times
to, t1, t2, ... . Geometrically, we think of the method as producing a sequence of tiny
line segments connecting (tx, yk) to (tk+1, Yk+1) (See Figure 1.32). Basically, we are
stitching together little pieces of the slope field to form a graph that approximates our
solution curve.

This method uses tangent line segments, given by the slope field, to approximate
the graph of the solution. Consequently, at each stage we make a slight error (see Fig-
ure 1.32). Hopefully, if the step size is sufficiently small, these errors do not get out of
hand as we continue to step, and the resulting graph is close to the desired solution.

(ta,y4) (14, ya)
(t3.¥3), * (t3,¥3), *

(t2,y2), (t2,y2), /
(t1y1) o (t1, y1) /

<.(to, Yo) (to, Yo)
Figure 1.31 Figure 1.32
Stepping along the slope field. The graph of asolution and its
approximation obtained using Euler's
method.

Euler’s Method

To put Euler's method into practice, we need a formula for determining (tx+1, Yk+1)
from (tx, yk). Finding tx. 1 is easy. We specify the step size At at the outset, so

tp1 =t + AL,

To obtain yx41 from (tk, yk), we use the differential equation. We know that the
slope of the solution to the equation dy/dt = f(t, y) at the point (t«, yk) is f (t, Yk),
and Euler's method uses this slope to determine yx1. In fact, the method determines
the point (tx+1, Yk+1) by assuming that it lies on the line through (tx, yx) with slope
f (tk, yk) (see Figure 1.33).

(&+1: Yk+1) Figure 1.33
Euler’s method uses the slope at the point
(tk, Yk) to approximate the solution for
flt, i) At g <t <ty

slope = f (t, yk)
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54 CHAPTER 1 First-Order Differential Equations

Now we can use our basic knowledge of slopes to determine yx+1. The formula
for the slope of aline gives
Yk+1 — Yk
1 — t
Sincety;1 = tx + At, the denominator ty1 — tx isjust At, and therefore we have
Yk+1 — Yk
At

= f(t, yi).

f(t, yk)

Ye+1 — Yk = T(t, y) At

Vi1 = Yk + f(t, yi) At
Thisisthe formulafor Euler’s method (see Figures 1.33 and 1.34).

y slope = f (41, Yk+1) Figure 1.34
sope= f (t, Vi) l Two successive steps of Eula s method. .
Yk+2 | . Note that the Slope used inthe k + 1st stepis
Y41+ l o f (t, yk), and this slope determines yy1 by
the formula
Yk T .
Yk+1 = Yk + F(t, yoAt.
— At —— At —> The slope used at thek + 2nd step is
% % % t f(tky1, Yk+1), and iy isdetermined
tx ey tiy2 similarly.
dy

Euler’s method for T f(t,y)
Given the initia condition y(tp) = Yo and the step size At, compute the point
(tk+1, Yk+1) from the preceding point (tx, yk) asfollows:
1. Use the differential equation to compute the slope f (tk, Yk).
2. Cdculate the next point (tx+1, Yk+1) using the formulas
ti1 =t + At

and
Yk+1 = Yk + T (t, yx) At.

Approximating an Autonomous Equation

To illustrate Euler’'s method, we first use it to approximate the solution to a differential
equation whose solution we already know. In this way, we are able to compare the ap-
proximation we obtain to the known solution. Consequently, we are able to gain some
insight into the effectiveness of the method in addition to seeing how it isimplemented.
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1.4 Numerical Technique: Euler's Method 55

Consider theinitial-value problem

dy
— =2y—-1 =1
at y—1 y@©
This equation is separable, and by separating and integrating we obtain the solution
et +1
t) = .
y(® 5

Inthisexample, f(t,y) =2y — 1, so Euler's method is given by

Yk+1 = Yk + (2yx — DAL,

To illustrate the method, we start with a relatively large step size of At = 0.1 and
approximate the solution over the interval 0 < t < 1. In order to approximate the
solution over an interval whose length is 1 with a step size of 0.1, we must compute
ten iterations of the method. The initial condition y(0) = 1 provides the initia value
yo = 1. Given At = 0.1, wehavet; = tg+ 0.1 = 0+ 0.1 = 0.1. We compute the
y-coordinate for the first step by

yi=Yo+(2yo— DAt=1+(1)01=11

Thusthe first point (t1, y1) on the graph of the approximate solutionis (0.1, 1.1).
To compute the y-coordinate y» for the second step, we now use y; rather than
Yo. That is,
yo=Vy1+ 2y — DAt =11+ (1.2)0.1= 122,

and the second point for our approximate solution is (t2, y2) = (0.2, 1.22).

Continuing this procedure, we obtain the results given in Table 1.3. After ten
steps, we obtain the approximation of y(1) by yio = 3.596. (Different machines use
different algorithms for rounding numbers, so you may get slightly different results on

Table 1.3

Euler’s method (to three decimal places) for dy/dt = 2y —1, y(0) = 1 with At = 0.1
k ty Yk f (t. Vi)
0 0 1 1
1 0.1 1.100 1.20
2 0.2 1.220 144
3 0.3 1.364 1.73
4 04 1537 2.07
5 0.5 1.744 2.49
6 0.6 1.993 2.98
7 0.7 2.292 3.58
8 0.8 2.650 4.30
9 0.9 3.080 5.16
10 1.0 3.596
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56 CHAPTER 1 First-Order Differential Equations

your computer or calculator. Keep this fact in mind whenever you compare the numer-
ical results presented in this book with the results of your calculation.) Since we know
that

e+ 1

y(1) = ~ 4.195,

the approximation y1g is off by slightly lessthan 0.6. Thisis not a very good approxi-
mation, but we'll soon see how to avoid this (usually). The reason for the error can be
seen by looking at the graph of the solution and its approximation. The slope field for
this differential equation always lies below the graph (see Figure 1.35), so we expect
our approximation to come up short.

y Figure 1.35
4t The graph of the solution to
dy
—=2y-1
3+ at
with y(0) = 1 and the approximation produced
2T by Euler's method with At = 0.1.
19—
T E e e L
0 1

Using a smaller step size usually reduces the error, but more computations must
be done to approximate the solution over the same interval. For example, if we halve
the step size in this example (At = 0.05), then we must calculate twice as many steps,
sincet; = 0.05t, = 0.1,...,t = 1.0. Again we start with (tg, yo) = (0,1) as
specified by the initial condition. However, with At = 0.05, we obtain

y1=Yo+ (2yo— DAt =1+ (1) 0.05= 1.05.

This step yields the point (t1, y1) = (0.05, 1.05) on the graph of our approximate solu-
tion. For the next step, we compute

Y2 = V1 + (2y1 — 1)At = 1.05 + (1.1) 0.05 = 1.105.

Now we have the point (t2, y2) = (1.1, 1.105). This type of calculation gets tedious
fairly quickly, but luckily calculations such as these are perfect for a computer or a
calculator. For At = 0.05, the results of Euler's method are given in Table 1.4.

If we carefully compare the final results of our two computations, we see that,
with At = 0.1, we approximate y (1) ~ 4.195 with y10 = 3.596. With At = 0.05, we
approximate y (1) with yoo = 3.864. The error in the first approximation is slightly less
than 0.6, whereas the error in the second approximation is 0.331. Roughly speaking
we halve the error by halving the step size. This type of improvement is typical of
Euler's method. (We will be much more precise about how the error in Euler’s method
isrelated to the step size in Chapter 7.)
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1.4 Numerical Technique: Euler's Method 57

Table 1.4
Euler's method (to three decimal places) for dy/dt = 2y — 1, y(0) = 1 with At = 0.05
k ty Yk f (t Vi)
0 0 1 1
1 0.05 1.050 1.100
2 0.10 1.105 1.210
3 0.15 1.166 1331
19 0.95 3.558 6.116
20 1.00 3.864

With the even smaller step size of At = 0.01, we must do much more work since
we need 100 stepsto go fromt = 0tot = 1. However, in the end, we obtain a much
better approximation to the solution (see Table 1.5).

This exampleillustrates the typical trade-off that occurs with numerical methods.
There are always decisions to be made such as the choice of the step size At. Lowering
At often results in a better approximation—at the expense of more computation.

Table 1.5
Euler’s method (to four decimal places) for dy/dt = 2y — 1, y(0) = 1 with At = 0.01
k t Yk f (., yk)
0 0 1 1
1 0.01 1.0100 1.0200
2 0.02 1.0202 1.0404
3 0.03 1.0306 1.0612
98 0.98 3.9817 6.9633
99 0.99 4.0513 7.1026
100 1.00 4.1223

A Nonautonomous Example

Note that it is the value f (t, yk) of the right-hand side of the differential equation
a (tx, yk) that determines the next point (tx+1, Yk+1). The last example was an au-
tonomous differential equation, so the right-hand side f (tx, yx) depended only on yy.
However, if the differential equation is nonautonomous, the value of ty also playsarole
in the computations.

To illustrate Euler’s method applied to a nonautonomous equation, we consider
the initial-value problem ’

y

=2 — _oty? =1
dt tys,  y(0)
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This differential equation is also separable, and we can separate variables to obtain the
solution

YO=1 0

We use Euler's method to approximate this solution over theinterval 0 <t < 2.
The value of the solution att = 2isy(2) = 1/5. Again, it is interesting to see
how close we come to this value with various choices of At. The formulafor Euler's
method is
Virs = Vi + f (e, Yi) At =y — 4y At

withtg = Oand yo = 1. We begin by approximating the solution fromt = 0 to
t = 2 using just four steps. This involves so few computations that we can perform
the arithmetic “by hand.” To cover an interval of length 2 in four steps, we must use
At = 2/4 =1/2. Theentire calculation is displayed in Table 1.6.

Table 1.6
Euler's method for dy/dt = —2ty2, y(0) = 1 with At = 1/2
k ty Yk f (t. Vi)
0 0 1 0
1 1/2 1 ~1
2 1 12
—1/2
3 3/2 1/4 —3/16
4 2 5/32

Note that we end up approximating the exact value y(2) = 1/5 = 0.2 by yq =
5/32 = 0.15625. Figure 1.36 shows the graph of the solution as compared to the results
of Euler’'s method over thisinterval.

y Figure 1.36
The graph of the solution to theinitial-value
14 o problem
d
T =2 yo =1
1/2+
and the approximation produced by Euler's
° - method with At = 1/2.
f f f =t
0 1/2 1 3/2 2

As before, choosing smaller values of At yields better approximations. For ex-
ample, if At = 0.1, the Euler approximation that gives the exact value y(2) = 0.2 is
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Euler’'s method (to four decimal places) for
dy/dt = —2ty2, y(0) = 1 with At = 0.1
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Table 1.8
Euler’s method (to six decimal places) for
dy/dt = —2ty2, y(0) = 1 with At = 0.001

k ty Yk k ty Yk

0 0 1 0 0 1

1 0.1 1.0000 1 0.001 1.000000
2 0.2 0.9800 2 0.002 0.999998
3 0.3 0.9416 3 0.003 0.999994
19 1.9 0.2101 1999 1.999 0.200097
20 2.0 0.1933 2000 2 0.199937

y20 = 0.1933. If At = 0.001, we need to compute 2000 steps, but the approximation
improves to yoooo = 0.199937 (see Tables 1.7 and 1.8).

Note that the convergence of the approximation to the actual value is slow. We
computed 2000 steps and obtained an answer that is only accurate to three decimal
places. In Chapter 7, we present more complicated algorithms for numerical approx-
imation of solutions. Although the algorithms are more complicated from a conceptual
point of view, they obtain better accuracy with less computation.

An RC Circuit with Periodic Input

R
NV

V(1) C—

Figure 1.37
Circuit diagram with resistor,

capacitor, and voltage source.

V (t)
1

0 t
-1
Figure 1.38

Graph of V (t) = sin(2rt),
the input voltage.

Recall from Section 1.3 that the voltage v; across the capacitor in the simple circuit
shown in Figure 1.37 is given by the differential equation

dUC N

Uve V(t)—vc
dt

RC

where R is the resistance, C is the capacitance, and V (t) is the source or input volt-
age. We have seen how we can use slope fields to give a qualitative sketch of solutions.
Using Euler's method we can also obtain numerical approximations of the solutions.

Suppose we consider a circuit where R = 0.5 and C = 1 (see the footnote on
page 44 in Section 1.3 for acomment regarding our choice of unitsin these examples).
Then the differential equationis

dvc
dt

\ (t) — U¢
="05 2(V (1) — ve).

To understand how the voltage v; variesif the voltage source V (t) is periodic in
time, we consider the casewhere V (t) = sin(2rt). Consequently, the voltage oscillates
between —1 and 1 once each unit of time (see Figure 1.38). The differential equation is
now

d Ve

Jo = ~2ve +2sin(2rt).
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60 CHAPTER 1 First-Order Differential Equations

From the slope field for this equation (see Figure 1.39), we might predict that the
solutions oscillate. Using Euler’s method applied to this equation for several different
initial conditions, we see that the solutions do indeed oscillate. In addition, we see that
they also approach each other and collect around a single solution (see Figure 1.40).
This uniformity of long-term behavior is not so easily predicted from the slope field

aone.
Uc Uc
{ —— f t
1 2 3
Figure 1.39 Figure 1.40
Slopefield for Graphs of approximate solutions to
dvc/dt = —2vc + 2sin(2rt). dvc/dt = —2vuc + 2sin(2rt) obtained

using Euler’s method.

Errors in Numerical Methods

By its very nature, any numerical approximation scheme is inaccurate. For instance,
in each step of Euler's method, we almost always make an error of some sort. These
errors can accumulate and sometimes lead to disastrously wrong approximations. As
an example, consider the differential equation

dy t

i e siny.
There are equilibrium solutions for this equation if siny = 0. In other words, any
constant function of the form y(t) = nxr for any integer n isasolution.

Using theinitial value y(0) = 5 and a step size At = 0.1, Euler’s method yields
the approximation graphed in Figure 1.41. It seems that something must be wrong. At
first, the solution tends toward the equilibrium solution y(t) = =, but then just before
t = 5 something strange happens. The graph of the approximation jumps dramatically.
If we lower At to 0.05, we still find erratic behavior, athough t is dlightly greater than
5 before this happens (see Figure 1.42).

The difficulty arisesin Euler’s method for this equation because of the term et on
the right-hand side. It becomes very large ast increases, and consequently slopesin the
dlopefield are quite large for larget. Even avery small step in the t-direction throws us
far from the actual solution.

This problem is typical of the use of numerics in the study of differential equa-
tions. Numerical methods, when they work, work beautifully. But they sometimes fail.
We must always be aware of this possibility and be ready with an alternate approach.
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y y
5*\ 5*\
0 } } } } } t 0 } } } } } t
1 2 3 4 5 1 2 3 4 5
Figure 1.41 Figure 1.42
Euler’'s method applied to Euler’s method applied to
dy ot dy ot
Fri e siny Fri e siny
with At = 0.1 with At = 0.05.

In the next section we present theoretical results that help identify when numerical ap-
proximations have gone awry.

We have now introduced examples of al three of the fundamental methods for attack-
ing differential equations—the analytic, the numeric, and the qualitative approaches.
Which method is the best depends both on the differential equation in question and on
what we want to know about the solutions. Often all three methods “work,” but a great
deal of labor can be saved if we think first about which method gives the most direct
route to the information we need.

EXERCISES FOR SECTION 1.4

In Exercises 14, use EulersMethod to perform Euler's method with the given step
size At on the given initial-value problem over the time interval specified. Your answer
should include a table of the approximate values of the dependent variable. It should
aso include a sketch of the graph of the approximate solution.

d
1_d_3t’=2y+1, y(0 =3, 0<t<2 At=05
dy _ 2 — —

2.5 =t-y% yO=1 0=t=<l At=02
dy > _ _
3.5, =Y -4 Y0 =05 0<t<2 At=025

dy .
4. a:gny, yO)=1, 0<t<3, At=05
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62 CHAPTER 1 First-Order Differential Equations

In Exercises 5-10, use Euler's method with the given step size At to approximate the
solution to the given initial-value problem over the timeinterval specified. Your answer
should include a table of the approximate values of the dependent variable. It should
also include a sketch of the graph of the approximate solution.

d
5.d—1:)=(3—w)(w+1), w0 =4 0<t<5 At=10
dw
6. - =@-w@+D. wO=0 0=t=5 At=05

d
7.d—¥=e2/y, y0) =2 0<t<2 At=05

d
8.2 o2y y1)y=2 1<t<3 At=05

dt

dy 2 .3 _ _
9.a_y—y, y(0) =02 0<t<10, At=01

dy 3, .2 _ _
10. T 2y°+1t5, y(0)=-05 -2<t<2 At=01

[Hint: Euler's method also works with a negative At.]

11. Do a qualitative analysis of the solution of the initial-value problem in Exercise 6
and compare your conclusions with your results in Exercise 6. What's wrong with
the approximate solution given by Euler’s method?

12. Aswe saw in Exercise 12 of Section 1.1, the velocity v of a freefalling skydiver is
well modeled by the differential equation

dv
= — kv?
mdt mg v,

where m is the mass of the skydiver, g = 9.8 m/s? is the gravitational constant,
and k is the drag coefficient determined by the position of the diver during the dive.
Consider adiver of massm = 54 kg (120 Ib) with a drag coefficient of 0.18 kg/m.
Use Euler's method to determine how long it will take the diver to reach 95% of her
terminal velocity after she jumpsfrom the plane. [Hint: Use the formulafor terminal
velocity that was derived in Exercise 12 of Section 1.1.]

13. Compare your answersto Exercises 7 and 8, and explain your observations.

14. Compare your answers to Exercises 5 and 6. |Is Euler’s method doing a good job in
this case? What would you do to avoid the difficulties that arise in this case?

15. Consider the initial-value problem dy/dt = ,/y, y(0) = 1. Using Euler's method,
compute three different approximate solutions corresponding to At = 1.0, 0.5, and
0.25 over theinterval 0 <t < 4. Graph al three solutions. What predictions do you
make about the actual solution to the initial-value problem?
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16. Consider theinitial-value problem dy/dt = 2—y, y(0) = 1. Using Euler’s method,
compute three different approximate solutions corresponding to At = 1.0, 0.5, and
0.25 over theinterval 0 <t < 4. Graph all three solutions. What predictions do you
make about the actual solution to the initial-value problem? How do the graphs of
these approximate solutions relate to the graph of the actual solution? Why?

17. As we saw in Exercise 19 of Section 1.3, the spiking of a neuron can be modeled
by the differential equation d6/dt = 1 — cosé + (1 + cosé)l (1), where | (1) is
the input. Assumethat | (t) is constantly equal to —0.1. Using Euler’s method with
At = 0.1, graph the solution that solvestheinitial value 6(0) = 1.0 over theinterval
0 <t < 5. When does the neuron spike?

In Exercises 18-21, we consider the RC circuit equation dvg /dt = (V (t) — v¢)/(RC)
that is discussed on page 59. Suppose V (1) = 2cos3t (the voltage source V (t) is
oscillating periodically). If R = 4and C = 0.5, use Euler’s method to compute values
of the solutions with the given initial conditions over theinterval 0 <t < 10.

18. ve(0) = 2 19. 1,(0) = 1 20. v¢(0) = —1 21. ve(0) = —2

1.5 EXISTENCE AND UNIQUENESS OF SOLUTIONS

What Does It Mean to Say Solutions Exist?

We have seen analytic, qualitative, and numerical techniques for studying solutions of
differential equations. One problem we have not considered is: How do we know there
are solutions? Although this may seem to be a subtle and abstract question, it is also
a question of great importance. If solutions to the differential equation do not exist,
then there is no use trying to find or approximate them. More important, if a differen-
tial equation is supposed to model a physical system but the solutions of the differen-
tial equation do not exist, then we should have serious doubts about the validity of the
model.

To get an idea of what is meant by the existence of solutions, consider the alge-
braic equation

2x5 —10x +5=0.
A solution to this equation is a value of x for which the left-hand side is zero. In other
words, it isaroot of the fifth-degree polynomial 2x° — 10x + 5. We can easily compute
that the value of 2x° — 10x + 5is —3if x = 1 and 13if x = —1. Since polynomials
are continuous, there must therefore be a value of x between —1 and 1 for which the
left-hand side is zero.

So we have established the existence of at least one solution of this equation be-
tween —1 and 1. We did not construct this value of x or approximate it (other than to
say it is between —1 and 1). Unfortunately, there is no “quadratic formula’ for finding
roots of fifth-degree polynomials, so there is no way to write down the exact values of
the solutions of this equation. But this does not make us any less sure of the existence
of this solution. The point hereisthat we can discuss the existence of solutions without
having to compute them.
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64 CHAPTER 1 First-Order Differential Equations

It is aso possible that there is more than one solution between —1 and 1. In other
words, the solution may not be unique.
In the same way, if we are given an initial-value problem
dy

a = f(tv Y), y(O) = yO,

we can ask whether there is a solution. This is a different question than asking what
the solution is or what its graph looks like. We can say there is a solution without hav-
ing any knowledge of a formula for the solution, just as we can say that the algebraic
equation above has a solution between —1 and 1 without knowing its exact or even ap-
proximate value.

Existence

Luckily, the question of existence of solutionsfor differential equations has been exten-
sively studied and some very good results have been established. For our purposes, we
will use the standard existence theorem.

EXISTENCE THEOREM  Suppose f (t, y) isacontinuous function in arectangle of the
form {(t,y)]a <t < b,c <y < d}inthety-plane. If (to, yo) iSapoint in this
rectangle, then there existsan ¢ > 0 and afunction y(t) definedfortg—e <t <tg+e¢
that solves the initial-value problem
Z—)t/ = ft,y), ylto=Yo. =

This theorem says that as long as the function on the right-hand side of the dif-
ferential equation is reasonable, solutions exist. (It does not rule out the possibility that
solutions exist even if f(t, y) isnot anice function, but it doesn’'t guarantee it either.)
This is reassuring. When we are studying the solutions of a reasonable initial-value
problem, there is something there to study.

Extendability

Given an initial-value problem dy/dt = f(t,y), y(to) = Yo, the Existence Theorem
guarantees that there isasolution. If you read the theorem very closely (with alawyer’s
eye for loopholes), you will see that the solution may have a very small domain of def-
inition. The theorem says that there existsan ¢ > 0 and that the solution has a domain
that includes the open interval (to — €, to + €). The € may be very, very small, so al-
though the theorem guarantees that a solution exists, it may be defined for only a very
short interval of time.

Unfortunately, this is a serious but necessary restriction. Consider the initial-
value problem ’

y 2
it =14y y@O =0.

The slopes in the slope field for this equation increase in steepness very rapidly as 'y
increases (see Figure 1.43). Hence, dy/dt increases more and more rapidly as y(t)
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1.5 Existence and Uniqueness of Solutions 65

increases. There is a danger that solutions “blow up” (tend to infinity very quickly) as
t increases. By looking at solutions sketched by the slope field, we can't really tell if
the solutions blow up in finite time or if they stay finite for al time, so we try analytic
methods.

This is an autonomous equation, so we can separate variables and integrate as

usua. We have 1
o=/

arctany =t +c,

Integration yields

where c is an arbitrary constant. Therefore
y(t) = tan(t +c),
which isthe general solution of the differential equation. Using theinitial value
0=y(0) =tan(0+0c),

wefindc = 0 (or ¢ = nx for any integer n). Thus, the particular solutionisy(t) = tant,
and the domain of definition for this particular solutionis —7/2 <t < /2.

As we see from Figure 1.44, our fears were well founded. The graph of this
particular solution has vertical asymptotesat t = +mx/2. Ast approaches xr/2 from
the left and —r /2 from the right, the solution blows up. If this differential equation
were amodel of aphysical system, then we would expect the system to break ast ap-

proaches /2.
y
|
5
\
\
\
\
\
\
] i +— t
T \ T
2 } 2
\
\
\
|
=5+
|
Figure 1.43 Figure 1.44
The slope field for the equation The graph of the solution y(t) = tant with

dy/dt = 1+ y2. Note that the Slopes are initial condition y(0) = 0 along with the

quite large if y is either moderately positive  slopefield for dy/dt = 1+ y2. Ast

or moderately negative. In either case, the approaches iz /2 from the left,

solutions increase rapidly. y(t) = tant — oo. Ast approaches —m/2
from theright, y(t) = tant — —oo.
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66 CHAPTER 1 First-Order Differential Equations

Solutions that blow up (or down) in finite time is a common phenomenon. Many
relatively simple-looking differential equations have solutions that tend to infinity in
finite time, and we should always be alert to this possibility.

Uniqueness
When dealing with initial -value problems of the form

% = f(t,y), y(o) = Yo,
we have aways said “consider the solution.” By the Existence Theorem we know there
isasolution, but how do we know there is only one? Why don’t we have to say “con-
sider a solution” instead of “consider the solution?’ In other words, how do we know
the solution is unique?

Knowing that the solution to an initial-value problem is unique is very valuable
from both theoretical and practical standpoints. If solutions weren’'t unique, then we
would have to worry about all possible solutions, even when we were doing numerical
or qualitative work. Different solutions could give completely different predictions for
how the system would work. Fortunately, there is a very good theorem that guarantees
that solutions of initial-value problems are unique.

UNIQUENESS THEOREM  Suppose f (t, y) and af/dy are continuous functionsin a
rectangle of theform {(t,y)|a <t < b, ¢ <y < d} inthety-plane. If (to, yo) isa
pointinthisrectangleand if y1(t) and y2(t) aretwo functionsthat solve theinitial-value
problem

dy

o ft,y), y(o) =yo

foral tintheinterval tp — e <t < tg + € (Where e is some positive number), then

y1(t) = ya(t)
fortp—e <t < tg+e€. Thatis, the solution to the initial-value problem is unique. n

Before giving applications of the Uniqueness Theorem we should emphasi ze that
both the Existence and the Uniqueness Theorems have hypotheses—conditions that must
hold before we can use these theorems. Before we say that the solution of an initial-
value problem

dy
— = f(t to) =
at t,y), yo)=yo
exists and is unique, we must check that f (t, y) satisfies the necessary hypotheses.

Often we lump these two theorems together (using the more restrictive hypothe-
ses of the Uniqueness Theorem) and refer to the combination as the Existence and
Uniqueness Theorem.
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Lack of Uniqueness
Itis pretty difficult to construct an example of a sensible differential equation that does
not have solutions. However, it is not so hard to find exampleswhere f (t, y) isadecent
function but where uniqueness fails. (Of course, in these examples, either f(t,y) or
af /dy isnot continuous.)

For example, consider the differential equation

The right-hand side is a continuous function on the entire ty-plane. Unfortunately, the
partial derivative of y2/3 with respect to y failsto exist if y = 0, so the Uniqueness The-
orem does not tell us anything about the number of solutionsto an initial-value problem
of theform y(tp) = 0.

Let’sapply the qualitative and anal ytic techniques that we have already discussed.
First, if welook for equilibrium solutions, we see that the function y(t) = Ofor al t is
asolution. Second, we note that this equation is separable, so we separate variables and

obtain
/y‘2/3dy:/3dt.

Integrating, we obtain the solutions
yt = t+0?°

where ¢ is an arbitrary constant.
Now consider the initial-value problem
dy _ 523 _
it =3y“°, y(O =0.
One solution is the equilibrium solution y; (t) = O for al t. However, a second solution
is obtained by setting ¢ = O after we separate variables. We have y»(t) = t3. Con-
sequently, we have two solutions, y1(t) = 0 and y»(t) = t3, to the same initial-value

dt

This differential equation does not satisfy the
f =t  hypothesis of the Uniqueness Theorem if y = 0.
1 2 Note that we have two different solutions whose
graphsintersect at (0, 0).

problem (see Figure 1.45).

y Figure 1.45

2 ‘r The slope field and the graphs of two solutions to
} theinitial-value problem
\

14‘, dy _ 3y23, y() =o0.
|
\
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68 CHAPTER 1 First-Order Differential Equations

Applications of the Uniqueness Theorem

The Uniqueness Theorem says that two solutions to the same initial-value problem are
identical. This result is reassuring, but it may not sound useful in a practical sense.
Here we discuss a few examplesto illustrate why this theorem is, in fact, very useful.
Suppose y1(t) and y2(t) are both solutions of a differential equation
dy
. = f ts )
T (t,y)
where f (t, y) satisfies the hypotheses of the Uniqueness Theorem. If for some to we
have y1(tg) = Yy2(to), then both of these functions are solutions of the sameinitial-value
problem
dy
Fri f(t,y), y(to) = yi(to) = ya(to).
The Uniqueness Theorem guaranteesthat y1(t) = y2(t), at least for all t for which both
solutions are defined. We can paraphrase the Uniqueness Theorem as:

“If two solutions are ever in the same place at the same time, then they are the
same function.”

Thisform of the Uniqueness Theorem isvery valuable, as the following examples show.

Role of equilibrium solutions
Consider theinitial-value problem

dy  (y?2—4)(sin?y® +cosy — 2) 1
a = 2 ) y(o) - E‘

Finding the explicit solution to this equation is not easy because, even though the equa-
tion is autonomous and hence separable, the integrals involved are very difficult (try
them). On the other hand, if y = 2, the right-hand side of the equation vanishes. Thus
the constant function y1(t) = 2 isan equilibrium solution for this equation.

Suppose y»(t) is the solution to the differential equation that satisfies the initial
condition y»(0) = 1/2. The Uniqueness Theorem implies that y2(t) < 2 for al t
since the graph of y,(t) cannot touch theline y = 2, which is the graph of the constant
solution y1(t) (see Figure 1.46).

y Figure 1.46
N The slope field and the graphs of two solutions of
dy _ (y?—4)(sin?y3+ cosy — 2)

1 dt — 2 ’
Although it looks asiif these two graphs agree for
/ t > 2, the Uniqueness Theorem tells us that there

7 f f t  isawaysalittle space between them.
1 2
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1.5 Existence and Uniqueness of Solutions 69

This observation is not alot of information about the solution of the initial-value
problem with y(0) = 1/2. On the other hand, we didn’t have to do alot of work to get
thisinformation. Identifying y;(t) = 2 asasolution is pretty easy, and the rest follows
from the Uniqueness Theorem. By doing alittle bit of work, we get some information.
If all we care about is how large the solution of the original initial-value problem can
possibly become, then the fact that it is bounded above by y = 2 may suffice. If we
need more detailed information, we must ook more carefully at the equation.

Comparing solutions
We can aso use this technique to obtain information about solutions by comparing
them to “known” solutions. For example, consider the differential equation

dy _ a+v?
dt 1+ y)?

It is easy to check that y;(t) = t is a solution to the differentia equation with the
initial condition y1(0) = 0. If yo(t) is the solution satisfying the initial condition
y(0) = —0.1, then y2(0) < y1(0), s0 y2(t) < yi(t) for al t. Thus ya(t) < t for
al t (see Figure 1.47). Again, thisisonly alittle bit of information about the solution
of the initial-value problem, but then we only did alittle work.

y Figure 1.47
The graphs of two solutions y4 (t) and y»(t) of
dy  (1+1)?
it A y?
yit) —— @+
\ ¢ The graph of the solution y4 (t) that satisfies the initial

condition y1(0) = O isthe diagona line, and the graph
y2(t) of the solution that satisfies theinitial condition
y2(0) = —0.1 must lie below the line.

Uniqueness and qualitative analysis
In some cases we can use the Uniqueness Theorem and some qualitative information
to give more exact information about solutions. For example, consider the differential
equation ;
y

i (y—2(@y+D.
The right-hand side of this autonomous equation isthe function f (y) = (y —2)(y +1).
Note that f(2) = f(—1) = 0. Thusy = 2and y = —1 are equilibrium solutions
(see the dlope field in Figure 1.48). By the Existence and Uniqueness Theorem, any
solution y(t) with an initial condition y(0) that satisfies —1 < y(0) < 2 must also
satisfy —1 < y(t) < 2foralt.
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70 CHAPTER 1 First-Order Differential Equations

In this case we can say even more about these solutions. For example, con-
sider the solution with the initial condition y(0) = 0.5. Not only do we know that
—1 < y(t) < 2for dl t, but because this equation is autonomous, the sign of dy/dt de-
pendsonly onthevalueof y. For —1 <y < 2, dy/dt = f(y) < 0. Hence the solution
y(t) with the initial condition y(0) = 0.5 satisfiesdy/dt < 0 for all t. Consequently
this solution is decreasing for al t.

Sincethe solutionisdecreasing for al t and sinceit waysremainsabovey = —1,
we might guess that y(t) — —l1ast — oo. Infact thisis precisely what happens.
If y(t) were to limit to any value yp larger than —1 ast — oo, then when t is very
large, y(t) must be close to yo. But f (yp) is negative because —1 < yg < 2. So when
y(t) is close to yp, we have dy/dt close to f(yp), which is negative, so the solution
must continue to decrease past yp. That is, solutions of this differential equation can be
asymptotic only to the equilibrium solutions.

We can sketch the solution of this initial-value problem. For al t the graph is
betweenthelinesy = —1andy = 2, and for all t it decreases (see Figure 1.49).

y y
3J, 3+
2+ 2
5 \k
f f t f \ f t
—1 1 -1 1
=1 =%
24 2+
Figure 1.48 Figure 1.49

The slopefield for dy/dt = (y —2)(y+1). Graphs of the equilibrium solutions and the
solution with initial condition y(0) = 0.5
fordy/dt = (y — 2)(y +1).

Uniqueness and Numerical Approximation

As the preceding examples show, the Uniqueness Theorem gives us qualitative infor-
mation concerning the behavior of solutions. We can use this information to check the
behavior of numerical approximations of solutions. If numerical approximations of so-
[utions violate the Uniqueness Theorem, then we are certain that something is wrong.
The graph of the Euler approximation to the solution of theinitial-value problem
dy t
— =e¢'siny, 0) =5,
at y, y©
with At = 0.05is shown in Figure 1.50. As noted in Section 1.4, the behavior seems
erratic, and hence we are suspicious.
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y Figure 1.50
Euler’'s method applied to

5A\ A dy

t .
N — =€ 9n
at y

with At = 0.05. The graph of the

0 i é é jl g t approximation behaves as expected
fort < 5, but for t dightly larger
than 5, the approximation is no
longer valid.

5+

We can easily check that the constant function y(t) = nx is a solution for any
integer n and, hence by the Uniqueness Theorem, each solution is trapped between
y=nz andy = (n + 1)z for some integer n. The approximations in Figure 1.50
violate this requirement. This confirms our suspicions that the numerical resultsin this
case are not to be believed.

This equation is unusual because of the e! term on the right-hand side. When't is
large, the slopes of solutions become gigantic and hence Euler’s method overshoots the
true solution for even avery small step size.

EXERCISES FOR SECTION 1.5

In Exercises 1-4, we refer to afunction f, but we do not provide its formula. However,
we do assume that f satisfies the hypotheses of the Uniqueness Theorem in the entire
ty-plane, and we do provide various solutions to the given differential equation. Finaly,
we specify aninitial condition. Using the Uniqueness Theorem, what can you conclude
about the solution to the equation with the given initial condition?

dy
1. -2 = ft
it Tty

y1(t) = 3foral t isasolution,
initial condition y(0) = 1

dy
3. Fri f(t,y)

y1(t) =t + 2for al t isasolution,
yo(t) = —t2for al t isasolution,
initial condition y(0) = 1

dy

==ty

dt
y1(t) = 4for @l t isasolution,

y2(t) = 2for al t isasolution,
y3(t) = Ofor al t isasolution,
initial condition y(0) = 1

dy

dt
y1(t) = —1foradl t isasolution,

y2(t) = 1+ t2for al t isasolution,
initial condition y(0) = 0
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72 CHAPTER 1 First-Order Differential Equations

In Exercises 5-8, an initial condition for the differential equation

dy

—= = —D(y -3

at yly =Dy =93
isgiven. What does the Existence and Uniqueness Theorem say about the correspond-
ing solution?

9. (a) Show that y1(t) = t2 and y»(t) = t? + 1 are solutions to

d
d—)tlz—y2+y+2yt2+2t—t2—t4.

(b) Show that if y(t) is a solution to the differential equation in part () and if
0<y(0) < 1,thent? < y(t) < t2+ 1foralt.
(c) llustrate your answer using HPGSolver.

10. Consider the differential equation dy/dt = 2,/]y].
(a) Show that the function y(t) = O for all t isan equilibrium solution.
(b) Find all solutions. [Hint: Consider thecasesy > Oand y < 0 separately. Then

you need to define the solutions using language like “y(t) = ... whent < 0O
andy(t) =...whent > 0."]

(c) Why doesn’t this differential equation contradict the Uniqueness Theorem?
(d) What does HPGSolver do with this equation?

11. Consider the differential equation
dy _y

dt — t2°

(a) Show that the constant function y;(t) = O isasolution.

(b) Show that there are infinitely many other functions that satisfy the differen-
tial equation, that agree with this solution when't < 0, but that are nonzero
whent > 0. [Hint: You need to define these functions using language like
“y(t)=...whent <0andy(t) =...whent > 0]

(c) Why doesn’t this example contradict the Uniqueness Theorem?

12. (a) Show that

1 1
yi(t) = -1 and ya(t) = —
are solutions of dy/dt = —y?2.

(b) What can you say about solutions of dy/dt = —y? for which the initial con-
dition y(0) satisfies the inequality —1 < y(0) < —1/27 [Hint: You could find
the general solution, but what information can you get from your answer to
part (a) alone?]
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1.5 Existence and Uniqueness of Solutions

In Exercises 13-16, an initial-value problem is given.
(a) Find aformulafor the solution.
(b) State the domain of definition of the solution.
(c) Describe what happens to the solution as it approachs the limits of its domain of

13.

15.

17.

18.

definition. Why can’t the solution be extended for more time?

dy 3 _ dy 1 _
g - YYo=l YT yroe_2 YO=°
dy 1 dy

y__ 1 - yo=1 6. Y = —— y-1)=0

it =yt YO gt —y—z YOV

Consider a differential equation of the form dy/dt = f (y), an autonomous equa-
tion, and assume that the function f (y) is continuously differentiable.

(a) Suppose y1(t) is a solution and y;(t) has alocal maximum att = tg. Let
Yo = Y1(to). Show that f(yo) = 0.

(b) Use the information of part () to sketch the slope field along the liney = ygp
inthe ty-plane.

(c) Show that the constant function y»(t) = yg isasolution (in other words, y»(t)
isan equilibrium solution).

(d) Show that y1(t) = yo for al t.

(e) Show that if a solution of dy/dt = f(y) has alocal minimum, then it is a
constant function; that is, it also corresponds to an equilibrium solution.

We have emphasized that the Uniqueness Theorem does not apply to every differ-
ential equation. There are hypotheses that must be verified before we can apply
the theorem. However, there is a temptation to think that, since models of “real-
world” problems must obviously have solutions, we don’t need to worry about the
hypotheses of the Uniqueness Theorem when we are working with differential equa-
tions modeling the physical world. The following model illustrates the flaw in this
assumption.

Suppose we wish to study the formation of raindrops in the atmosphere. We
make the reasonabl e assumption that raindrops are approximately spherical. We also
assume that the rate of growth of the volume of araindrop is proportional to its sur-
face area

Letr(t) betheradiusof theraindrop at timet, s(t) beitssurface areaat timet,
and v(t) beitsvolume at timet. From three-dimensional geometry, we know that

s = 4dxr? and v = %nr3.

(a) Show that the differential equation that models the volume of the raindrop un-
der these assumptionsis
dv
— —k 2/3’
at Y
where k isa proportionality constant.
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74 CHAPTER 1 First-Order Differential Equations

(b) Why doesn’t this equation satisfy the hypotheses of the Uniqueness Theorem?

(c) Giveaphysical interpretation of the fact that solutions to this equation with the
initial condition v(0) = 0 are not unique. Does this model say anything about
the way raindrops begin to form?

1.6 EQUILIBRIA AND THE PHASE LINE

Given adifferential equation

Y tay

a b Y),
we can get an idea of how solutions behave by drawing slope fields and sketching their
graphs or by using Euler's method and computing approximate solutions. Sometimes
we can even derive explicit formulas for solutions and plot the results. All of these
techniques require quite a bit of work, either numerical (computation of slopes or Eu-
ler's method) or analytic (integration).

In this section we consider differential equations where the right-hand sideisin-
dependent of t. Such equations are said to be autonomous differential equations. The
word autonomous means “self-governing,” and roughly speaking, an autonomous sys-
tem is self-governing because it evolves according to differential equations that are de-
termined entirely by the values of the dependent variables. For autonomous differential
equations, there are qualitative techniques that help us sketch the graphs of the solutions
with less arithmetic than with other methods.

Autonomous Equations
Autonomous equations are differential equations of the form

dy
a - f(y).

In other words, the rate of change of the dependent variable can be expressed as a func-
tion of the dependent variable alone. Autonomous equations appear frequently as mod-
els for two reasons. First, many physical systems work the same way at any time. For
example, a spring compressed the same amount at 10:00 AM and at 3:00 Pm provides
the same force. Second, for many systems, the time dependence “averages out” over
the time scales being considered. For example, if we are studying how wolves and field
mice interact, we might find that wolves eat many more field mice during the day than
they do at night. However, if we are interested in how the wolf and mouse populations
behave over aperiod of years or decades, then we can average the number of mice eaten
by each wolf per week. We ignore the daily fluctuations.

We have already noticed that autonomous equations have slope fields that have a
special form (see page 40 in Section 1.3). Because the right-hand side of the equation
does not depend on t, the slope marks are parallel along horizontal linesin thety-plane.
That is, for an autonomous equation, two points with the same y-coordinate but differ-
ent t-coordinates have the same slope marks (see Figure 1.51).
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1.6 Equilibria and the Phase Line 75

y Figure 1.51
Slope field for the autonomous differential equation
dy
= =(y—-2 1).
at y=-2y+D

The slopes are parallel along horizontal lines.

t Note that the slope field indicates that there are two
equilibrium solutions, y1(t) = —1foradl t and
yo(t) = 2 for dl t. Also, solutionswith initial values
that lie between —1 and 2 are decreasing and defined
for al time.

Hence there is a great deal of redundancy in the slope field of an autonomous
equation. If we know the slope field along a single vertical linet = tg, then we know
the slope field in the entire ty-plane. So instead of drawing the entire slope field, we
should be able to draw just one line containing the sameinformation. Thislineiscalled
the phase line for the autonomous equation.

Metaphor of the rope
Suppose you are given an autonomous differential equation
dy

at = f(y).

Think of a rope hanging vertically and stretching infinitely far up and infinitely far
down. The dependent variable y tellsyou a position on the rope (the rope isthe y-axis).
The function f (y) gives a number for each position on the rope. Suppose the number
f (y) isactualy printed on therope at height y for every value of y. For example, at the
height y = 2.17, the value f (2.17) is printed on the rope.

Suppose that you are placed on the rope at height yp at timet = 0 and given
the following instructions. Read the number that is printed on the rope and climb up
or down the rope with velocity equal to that number. Climb up the rope if the number
is positive or down the rope if the number is negative. (A large positive number means
you climb up very quickly, whereas a negative number near zero meansyou climb down
slowly.) Asyou move, continue to read the numbers on the rope and adjust your vel oc-
ity so that it always agrees with the number printed on the rope.

If you follow this rather bizarre set of instructions, you will generate a function
y(t) that gives your position on the rope at time t. Your position at timet = 0 is
y(0) = yp because that is where you were placed initially. The velocity of your motion
dy/dt at timet will be given by the number on the rope, so dy/dt = f (y(t)) for all t.
Hence, your position function y(t) is a solution to the initial-value problem

dy

a f(y). y© =yo.

The phase line is a picture of this rope. Because it is tedious to record the numerical
values of al the velocities, we only mark the phase line with the numbers where the
velocity is zero and indicate the sign of the velocity on the intervals in between. The
phase line provides qualitative information about the solutions.
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76 CHAPTER 1 First-Order Differential Equations

Phase Line of a Logistic Equation

For example, consider the differential equation
dy
—=(1- .
gt = A=y

The right-hand side of the differential equation is f(y) = (1 — y)y. In this case,
f(y) = O precisely wheny = Oand y = 1. Therefore the constant function y1(t) = 0
for al t and yo(t) = 1 for al t are equilibrium solutions for this equation. We call
the pointsy = O and y = 1 on the y-axis equilibrium points. Also notethat f (y) is

y=1 positiveif 0 < y < 1, whereas f(y) isnegativeif y < Oory > 1. We can draw the
phase line (or “rope”) by placing dots at the equilibrium pointsy = Oandy = 1. For
0 < y < 1, we put arrows pointing up because f(y) > 0 means you climb up; and

y=0 fory < Oory > 1, we put arrows pointing down because f (y) < 0 meansyou climb
down (see Figure 1.52).

If we compare the phase line to the slope field, we see that the phase line con-
tains al the information about the equilibrium solutions and whether the solutions are
increasing or decreasing. Information about the speed of increase or decrease of solu-

Figure 1.52 tionsislost (see Figure 1.53), But we can give rough sketches of the graphs of solutions

Phase line for using the phase line alone. These sketches will not be quite as accurate as the sketches

dy/dt = (1— y)y. from the slope field, but they will contain al the information about the behavior of so-
lutions ast gets large (see Figure 1.54).

y y
y=1 y=1 >
y=0 -—----—f--- - t y=0 /\\ t
Figure 1.53 Figure 1.54
Phase line and slope field of Phase line and sketches of the graphs of
dy/dt = (1 —vy)y. solutionsfor dy/dt = (1 — y)y.

How to Draw Phase Lines

We can give a more precise definition of the phase line by giving the steps required to
draw it. For the autonomous equation dy/dt = f (y):

o Draw the y-line.
o Find the equilibrium points (the numbers such that f(y) = 0), and mark them on
theline.

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1.6 Equilibria and the Phase Line 77

e Find the intervals of y-values for which f (y) > 0, and draw arrows pointing up in
these intervals.

« Find the intervals of y-values for which f(y) < 0, and draw arrows pointing down
in these intervals.

We sketch several examples of phase lines in Figure 1.55. When looking at the
phase line, you should remember the metaphor of the rope and think of solutions of the
differential equation “dynamically”—people climbing up and down the rope as time

increases.
@) (b) (©
y=2 y=nm y=m/2
y=0 y=0
y=-3 y=-m y=-m/2
Figure 1.55

Phaselinesfor (a)dy/dt =(y —2)(y +3), (b)dy/dt=siny, and
(c) dy/dt = ycosy.

How to Use Phase Lines to Sketch Solutions

We can obtain rough sketches of the graphs of solutions directly from the phase lines,
provided we are careful in interpreting these sketches. The sort of information that
phase lines are very good at predicting is the limiting behavior of solutions ast in-
W= creases or decreases.
Consider the equation

dw

dt

The phase line for this differential equation is given in Figure 1.56. Note that the equi-
librium pointsare w = 2 and w = kuxr for any integer k. Suppose we want to sketch
the graph of the solution w(t) with the initial value w(0) = 0.4. Because w = 0 and
w = 2 are equilibrium points of this equation and 0 < 0.4 < 2, we know from the
W= —7 Existence and Uniqueness Theorem that 0 < w(t) < 2 for al t. Moreover, because
(2—w)snw > 0for 0 < w < 2, the solution is aways increasing. Because the ve-

locity of the solution is small only when (2 — w) sinw is close to zero and because this

happens only near equilibrium points, we know that the solution w(t) increases toward

=(2—-w)sinw.

Figure 1.56 w = 2ast — oo (see Section 1.5).
Phase line for Similarly, if we run the clock backward, the solution w(t) decreases. It aways
dw/dt = (2— w)sinw. remains above w = 0 and cannot stop, since0 < w < 2. Thusast — —oo, the

solution tends toward w = 0. We can draw a qualitative picture of the graph of the
solution with theinitial condition w(0) = 0.4 (see Figure 1.57).
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w Figure 1.57
w=2 Graph of the solution to the initial-value
problem
dw .
T (2—-w)snw, w(0) =0.4
w=0 +—= % ot
-2 2 4

Likewise, we can sketch other solutions in the tw-plane from the information on
the phase line. The equilibrium solutions are easy to find and draw because they are
marked on the phase line. The intervals on the phase line with upward-pointing arrows
correspond to increasing solutions, and those with downward-pointing arrows corre-
spond to decreasing solutions. Graphs of the solutions do not cross by the Uniqueness
Theorem. In particular, they cannot cross the graphs of the equilibrium solutions. Also,
solutions must continue to increase or decrease until they come close to an equilibrium
solution. Hence we can sketch many solutions with different initial conditions quite
easily. The only information that we do not have is how quickly the solutions increase
or decrease (see Figure 1.58).

w
w =27 /
W=7 <
w=2 I —
//-_
w=20 } — t
2 \ 2
w = -7 k
Figure 1.58

Graphs of many solutionsto dw/dt = (2 — w) Sinw.

These observations lead to some general statements that can be made for al solu-
tions of autonomous equations. Suppose y(t) isa solution to an autonomous equation
dy

at = f(y),

where f (y) iscontinuously differentiable for al y.

o If f(y(0)) =0, then y(0) isan equilibrium point and y(t) = y(0) for all t.

o If f(y(0)) > 0O, then y(t) isincreasing for all t and either y(t) — oo ast increases
or y(t) tendsto thefirst equilibrium point larger than y(0).

o If f(y(0)) < 0, then y(t) is decreasing for al t and either y(t) — —oo ast in-
creases or y(t) tends to the first equilibrium point smaller than y(0).
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1.6 Equilibria and the Phase Line 79

Similar results hold ast decreases (as time runs backward). If f(y(0)) > 0, then
y(t) either tends (in negative time) to —oo or to the next smaller equilibrium point.
If f(y(0)) < O, then y(t) either tends (in negative time) to +oo or the next larger
equilibrium point.

An example with three equilibrium points
For example, consider the differential equation

3
P (1o PY (B )
dt 20) \5

If the initial condition is given by P(0) = 8, what happens as t becomes very large?
First we draw the phase line for this equation. Let

P\3/P .

We find the equilibrium points by solving f (P) =0. ThusP =0, P =5,and P = 20
are the equilibrium points.

IfO< P <5, f(P)isnegative;if P <0or5 < P < 20, f(P) ispositive; and
if P > 20, f(P) isnegative. We can place the arrows on the phase line appropriately
(see Figure 1.59). Note that we only have to check the value of f(P) at one point in
each of theseintervals to determinethe sign of f (P) intheentireinterval.

The solution P (t) with initial condition P(0) = 8 isin the region between the
equilibrium points P = 5and P = 20, s05 < P(t) < 20for al t. The arrows point
up in thisinterval, so P (t) isincreasing for al t. Ast — oo, P(t) tends toward the
equilibrium point P = 20.

Ast — —o0o, the solution with initial condition P (0) = 8 decreases toward the
next smaller equilibrium point, which is P = 5. Hence P (t) is aways greater than
P = 5. If we compute the solution P(t) numerically, we see that it increases from
P(0) = 8tocloseto P = 20 very quickly (see Figure 1.60). From the phase line alone,
we cannot tell how quickly the solution increases.

P
P =20 29
15—+
10+
P=5 —%
P=0 % % t
—0.00002 0.00002
Figure 1.59 Figure 1.60
PhaselinefordP/dt = f(P) = Graph of the solution to the initial-value problem
(1—P/20)3((P/5) — 1) P’. dP/dt = (1— P/20)3 ((P/5) — 1) P/,
P(0) = 8.
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80 CHAPTER 1 First-Order Differential Equations

Warning: Not All Solutions Exist for All Time

Suppose Yo is an equilibrium point for the equation dy/dt = f(y). Then f (yg) = 0.
We are assuming f (y) is continuous, so if solutions are close to Yo, the value of f is
small. Thus solutions move slowly when they are close to equilibrium points. A solu-
tion that approaches an equilibrium point ast increases (or decreases) moves more and
more slowly as it approaches the equilibrium point. By the Existence and Uniqueness
Theorem, a solution that approaches an equilibrium point never actually gets there. It
isasymptotic to the equilibrium point, and the graph of the solution in the ty-plane has
ahorizontal asymptote.

On the other hand, unbounded solutions often speed up as they move. For exam-
ple, the equation

dy 2

g

at d+y
has one equilibrium point at y = —1 and dy/dt > O for al other values of y (see
Figure 1.61).

y
f f f f t
/_4/_2 7 4
y=-1 —/K
Figure 1.61

Phase line for dy/dt = (1+ y)2 and graphs of solutions that are
unbounded in finite time.

The phase line indicates that solutions with initial conditionsthat are greater than
—1lincreasefor al t and tend to +oo ast increases.

If we separate variables and compute the explicit form of the solution, we can
determine that these solutions actually blow up in finite time. In fact, the explicit form
of any nonconstant solution is given by

t)=-1 -
yi= t+c

for some constant c. Since we are assuming that y(0) > —1, we must have

1
=-1-->-1
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1.6 Equilibria and the Phase Line 81

which impliesthat ¢ < 0. Therefore these solutions are defined only fort < —c, and
they tend to co ast — —c from below (see Figure 1.61). We cannot tell if solutions
blow up in finite time like this simply by looking at the phase line.

The solutionswith initial conditionsy(0) < —1 are asymptotic to the equilibrium
pointy = —1 ast increases, so they are defined for al t > 0. However, these solutions
tend to —oo infinitetime ast decreases.

Another dangerous exampleis

dy_ 1
dt — 1—y’
If y > 1, dy/dt isnegative, and if y < 1, dy/dt ispositive. If y = 1, dy/dt does not

exist. The phaseline hasaholeinit. Thereisno standard way to denote such points on
the phase line, but we will use a small empty circle to mark them (see Figure 1.62).

<

/]

Figure 1.62
Phase linefor dy/dt = 1/(1 — y). Note that dy/dt is not defined
for y = 1. Also, the graphs of solutionsreach the“hole” aty = 1
in finite time.

All solutions tend toward y = 1 ast increases. Because the value of dy/dt is
large if y is close to 1, solutions speed up as they get closeto y = 1, and solutions
reach y = 1 in afinite amount of time. Once a solution reachesy = 1, it cannot be
continued because it has |eft the domain of definition of the differential equation. It has
faleninto aholein the phase line.

Drawing Phase Lines from Qualitative Information Alone

To draw the phase line for the differential equation dy/dt = f(y), we need to know
the location of the equilibrium points and the intervals over which the solutions are
increasing or decreasing. That is, we need to know the points where f (y) = 0, the
intervals where f (y) > 0, and the intervals where f(y) < 0. Consequently, we can
draw the phase line for the differential equation with only qualitative information about
the function f (y).
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CHAPTER 1 First-Order Differential Equations

For example, suppose we do not know a formula for f (y), but we do have its
graph (see Figure 1.63). From the graph we can determine the values of y for which
f(y) = 0 and decide on which intervals f (y) > Oand f(y) < 0. With thisinforma-
tion we can draw the phase line (see Figure 1.64). From the phase line we can then get
qualitative sketches of solutions (see Figure 1.65). Thus we can go from qualitative in-
formation about f (y) to graphs of solutions of the differential equation dy/dt = f (y)
without ever writing down a formula. For models where the information available is
completely qualitative, this approach is very appropriate.

f(y)

N

Figure 1.63 Figure 1.64
Graph of f(y). Phaselinefor dy/dt = f(y) for f(y)
graphed in Figure 1.63.
y

Figure 1.65
Sketch of solutions for dy/dt = f(y) for f(y)
graphed in Figure 1.63.

The Role of Equilibrium Points

If f(y) iscontinuously differentiable for all y, we have already determined that every
solution to the autonomous equation dy/dt = f(y) either tends to +o0o or —co ast
increases (perhaps becoming infinite in finite time) or tends asymptotically to an equi-
librium point ast increases. Hence the equilibrium points are extremely important in
understanding the long-term behavior of solutions.

Also we have seen that, when drawing a phase line, we need to find the equilib-
rium points, the intervals on which f (y) is positive, and the intervals on which f (y) is
negative. If f iscontinuous, it can switch from positive to negative only at points yo
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1.6 Equilibria and the Phase Line 83

for which f (yg) = 0, that is, at equilibrium points. Hence the equilibrium points also
play acrucia rolein sketching the phase line.

In fact, the equilibrium points are the key to understanding the entire phase line.
For example, suppose we have an autonomous differential equation dy/dt = g(y)
where g(y) iscontinuousfor al y. Suppose all we know about this differential equation
isthat it has exactly two equilibrium points, at y = 2 and y = 7, and that the phase line
near y = 2and y = 7 isas shown on the left-hand side of Figure 1.66. We can use this
information to sketch the entire phase line. We know that the sign of g(y) can change
only at an equilibrium point. Hence the sign of g(y) does not changefor2 <y < 7,
fory < 2, orfory > 7. Thusif we know the direction of the arrows anywhere in these
intervals (say near the equilibrium points), then we know the directions on the entire
phase line (see Figure 1.66). Consequently if we understand the equilibrium points for
an autonomous differential equation, we should be able to understand (at least qualita-
tively) any solution of the equation.

Figure 1.66
On the left we have two pieces of the phase line,
i y= y="7 one piece for each of the two equilibrium points
y =2andy = 7. Ontheright we construct the
entire phase line of dy/dt = g(y) from these
I y=2 individual pieces.

Stephen Smale (1930- ) is one of the founders of modern-day dynam-
ical systems theory. In the mid-1960s, Smale began to advocate taking a
more qualitative approach to the study of differential equations, as we do in
this book. Using this approach, he was among the first mathematicians to
encounter and analyze a “chaotic” dynamical system. Since this discovery,
scientists have found that many important physical systems exhibit chaos.
Smale’s research has spanned many disciplines, including economics,
theoretical computer science, mathematical biology, as well as many subareas

of mathematics. In 1966 he was awarded the Fields Medal, the equivalent
of the Nobel Prize in mathematics. He is currently Professor Emeritus at the
University of California, Berkeley.

Smale is an avid collector of rare minerals. His father gave him his
first specimen in 1968, and ever since, he has traveled to many exotic lo-
cations to add to his collection. He now owns more than 1000 world-class
specimens. Pictures of some of the minerals in his collection are available at
http://math.berkeley.edu/ smale/crystals.html.
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Classification of Equilibrium Points

Given their significance, it is useful to name the different types of equilibrium points
and to classify them according to the behavior of nearby solutions. Consider an equi-
librium point y = yp, as shown in Figure 1.67. For y dlightly less than yo, the arrows
point up, and for y slightly larger than yg, the arrows point down. A solution withinitial
condition close to yg isasymptotic to yg ast — oo.

We say an equilibrium point yg is a sink if any solution with initial condition
sufficiently close to yg is asymptotic to yg ast increases. (The name sink is supposed
to bring to mind a kitchen sink with the equilibrium point as the drain. If water starts
close enough to the drain, it will run toward it.)

Another possible phase line near an equilibrium point yg is shown in Figure 1.68.
Here, the arrows point up for values of y just above yo and down for values of y just
below yg. A solution that has aninitial value near yo tends away from yg ast increases.
If timeis run backward, solutionsthat start near yo tend toward yp.

| N

Figure 1.67 Figure 1.68
Phase line at a sink and graphs of solutions Phase line at a source and graphs of solutions
near asink. near a source.

We say an equilibrium point yg is a source if all solutions that start sufficiently
closeto yp tend toward yg ast decreases. This means that all solutions that start close
to yo (but not at yo) will tend away from yg ast increases. So asourceisasink if time
is run backward. (The name source is supposed to help you picture solutions flowing
out of or away from a point.)

Sinks and sources are the two major types of equilibrium points. Every equilib-
rium point that is neither a source nor asink is called a node. Two possible phase line
pictures near nodes are shown in Figure 1.69.

y y

%4 . ¥§
/K/ t \\\

t

Figure 1.69
Examples of node equilibrium points and graphs of nearby solutions.
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1.6 Equilibria and the Phase Line 85

Given a differential equation, we can classify the equilibrium points as sinks,
sources, or nodes from the phase line. For example, consider
z—f =y +y-6=(y+3(y-2.

The equilibrium pointsarey = —3andy = 2. Alsody/dt < Ofor -3 <y < 2,

anddy/dt > Ofory < —3andy > 2. Given thisinformation, we can draw the phase

line, and from the phase linewe seethat y = —3isasink and y = 2 isa source (see

Figure 1.70).

Suppose we are given a differential equation dw/dt = g(w), where the right-

hand side g(w) is specified in terms of a graph rather than in terms of aformula. Then

y=-3 we can still sketch the phase line. For example, suppose that g(w) is the function

graphed in Figure 1.71. The corresponding differential equation has three equilibrium

points, w = —0.5, w = 1,and w = 2.5; and g(w) > Oif w < —=0.5,1 < w < 2.5,

andw > 2.5. For —0.5 < w < 1, g(w) < 0. Using thisinformation, we can draw the

Figure 1.70 phase line (see Figure 1.72) and classify the equilibrium points. The point w = —0.5is

Phase ine for asink, the point w = 1 isasource, and the point w = 2.5 isanode.
dy/dt =y +y—6.

g(w)
w=25
T w w=1

—-05 1 25
w = —0.5

Figure 1.71 Figure 1.72

Graph of g(w). Phaselinefor dw/dt = g(w)

for g(w), asdisplayed in

Figure 1.71.

Identifying the type of an equilibrium point and “linearization”

From the previous examples we know that we can determine the phase line and classify
the equilibrium points for an autonomous differential equation dy/dt = f (y) from the
graph of f(y) alone. Since the classification of an equilibrium point depends only on
the phase line near the equilibrium point, then we should be able to determine the type
of an equilibrium point yo from the graph of f (y) near yo.

If yo isasink, then the arrows on the phase line just below yg point up and the
arrows just above yg point down. Hence f (y) must be positive for y just smaller than
Yo and negative for y just larger than yo (see Figure 1.73). So f must be decreasing for
y near yo. Conversely, if f(yg) = Oand f isdecreasing for all y near yp, then f (y)
is positive just to the left of yg and negative just to the right of yo. Hence, yg isasink.
Similarly, the equilibrium point yg is a source if and only if f isincreasing for al y
near yo (see Figure 1.74).
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f(y) f(y)
Yy=Yo Y="Yo
y y
‘ yN MO

Figure 1.73 Figure 1.74

Phaselinenear asink at y = yg for Phase line near asourceat y = yg for

dy/dt = f(y) and graph of f(y) near dy/dt = f(y) and graph of f(y) near

Y =Yo- Y =Yo-

From calculus we have a powerful tool for telling whether afunctionisincreasing
or decreasing at a particular point—the derivative. Using the derivative of f(y) com-
bined with the geometric observations above, we can give criteria that specify the type
of the equilibrium point.

LINEARIZATION THEOREM  Suppose Yo is an equilibrium point of the differential
equation dy/dt = f(y) where f isacontinuously differentiable function. Then,

o if f'(yg) < O, then ypisasink;
o if f'(yg) > 0, then yp isasource; or
o if f/(yo) = 0, then we need additional information to determine the type of yp. n

Thistheorem follows immediately from the discussion prior to its statement once
we recall that if f/(yg) < O, then f is decreasing near yo, and if f’(yp) > O, then
f isincreasing near yo. This analysis and these conclusions are an example of lin-
earization, atechnique that we will often find useful. The derivative f’(yp) tells usthe
behavior of the best linear approximationto f near yo. If wereplace f withitsbest lin-
ear approximation, then the differential equation we obtain is very close to the original
differential equation for y near yp.

We cannot make any conclusion about the classification of yg if f'(yg) = 0, be-
cause al three possibilities can occur (see Figure 1.75).

As another example, consider the differential equation

dy 5 4

a h(y) = y(cos(y® + 2y) — 27ny").
What does the phase line ook like near y = 0? Drawing the phase line for this equa-
tion would be a very complicated affair. We would have to find the equilibrium points
and determine the sign of h(y). On the other hand, it iseasy to seethaty = Oisan
equilibrium point because h(0) = 0. We compute

d
h'(y) = (cos(y® + 2y) — 27ny*) +y W(cos(y5 + 2y) — 277y%).

Thus h’(0) = (cos(0) — 0) + 0 = 1. By the Linearization Theorem, we conclude that
y = Oisasource. Solutions that start sufficiently closeto y = 0 move away from
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f(y) f(y)

/ Yo Y )}0\ Y

Yo

Figure 1.75
Graphs of various functions f along with the corresponding phase lines for the differential
equationdy/dt = f(y). Inall cases, yg = Oisan equilibrium point and f’(yg) = 0.

y = Oast increases. Of course, there is the dangerous loophole clause “ sufficiently
close” Initia conditions might have to be very, very closeto y = O for the above to
apply. Again we did alittle work and got alittle information. To get more information,
we would need to study the function h(y) more carefully.

Modified Logistic Model

Asan application of these ideas, we use the techniques of this section to discuss a mod-
ification of the logistic population model we introduced in Section 1.1.

The pine squirrel isasmall mammal native to the Rocky Mountains. These squir-
relsare very territorial, so if their population islarge, their rate of growth decreases and
may even become negative. On the other hand, if the population is too small, fertile
adults run the risk of not being able to find suitable mates, so again the rate of growth
is negative.*

The model
We can restate these assumptions succinctly:

« |f the population is too big, the rate of growth is negative.
« If the population istoo small, the rate of growth is negative.

So the population grows only if it is between “too big” and “too small.” Also, it
is reasonable to assume that, if the population is zero, it will stay zero. Thus we aso
assume:

« |f the population is zero, the growth rate is zero. (Compare these assumptions with
those of the logistic population model of Section 1.1.)

*This phenomenon is called the Allee effect. See Allee, W. C., Animal Aggregations: A Study in General
Sociology, University of Chicago Press, 1931.
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88 CHAPTER 1 First-Order Differential Equations

We let

t = time (independent variable),
S(t) = population of squirrelsat timet (dependent variable),
k = growth-rate coefficient (parameter),
N = carrying capacity (parameter), and
M = “sparsity” constant (parameter).

The carrying capacity N indicates what populationis“too big,” and the sparsity param-
eter M indicates what population is “too small.”

Now we want a model of the form dS/dt = g(S) that conforms to the assump-
tions. We can think of the assumptions as determining the shape of the graph of g(S), in
particular where g(S) is positive and where it is negative. Notethat dS/dt = g(S) < 0
if S > N because the population decreases if it istoo big. Alsog(S) < OwhenS < M
because the popul ation decreasesif itistoo small. Finaly, g(S) > OwhenM < S < N
and g(0) = 0. That is, wewant g(S) to have agraph shaped like Figure 1.76. The graph

9(S) of g for S < 0 does not matter because a negative number of squirrels (anti-squirrels?)
is meaningless.
/\ The logistic model would give “correct” behavior for populations near the car-
0 S rying capacity, but for small populations (below the “sparsity” level M), the solutions
M r\\ of the logistic model do not agree with the assumptions. Hence we will need to mod-
ify the logistic model to include the behavior of small populations and to include the
Figure 1.76 parameter M. We make amodel of the form
Graph of g(S).
ds

S .
i g(S) =kS (1 — W) (something).

The “something” term must be positiveif S > M and negativeif S < M. The simplest
choice that satisfies these conditionsis

. S
(something) = <M — 1) .

ds =kS(1- SY (2 1).
dt N M
Thisisthe logistic model with the extraterm
S
()
M

We call it the modified logistic population model. (Other models might also be called
the modified logistic, but modified in a different way.)

Hence our model is
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1.6 Equilibria and the Phase Line 89

Analysis of the model

To analyze solutions of this differential equation, we could use analytic techniques,
since the eguation is separable. However, qualitative techniques provide a lot of in-
formation about the solutions with alot less work. The differential equation is

ds S S

with0 < M < N and k > 0. There are three equilibrium points—S = 0, S = M, and
S=N.If0< S < M,wehaveg(S) < 0, so solutions with initial conditions between
0 and M decrease. Similarly, if S > N, g(S) < 0, solutions with initial conditions
larger than N also decrease. For M < S < N, we have g(S) > 0. Consequently,
solutions with initial conditions between M and N increase. Thus we conclude that the
equilibriaat 0 and N are sinks, and the equilibrium point at M is a source. The phase
line and graphs of typical solutions are shown in Figure 1.77.

S Figure 1.77
\\ Solutions of the modified logistic
uation
S=N &
ds S S
2 _k(1=2) (=2 =
_—— dt ( N) (M )S’
S=M
\ with variousinitial conditions.
$=0 t

EXERCISES FOR SECTION 1.6

In Exercises 1-12, sketch the phase lines for the given differential equation. Identify
the equilibrium points as sinks, sources, or nodes.

1.2—¥=3y(y—2) 2.3—¥=y2—4y—12 3.3—¥=cosy
4.%—1:)=wCOSw 5.%—?:(1—w)sinw 6.3—)::?12
7.3—1’=—v2—2v—2 8.‘2—’:’=3w3—12w2 9.Z—¥=1+cosy

10. 3—{ =tany 11. 3—{ =yln|y| 12. %—Lt” = (w?—2) arctanw
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90 CHAPTER 1 First-Order Differential Equations

In Exercises 13-21, a differential equation and various initial conditions are specified.
Sketch the graphs of the solutions satisfying these initial conditions. For each exercise,
put all your graphs on one pair of axes.

13. Equation from Exercisel; y(0) =1, y(-2)=-1, y(0) =3, y0) =2

14. Equation from Exercise2; y(0) =1, y(1) =0, y0 =6, y(0) =5.

15. Equation from Exercise3; y(0) =0, y(-1) =1, y(0) = —-7/2, y(0) =m.
16. Equation from Exercise4; w(0) =0, w@) =1, w0 =2, w(0) =-1
17. Equation from Exercise5; w(0) = —-3/2, w(0) =1, w(0) =2, w(0) = 3.
18. Equation from Exercise6; y(0) =0, y(1) =3, y(0) =2 (trick question).
19. Equation from Exercise7; v(0) =0, v(1)=1, v =1

20. Equation from Exercise8; w(0) =-1, w(©0) =0, w0 =3, w@) =3.
21. Equation from Exercise9; y(0) = —n, y(0) =0, y0) =x, y(0) =2r.

In Exercises 2227, describe the long-term behavior of the solution to the differential

equation
dy 2
= =y —4y+2
at y Y+
with the given initial condition.
22.y(0)=-1 23.y(0) =2 24. y(0) = -2
25.y(0) = -4 26.y(0) =4 27.y3) =1

28. Consider the autonomous equation dy/dt = f (y) where f (y) is continuously dif-
ferentiable, and suppose we know that f (—1) = f(2) = 0.

(a) Describe al the possible behaviors of the solution y(t) that satisfies the initial
condition y(0) = 1.

(b) Suppose asothat f(y) > Ofor —1 <y < 2. Describe al the possible behav-
iors of the solution y(t) that satisfiesthe initial condition y(0) = 1.

In Exercises 29-32, the graph of afunction f (y) isgiven. Sketch the phase line for the
autonomous differential equation dy/dt = f(y).

29. 30.

f(y) f(y)

~ A

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.




1.6 Equilibria and the Phase Line o1

f(y) f(y)

RN N

In Exercises 33-36, a phase line for an autonomous equation dy/dt = f (y) is shown.
Make a rough sketch of the graph of the corresponding function f (y). (Assumey = 0
isin the middle of the segment shown in each case.)

33. 34. 35. 36.

3L 32.
y

37. Eight differential equations and four phase lines are given below. Determine the
equation that corresponds to each phase line and state briefly how you know your
choiceis correct.

Ldy - dy 2 s Y o dy 5 5
(i) n =ycos(%y) (i) =YY (iii) 0 =lylsin(%y) (iv) TR AR

dy _ (x N dy Lady o 3
W) g =cos(%y) (Vi) o A AW =ysin(%y) (viii) G-V Y

@) (b) © (d)
y=3
y=2
y=1 y=1 y=1
y=0 y=0 y=0 y=0
y=-1
y=-2
y=-3
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92 CHAPTER 1 First-Order Differential Equations

38. Let f(y) beacontinuous function.
(a) Supposethat f(—10) > 0and f(10) < 0. Show that there is an equilibrium
point for dy/dt = f(y) betweeny = —10and y = 10.
(b) Suppose that f(—10) > O, that f(10) < 0, and that there are finitely many
equilibrium points betweeny = —10and y = 10. If y = 1 isasource, show
that dy/dt = f (y) must have at least two sinks betweeny = —10and y = 10.
(Can you say where they are located?)

39. Suppose you wish to model a population with a differential equation of the form
dP/dt = f(P), where P(t) is the population at time t. Experiments have been
performed on the population that give the following information:

» Theonly equilibrium pointsin the populationare P = 0, P = 10, and P = 50.

« If the population is 100, the popul ation decreases.
« If the population is 25, the popul ation increases.

(a) Sketch the possible phase lines for this system for P > 0 (there are two).
(b) Give a rough sketch of the corresponding functions f (P) for each of your
phase lines.

(c) Giveaformulafor functions f (P) whose graph agrees (qualitatively) with the
rough sketchesin part (b) for each of your phase lines.

40. Consider the Ermentrout-Kopell model for the spiking of a neuron

de
Fri 1—cosé + (1+ cosh)l (t)

introduced in Exercise 19 of Section 1.4. Let the input function 1 (t) be the function
that is constantly —1/3.
(a) Determine the equilibrium points for thisinput.
(b) Classify these equilibria
41. Use PhaseL ines to describe the phase line for the differential equation
dy

2
A a
at T

for various values of the parameter a.
(a) For which values of a isthe phase line qualitatively the same?
(b) At which value(s) of a does the phase line undergo a qualitative change?
42. Use PhaseL ines to describe the phase line for the differential equation

dy _
dt

ay —y°
for various values of the parameter a.

(a) For which values of a isthe phase line qualitatively the same?

(b) At which value(s) of a does the phase line undergo a qualitative change?
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43. Supposedy/dt = f (y) hasan equilibrium point at y = yg and
(@) f'(yo) =0, f”(yo) =0,and f"”(yp) > 0: Isyp asource, asink, or anode?
(b) f'(yo) =0, f”(yo) =0, and " (yg) < 0: Isyg asource, asink, or anode?
(c) f'(yo) = 0and f”(yp) > O: Isyp asource, asink, or anode?

44. (a) Sketch the phase line for the differential equation

dy 1
dt  (y—-2(y+1’

and discuss the behavior of the solution with initial condition y(0) = 1/2.
(b) Apply analytic techniques to the initial-value problem

dy 1

1
B 0) = —
it~ y-20+n 'O=7

and compare your results with your discussion in part (a).

The proper scheduling of city bus and train systems is a difficult problem, which the
City of Boston seems to ignore. It is not uncommon in Boston to wait a long time for
the trolley, only to have severa trolleys arrive simultaneously. In Exercises 4548, we
study a very ssmple model of the behavior of trolley cars.

Consider two trolley cars on the same track moving toward downtown Boston.
Let x(t) denote the amount of time between the two cars at timet. That is, if the first
car arrives at a particular stop at time t, then the other car will arrive at the stop x(t)
time units later. We assume that the first car runs at a constant average speed (not a bad
assumption for a car running before rush hour). We wish to model how x (t) changes as
t increases.

We first assume that, if no passengers are waiting for the second train, then it has
an average speed greater than the first train and hence will catch up to the first train.
Thus the time between trains x (t) will decrease at a constant rate if no people are wait-
ing for the second train. However, the speed of the second train decreases if there are
passengers to pick up. We assume that the speed of the second train decreases at arate
proportional to the number of passengers it picks up and that the passengers arrive at
the stops at a constant rate. Hence the number of passengers waiting for the second
train is proportional to the time between trains.

45, Let x(t) be the amount of time between two consecutive trolley cars as described
above. We claim that a reasonable model for x(t) is

Which term representsthe rate of decrease of the time between thetrainsif no people
are waiting, and which term represents the effect of the people waiting for the second
train? (Justify your answer.) Should the parameters o and 8 be positive or negative?
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46. For the model in Exercise 45:

(a) Find the equilibrium points.

(b) Classify the equilibrium points (source, sink, or node).
(c) Sketch the phaseline.

(d) Sketch the graphs of solutions.

(e) Find the formulafor the general solution.

47. Use the model in Exercise 45 to predict what happensto x (t) ast increases. Include
the effect of the initial value x(0). Is it possible for the trains to run at regular in-
tervals? Given that there are always slight variations in the number of passengers
waiting at each stop, isit likely that aregular interval can be maintained? Write two
brief reports (of one or two paragraphs):

(a) The first report is addressed to other students in the class (hence you may use
technical language we use in class).
(b) The second report is addressed to the Mayor of Boston.

48. Assuming the model for x(t) from Exercise 45, what happens if trolley cars leave
the station at fixed intervals? Can you use the model to predict what will happen for
awhole sequence of trains? Will it help to increase the number of trains so that they
leave the station more frequently?

1.7 BIFURCATIONS

Equations with Parameters

In many of our models, a common feature is the presence of parameters along with
the other variables involved. Parameters are quantities that do not depend on time (the
independent variable) but that assume different values depending on the specifics of the
application at hand. For instance, the exponential growth model for population

dp
—— —kP
dt

contains the parameter k, the constant of proportionality for the growth rate d P /dt ver-
sus the total population P. One of the underlying assumptions of this model is that the
growth rate d P /dt is a constant multiple of the total population. However, when we
apply this model to different species, we expect to use different values for the constant
of proportionality. For example, the value of k that we would use for rabbits would be
significantly larger than the value for humans.

How the behavior of solutions changes as the parameters vary is a particularly
important aspect of the study of differential equations. For some models, we must study
the behavior of solutions for al parameter values in a certain range. As an example,
consider amodel for the motion of a bridge over time. In this case, the number of cars
on the bridge may affect how the bridge reacts to wind, and a model for the motion of
the bridge might contain a parameter for the total mass of the cars on the bridge. In
that case, we would want to know the behavior of various solutions of the model for a
variety of different values of the mass.
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1.7 Bifurcations 95

In many models we know only approximate values for the parameters. However,
in order for the model to be useful to us, we must know the effect of dlight variationsin
the values of the parameters on the behavior of the solutions. Also there may be effects
that we have not included in our model that make the parameters vary in unexpected
ways. In many complicated physical systems, the long-term effect of these intentional
or unintentional adjustmentsin the parameters can be very dramatic.

In this section we study how solutions of a differential equation change as a pa-
rameter is varied. We study autonomous equations with one parameter. We find that a
small changein the parameter usually resultsin only asmall change in the nature of the
solutions. However, occasionally a small change in the parameter can lead to a drastic
change in the long-term behavior of solutions. Such a change is called a bifurcation.
We say that a differential equation that depends on a parameter bifurcates if thereis a
qualitative change in the behavior of solutions as the parameter changes.

Notation for differential equations depending on a parameter
An example of an autonomous differential equation that depends on a parameter is

dy 5

— =y°-2 .
at y y+nu
The parameter is . The independent variable ist and the dependent variable is y, as
usual. Note that this equation really represents infinitely many different equations, one
for each value of . We think of the value of n as a constant in each equation, but
different values of u yield different differential equations, each with a different set of
solutions. Because of their different rolesin the differential equation, we use a notation
that distinguishes the dependence of the right-hand sideon y and .. We let

f(y) =y? =2y +pu.

The parameter 1 appears in the subscript, and the dependent variable y is the argument
of the function f,. If we want to specify a particular value of u, say u = 3, then we
write

fa(y) = y> —2y +3.

With 1 = 3, we obtain the corresponding differential equation

d
d—y = fa(y) =y* -2y +3.
t
We use this notation in general. A function of the dependent variable y, which
also depends on a parameter u, is denoted by f,(y). The corresponding differential
equation with dependent variable y and parameter i is

dy
dt
Since such adifferential equation really refersto a collection of different equations, one

for each value of u, we call such an equation a one-parameter family of differential
equations.

= fu(y)

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



96 CHAPTER 1 First-Order Differential Equations

A One-Parameter Family with One Bifurcation

Let's consider the one-parameter family

d
d_)t/: f,L(Y)=y2—ZY+M

more closely. For each value of 1 we have an autonomous differential equation, and
we can draw its phase line and analyze it using the techniques of the previous section.
We begin our study of this family by studying the differential equations obtained from
particular choices of . Since we do not yet know the most interesting values of 1,
we just pick integer values, say u = -4, u = -2, 0 = 0, u = 2, and u = 4, for
starters. (In general, 1« need not be an integer, but we might as well begin our analysis
with integer values of 1.) For each u, we have an autonomous differential equation and
its phase line. For example, for © = —2, the equation is
dy

_ = —_ 2_ —
it fo(y) =y -2y -2

This differential equation has equilibrium points at values of y for which
fa(y)=y*-2y-2=0.

The equilibrium pointsarey = 1 — v/3andy = 1+ /3. Between the equilibrium
points, the function f_» is negative, and above and below the equilibrium points, f_ is
positive. Hencey = 1—+/3isasink and y = 1++/3isasource. With thisinformation
we can draw the phase line. For the other values of 1« we follow asimilar procedure and
draw the phase lines. All these phase lines are shown in Figure 1.78.

Figure 1.78
Phase lines for

dy 2
L E—fu(y)—y —2y+u

foru =—-4,-2,0,2, and 4.

w=-4 nw=-2 nw=0 n=2 nw==4a

Each of the phase lines is somewhat different from the others. However, the basic
description of the phaselinesfor u = —4, u = —2, and u = 0 isthe same: There are
exactly two equilibrium points; the smaller oneis asink and the larger one is a source.
Although the exact position of these equilibrium points changes as u increases, their
relative position and type do not change. Solutions of these equations with large initial
values blow up in finite time as t increases and tend to an equilibrium point as t de-
creases. Solutionswith very negativeinitial conditions tend to an equilibrium point ast
increases and to —oo ast decreases. Solutions with initial values between the equilib-
rium points tend to the smaller equilibrium point ast increases and to the larger equi-
librium point ast decreases (see Figure 1.79).
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y
y=1++5
nw=-4
t
y:l—\/g /
y
y=1++3
n=-2
t
y:l—\/é /,
y
y=2
nw=0
y
p=2 L noequilibria 4
/ t
y
u=4 | noequilibria /
b t

Figure 1.79
Phase lines and sketches of solutionsfor dy/dt = f,(y) = y2 — 2y + u for
w=—4-2024.
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o8 CHAPTER 1 First-Order Differential Equations

If w =2and u = 4, we have something very different. There are no equilibrium

points. All solutions tend to +oco ast increases and to —oo ast decreases. Because

fu(y) there is a significant change in the nature of the solutions, we say that a bifurcation has
occurred somewhere between u = 0and . = 2.

To investigate the nature of this bifurcation, we draw the graphs of f,, for the
w-values above (see Figure 1.80). For u = —4, —2, and 0, f,(y) has 2 roots, but for
u = 2 and 4, thegraph of f,(y) does not cross the y-axis. Somewhere between u = 0
and u = 2 the graph of f,(y) must be tangent to the y-axis.

The roots of the quadratic equation

2 _
Figure 1.80 y -2y+pu=0
Graphs of ) aey =14+ /I—pu. If u < 1, thisquadratic has two real roots; if « = 1, it hasonly
fu) =y* =2y +n one root; and if ;> 1, it has no real roots. The corresponding differential equations

forp=-4,-202ad4  pae two equilibrium points if x < 1, one equilibrium point if x = 1, and no equi-

librium pointsif © > 1. Hence the qualitative nature of the phase lines changes when
n = 1. We say that a bifurcation occurs at © = 1 and that © = 1 is a bifurcation
value.

The graph of f1(y) and the phase line for dy/dt = f1(y) are shown in Figures
1.81 and 1.82. The phase line has one equilibrium point (which is a node), and ev-
erywhere else solutions increase. The fact that the bifurcation occurs at the parameter
value for which the equilibrium point is a node is no coincidence. In fact, this entire
bifurcation scenario is quite common.

fu(y)
N\

\

n<l nw=1 n>1

Figure 1.81 Figure 1.82

Graphsof f,(y) = y2 —2y+uforu Corresponding phase lines for
dlightly lessthan 1, equal to 1, and dlightly dy/dt = f,(y) = y2 — 2y + .
greater than 1.

The Bifurcation Diagram

An extremely helpful way to understand the qualitative behavior of solutionsis through
the bifurcation diagram. Thisdiagram isapicture (in the ny-plane) of the phase lines
near a bifurcation value. It highlights the changes that the phase lines undergo as the
parameter passes through this value.

To plot the bifurcation diagram, we plot the parameter values al ong the horizontal
axis. For each p-value (not just integers), we draw the phase line corresponding to
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1.7 Bifurcations 99

on the vertical line through . We think of the bifurcation diagram as a movie: As
our eye scans the picture from left to right, we see the phase lines evolve through the
bifurcation. Figure 1.83 shows the bifurcation diagram for f,(y) = y2 — 2y + p.

Figure 1.83

Bifurcation diagram for the differential equationdy/dt = f,(y) = y2 — 2y + w. The
horizontal axisisthe wu-value and the vertical lines are the phase lines for the differential
equations with the corresponding 1.-values.

A bifurcation from one to three equilibria
Let’slook now at another one-parameter family of differential equations
dy

— = = 3— = 2—
dt Ga(Y) =Yy —ay =Yy —a).

In this equation, « is the parameter. There are three equilibriaif o > 0 (y = 0, +./«@),
but there is only one equilibrium point (y = 0) if « < 0. Therefore a bifurcation occurs
when o = 0. To understand this bifurcation, we plot the bifurcation diagram.

First, if « < 0, theterm y2 — « isaways positive. Thus g, (y) = y(y2 — «) has
the same sign asy. Solutionstend to co if y(0) > Oandto —oo if y(0) < 0. If @ > O,
the situation is different. The graph of g, (y) shows that g,(y) > 0 in the intervals
Ja <y < ocoand —/a <y < 0 (seeFigure 1.84). Thus solutions increase in
theseintervals. In the other intervals, g, (y) < 0, so solutions decrease. The bifurcation
diagram is depicted in Figure 1.85.

G (Y) y
// y o
Figure 1.84 Figure 1.85
Graphs of g4 (y) fora > 0, = 0, and Bifurcation diagram for the one-parameter
a < 0. Note that for « < 0the graph family dy/dt = gu(y) = y3 —ay.

crosses the y-axis once, whereasif o > 0,
the graph crosses the y-axis three times.
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Bifurcations of Equilibrium Points

Throughout the rest of this section, we assume that al the one-parameter families of
differential equations that we consider depend smoothly on the parameter. That is, for
the one-parameter family

dy ¢
at w(Y),
the partial derivatives of f, (y) with respect to y and p exist and are continuous. So

changing . alittle changes the graph of f,(y) only slightly.

When bifurcations do not happen

The most important fact about bifurcationsis that they usually do not happen. A small
change in the parameter usualy leads to only a small change in the behavior of solu-
tions. Thisisvery reassuring. For example, suppose we have a one-parameter family

dy

dt
and the differential equation for .« = o has an equilibrium point at y = yg. Also
suppose that f/, (yo) < 0, so the equilibrium point is a sink. We sketch the phase line
and the graph of f,,,(y) near y = yp in Figure 1.86.

Now if we change u just alittle bit, say from o to n1, then the graph of f,, (y)
isvery closeto the graph of f,,(y) (see Figure 1.87). So the graph of f,, (y) isstrictly
decreasing near Yo, passing through the horizontal axisnear y = yg. The corresponding
differential equation

= fu(y),

d
d—f = f,(y)

hasasink at some point y = y; very near yo.
We can make this more precise: If yg isasink for adifferential equation

dy
a = fuo(y)
fu()’) f,u y)
\\\ fruo(y)
ful()’)\\\
y ~— y
Figure 1.86 Figure 1.87
Graph of f,,,(y) near the sink yg and the Graphsof f,,(y) and f,,(y) for g
phase line for the differential equation closeto ug. Notethat f,, (y) decreases
dy/dt = f,5(y) near yq. acrossthe y-axisat y = y1 near yg, SO

dy/dt = f,,(y) hasasink at y = ;.
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1.7 Bifurcations 101
with f;io(VO) < 0, then for all 1 sufficiently closeto u, the differential equation

dy

a = ful (Y)

hasasink at apoint y = y1 very near yp (and no other equilibrium points near yp). A
similar statement holds if yg is a source and fl;o(yo) > 0. These are the situationsin
which we can say for sure that no bifurcation occurs, at least not near yp.

With these observationsin mind, we see that bifurcations occur only if the above
conditions do not hold. Consequently, given a one-parameter family of differential
equations

dy

a = f,u(Y),

we look for values i = uo and y = yo for which f,,,(yo) = 0and f, (yo) = 0.

Determining bifurcation values
Consider the one-parameter family of differential equations given by

2—¥ = fu()) =yd -y’ +u

If u = 0, theequilibrium pointsarey = 0 and y = 1. Also fj(0) = 1. Hencey = Ois
a source for the differential equation dy/dt = fp(y). Thusfor al u sufficiently close
to zero, the differential equation dy/dt = f,(y) hasasource near y = 0.

On the other hand, for the equilibrium point y = 1, fj(1) = 0. The Linearization
Theorem from Section 1.6 says nothing about what happens in this case. To see what
is going on, we sketch the graph of f,(y) for several u-values near © = 0 (see Fig-
ure 1.88). If u = 0, the graph of f, istangent to the horizontal axisat y = 1. Since
fo(y) > Oforaly > Oexcepty = 1, it follows that the equilibrium pointat y = 1is
anode for this parameter value. Changing .« moves the graph of f,,(y) up (if i ispos-
itive) or down (if  is negative). If we make p slightly positive, f,(y) does not touch
the horizontal axisnear y = 1. So the equilibrium point at y = 1 for u = 0 disappears.
A bifurcation occurs at © = 0. For u dlightly negative, the corresponding differential
equation has two equilibrium points near y = 1. Since f, isdecreasing at one of these
equilibriaand increasing at the other, one of these equilibriais a source and the other is
asink.

f.(y) Figure 1.88
Graphs of

fu(y) =y(1—y)? +u

for p slightly greater than zero, u equal to zero,
Y and u dlightly lessthan zero.
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102 CHAPTER 1 First-Order Differential Equations

There is asecond bifurcation in this one-parameter family. To see this, note what
happens as 1« decreases. There is avalue of n for which the graph of f,(y) again has
a tangency with the horizontal axis (see Figure 1.89). For larger u-values, the graph
crosses the horizontal axis three times, but for lower u-values, the graph crosses only
once. Thus a second bifurcation occurs at this p-value.

fu(y) Figure 1.89
Graphs of
fu(y) =yd—y)% + 4

for u slightly greater than —4/27, for ;. equal to
By Y —4/27, and for u dlightly less than —4/27.

To find this bifurcation value exactly, we must find the u-values for which the
graph of f, is tangent to the horizontal axis. That is, we must find the u-values for
which, at some equilibrium point y, we have f; (y) = 0. Since

fl(y)=0-y2-2y1—y) =1 -y)L-3y).

it follows that the graph of f,(y) is horizontal at the two pointsy = 1andy = 1/3.
We know that the graph of fp(y) istangent to the horizontal axisy = 1, so let'slook at
y = 1/3. We have f,(1/3) = u + 4/27, so the graph is a'so tangent to the horizontal
axisif u = —4/27. Thisis our second bifurcation value. Using analogous arguments
to those above, we find that f,, has three equilibria for —4/27 < 1 < 0 and only
one equilibrium point when i < —4/27. The bifurcation diagram summarizes all this
information in one picture (see Figure 1.90).

y Figure 1.90
Bifurcation diagram for
d
d—i/ = fu(y) =y@ - )%+ u.
Note the two bifurcation values of pu,
uw=—4/27and u = 0.

EREEREE

Sustainability

When harvesting a natural resource, it isimportant to control the amount harvested so
that the resource is not completely depleted. To accomplish this, we must study the
particular species involved and pay close attention to the possible changes that may
occur if the harvesting level isincreased.
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1.7 Bifurcations 103

Suppose we model the population P (t) of a particular species of fish with a lo-

gistic model
P (1 P).
dt N

wherek isthe growth-rate parameter and N isthe carrying capacity of the habitat. Sup-
pose that fishing removes a certain constant number C (for catch) of fish per season
from the population. Then amaodification of the model that takes fishing into account is

dP P
d—t:kP<1—W>—C.

How does the population of fish vary as C isincreased?

This model has three parameters, k, N, and C; but we are concerned only with
what happens if C is varied. Therefore we think of k and N as fixed constants deter-
mined by the type of fish and their habitat. Our predictions involve the values of k and
N. For example, if C = 0, we know from Section 1.1 that all positive initial condi-
tions yield solutions that tend toward the equilibrium point P = N. So if fishing is
prohibited, we expect the population to be closeto P = N.

Let

P
fc(P) =kP (1— W) —C.
As C increases, the graph of fc (P) slides down (see Figure 1.91). The points where

fc(P) crosses the P-axis tend toward each other. In other words, the equilibrium
points for the corresponding differential equations slide together.

fc(P) Figure 1.91
Graphs of

P
N fC(P)=kP(1—W>—C

for severa values of C. Note that, asC
increases, the graph of fc (P) slides down the
vertical axis.

)

We can compute the equilibrium points by solving fc (P) = 0. We have

P
kP(1-—)-C=0,
(=)

—kP24+kNP —CN =0.
This quadratic equation has solutions

which yields

N2 CN

N
P=— &, [—— =
2 4k
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Aslong as the term under the square root (the discriminant of the quadratic) is positive,
the function crosses the horizontal axis twice and the corresponding differential equa-
tion has two equilibrium points—a source and a sink. Thus, for small values of C, the
phase line has two equilibrium points (see Figure 1.91).
If
N? CN
) ” <0,
then the graph of fc (P) does not cross the P-axis and the corresponding differential
equation has no equilibrium points. Thus, if
N2 CN
4k
or equivaently if
kN
i
then there are no equilibria. For these values of C, the function fc (P) is negative for
all values of P and the solutions of the corresponding differential equation tend toward
—o00. Since negative populations do not make any sense, we say that the species has
become extinct when the population reaches zero.

With this information, we can sketch the bifurcation diagram for this system (see
Figure 1.92). A bifurcation occurs as we increase C. The bifurcation value for the pa-
rameter C iskN /4 because, at this value, the graph of fc (P) istangent to the P-axis.
The corresponding differential equation hasanodeat P = N/2. If C is dightly less
than kN /4, the corresponding differential equation has two equilibrium points, a source
andasink, near P = N /2. If C isdlightly greater than kN /4, the corresponding differ-
ential equation has no equilibrium points (see Figure 1.92).

C >

P Figure 1.92
Bifurcation diagram for

dP P
— = fc(P)=kP(1- - )-cC.
T c(P) ( N)

Notethat if C < kN /4, the phase line has two

¢ equilibrium points, whereasif C > kN /4, the
phase line has no equilibrium points and all
solutions decrease.

__ kN
C="7

It isinteresting to consider what happens to the fish population as the parameter
C isdowly increased. If C = 0, the population tendsto the sink at P = N. Then, if
thereisarelatively small amount of fishing, thefish populationiscloseto P = N. That
is, if C isdlightly positive, thesink for C = 0at P = N moves to the dightly smaller
vaue
N N2 CN

p_, [N EN
2 V4 Tk
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1.7 Bifurcations 105

For somewhat larger values of C, the value of the sink continues to decrease, and
the fish population adjusts to stay close to this sink. We observe a gradual decrease
in the fish population. When C isclose to kN /4, the fish population is close to the sink
for the corresponding differential equation, whichiscloseto P = N /2. If C increases
just alittle more so that C > kN /4, then the corresponding differential equation has no
equilibrium points and all solutions decrease. If C isdlightly larger than kN /4, fc (P)
isdlightly negative near P = N /2, so the population decreases slowly at first. As P de-
creases, fc(P) becomes more negative and the rate of decrease of P accelerates. The
population reaches zero in afinite amount of time, and the fish species becomes extinct.

So as the number of fish removed by fishing increases gradually, we initially ex-
pect a gradual decline in the fish population. This decline continues until the fishing
parameter C reaches the bifurcation value C = kN /4. At this point, if we allow even
dlightly more fishing, the fish population decreases slowly at first and then collapses,
and the fish become extinct in the area. Thisis a pretty frightening scenario. The fact
that alittle fishing causes only a small population decline over the long term does not
necessarily imply that alittle more fishing causes only alittle more population decline.
Once the bifurcation value is passed, the fish population tends to zero.

Thismodel isavery simple one, and as such it should not be taken too serioudly.
The lesson to be learned is that, if this sort of behavior can be observed in simple mod-
els, we would expect that the same (and even more surprising behavior) occursin more
complicated models and in the actual populations. To properly manage resources, we
need to have accurate models and to be aware of possible bifurcations.

Mary Lou Zeeman (1961- ) grew up in England, learning about bi-
furcations and catastrophe theory from her father, Sir Christopher Zeeman
(1925— ). She has applied methods of dynamical systems to population
interactions, disease dynamics, neuroscience, cell networks, and hormone
surges in the menstrual cycle. She enjoys collaborating with scientists: inter-
weaving experiment and data collection with mathematical modeling.
Zeeman is also involved in several interdisciplinary initiatives focused
on the health of the planet. In 2008, she helped found the Institute for
Computational Sustainability based at Cornell University. In 2010, she and

her colleagues founded the NSF-funded Mathematics and Climate Research
Network, to identify and attack mathematical challenges underlying climate
modeling. She has taught at MIT and the University of Texas at San Antonio.
She is currently Wells Johnson Professor of Mathematics at Bowdoin College.
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106 CHAPTER 1 First-Order Differential Equations

EXERCISES FOR SECTION 1.7

In Exercises 1-6, locate the bifurcation values for the one-parameter family and draw
the phase lines for values of the parameter dlightly smaller than, dlightly larger than,
and at the bifurcation values.

dy _ e dy

2
1. it =y“+a 2. it =y“+3y+a
dy 5 dy 3 2
3. dt_y ay+1 4. dt_y + ay

dy > 2 dy _
5-5—()/ —a)(y" -4 G-E—G—M

In Exercises 7-10, locate the bifurcation values of « for the one-parameter family and
describe the bifurcation that takes place at each such value.

dy 4 2 dy 6 3
7. — = 8. —=y°-2
at T gt Y Tt
dy dy _y2
9.a_smy+a lo.a_e + o
11. The graph to the right is the graph of f(y)
afunction f (y). Describe the bifurca 31
tions that occur in the one-parameter ot
family 1t
d H—— ——d—y
Yty +a A2 14l 1 2
dt
2+
-3+
12. The graph to the right is the graph of g(y)
afunction g(y). Describe the bifurca ol
tions that occur in the one-parameter
family 14
dy | | | | | |
-y T T T T T T y
gt — 9 +ay. 3 \2 -1 1 2 \3
-1+
[Hint: Note that the equilibria of this
function occur at values of y where -2
g(y) = —ay.]
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1.7 Bifurcations 107

13. Six one-parameter families of differential equations depending on the parameter A
and four bifurcation diagrams are given below. Determine the one-parameter family
that corresponds to each bifurcation diagram, and state briefly how you know your
choiceis correct.

d d d
O =AY ) o =AtyE i) =AYy
. d d . d
W) G =A-y> W) g=V-A M) g =AY
@ , ®) ,
MA MA
© ) @ )
MA WA

14. Consider the Ermentrout-Kopell model for the spiking of a neuron

de

T 1—cosé + (14 cosO)l (1)
introduced in Exercise 19 of Section 1.3. Suppose that the input function | (t) isa
constant function, that is, 1 (t) = | where | isaconstant. Describe the bifurcations
that occur asthe parameter | varies.

15. Sketch the graph of afunction f (y) such that the one-parameter family of differen-
tial equationsdy/dt = f(y) + « satisfiesal of the following properties:

o For all @ < —3, the differential equation has exactly two equilibria
o For al o > 3, the equation has no equilibria.
o For a = 0, the equation has exactly four equilibria.

[There are many possible functions f (y) that satisfy these conditions. Sketch just
one graph.]
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108 CHAPTER 1 First-Order Differential Equations

16. Sketch the graph of afunction g(y) such that the one-parameter family of differential
equationsdy/dt = g(y) + « satisfiesall of the following properties:

e For al o < —4, the differentia equation has one sink and no other equilibria.
e For al o > 4, the equation has one sink and no other equilibria.
 For o = 0, the differential equation has exactly six equilibria

[There are many possible functions g(y) that satisfy these conditions. Sketch just
one graph.]
17. Isit possible to find a continuous function f (y) such that the one-parameter family

of differential equations dy/dt = f(y) + « satisfies both of the following state-
ments?

« For « = 0, the differential equation has exactly one equilibrium point and that
equilibriumisasink.
 For a = 1, the equation has exactly one equilibrium point and that equilibrium
isasource.
If so, sketch the graph of one such f (y). If not, why not?

18. Consider an exponential growth model with harvesting

dP
— =kP -C,
dt
where P is the population, k > 0 is the growth-rate parameter, and C > 0 isthe

harvest rate.

(a) Does a hifurcation occur as the parameter C varies?
(b) Describe the long-term behavior of the population P (t) if P(0) > 0.

19. Consider the population model

dP P2

o -
for a species of fishin alake. Supposeit is decided that fishing will be allowed, but
it isunclear how many fishing licenses should be issued. Suppose the average catch
of afisherman with alicenseis 3 fish per year (these are hard fish to catch).

(a) What isthe largest number of licenses that can be issued if the fish are to have
achanceto survive in the lake?

(b) Suppose the number of fishing licensesin part (&) isissued. What will happen
to the fish population—that is, how does the behavior of the population depend
on theinitial population?

(c) The simple population model above can be thought of as a model of an ided
fish population that is not subject to many of the environmental problems of an
actual lake. For the actual fish population, there will be occasional changesin
the population that were not considered when this model was constructed. For
example, if the water level increases due to a heavy rainstorm, afew extrafish
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1.7 Bifurcations 109

might be able to swim down a usually dry stream bed to reach the lake, or the
extra water might wash toxic waste into the lake, killing a few fish. Given
the possibility of unexpected perturbations of the population not included in
the model, what do you think will happen to the actual fish population if we
alow fishing at the level determined in part (b)?

ds S S
5 _ i (1-2) (5 -1)

of afox squirrel population from the previous section. Suppose that the parameters
M and k remain relatively constant over the long term but as more people moveinto
the areg, the parameter N (the carrying capacity) decreases.
(a) Assuming that M < N, sketch the graph of the function f (S) for fixed values
of k and M and several valuesof N.
(b) At what value of N does a bifurcation occur?
(c) How does the population of fox squirrels behave if the parameter N slowly and
continuously decreases toward the bifurcation value?

20. Consider our model

21. For the differential equation that models fish populations with harvesting,

dpP P
— = fc(P)=kP(1-—) -
at c(P) < N> C,

we saw that if C > kN /4 the fish population will become extinct. If the fish pop-
ulation falls to near zero because the fishing level C is dlightly greater than kN /4,
why must fishing be banned completely in order for the population to recover? That
is, if alevel of fishing just above C = kN /4 causes a collapse of the population,
why can’t the population be restored by reducing the fishing level to just below

C =kN/4?
22. (a) Use PhaseLines to investigate the bifurcation diagram for the differential
eguation
dy P
—— —=ay — s
at y—y

where a is a parameter. Describe the different types of phase lines that occur.
(b) What are the bifurcation values for the one-parameter family in part (a)?
(c) Use PhaseLines to investigate the bifurcation diagram for the differential
equation
dy

2
—~ —r4ay—
at +ay —y%,

wherer isapositive parameter. How doesthe bifurcation diagram change from
ther = 0 case (see part (a))?

(d) Suppose r is negative in the equation in part (c). How does the bifurcation
diagram change?
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110 CHAPTER 1 First-Order Differential Equations

23. (a) Use PhaseLines to investigate the bifurcation diagram for the differential
equation
dy
i o
where a is a parameter. Describe the different types of phase lines that occur.
(b) What are the bifurcation values for the one-parameter family in part (a)?
(c) Use PhaseL ines to investigate the bifurcation diagram for the differential
equation
dy 3
at - r+ay—y-,
wherer isapositive parameter. How does the bifurcation diagram change from
ther = 0 case (see part (a))?
(d) Suppose r is negative in the equation in part (c). How does the bifurcation
diagram change?

1.8 LINEAR EQUATIONS

In Section 1.2 we developed an analytic method for finding explicit solutions to sep-
arable differential equations. Although many interesting problems lead to separable
equations, most differential equations are not separable. The qualitative and numerical
techniques we developed in Sections 1.3-1.6 apply to a much wider range of problems.
It would be nice if we could also extend our analytic methods by developing ways to
find explicit solutions of equations that are not separable.

Unfortunately, there is no general technique for computing explicit solutions that
works for every differential equation. Although we know from the Existence Theo-
rem that every reasonable differential equation has solutions, we have no guarantee that
these solutions are made up of familiar functions such as polynomials, sines, cosines,
and exponentials. In fact, they usually are not. Over the centuries, mathematicians
have dealt with this dilemma by developing numerous specialized techniques for vari-
ous types of differential equations. Today these techniques are available to us as one-
line commands in sophisticated computer packages such as Maple and Mathematica.
Nevertheless, you should be familiar with afew of the standard analytic techniques that
apply to the most commonly encountered types of equations. In this section and Sec-
tion 1.9, we devel op two of the standard techniques for solving the most important type
of differential equation—the linear differential equation.

Linear Differential Equations

A first-order differential equationislinear if it can be written in the form

dy
— =a(t b(t
it a(y +b(t),
wherea(t) and b(t) are arbitrary functions of t. Examples of linear equations include
d
% —t2y + cost,

dt
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1.8 Linear Equations 111
wherea(t) = t2 and b(t) = cost, and

dy e4sint

i _t3+7ty+23t3—7t2+3,

wherea(t) = e*snt/(t3 + 7t) and b(t) = 23t3 — 7t2 + 3.
Sometimes it is necessary to do alittle algebrain order to see that an equation is
linear. For example, the differential equation

dy

— —3y=t 2

at y =1y +
can be rewritten as

dy

— =(t+3 2.

it t+3)y+

In this form we see that the equation islinear witha(t) =t + 3and b(t) = 2.
Some differential equationsfit into several categories. For example, the equation

dy
— =2y +8
at - T
islinear witha(t) = 2 and b(t) = 8. (Both a(t) and b(t) are constant functions of t.)
It is also autonomous and consequently separable.
The term linear refers to the fact that the dependent variable y appears in the
equation only to the first power. The differential equation

dy 5
a—y

is not linear because y2 cannot be rewritten in the form a(t)y + b(t), no matter how
a(t) and b(t) are chosen.
Of course, there is nothing magical about the names of the variables. The equa-
tion
P _ e?P —sint
dt

islinear witha(t) = e® and b(t) = — sint. Also,

v _ gnt)
at v

isboth linear (a(t) = sint and b(t) = 0) and separable. However,

dz =tsinz
dt

isnot linear but is separable.
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112 CHAPTER 1 First-Order Differential Equations

Additional terminology for linear equations
Linear differential equations comein two flavors. If b(t) = Ofor all t, then the equation
is said to be homogeneous or unforced. Otherwise it is nonhomogeneous or forced.

For example,

dy .

— = 2t

it (sn2t)y
is homogeneous, and

dy .

— = 2t

at y +sin

is nonhomogeneous.

A first-order linear differential equation is a constant-coefficient equation if a(t)
isaconstant. In other words, the linear equation is a constant-coefficient equation if it
has the form

dy

—= =21y +ht
gt =Y b,

where A is a constant.

Linearity Principles

Linear differential equations are important for many reasons. They are used to model
a wide range of phenomena such as the decay of radioactive elements, the cooling of
a cup of coffee, and the mixing of chemicals in a solution. In fact, when we start the
modeling process, we almost always try a linear model first. Not only do we want to
keep the model as simple as possible, but we also want to exploit the fact that the so-
[utions to alinear equation are all related in a simple way. Given one or two nontrivial
solutions, we get the rest by using the appropriate linearity principle.

The homogeneous case
There are two linearity principles, one for homogeneous equations and a different one
for nonhomogeneous equations. We begin with the homogeneous case.

LINEARITY PRINCIPLE  If yh(t) isasolution of the homogeneous linear equation

dy

— =a()y,

at Ly
then any constant multiple of yy(t) isaso asolution. That is, ky, (t) is asolution for
any constantk. =

We verify this theorem simply by checking that kyh (t) satisfies the differential
equation. In other words, if y(t) isasolution, then

dyn
T a(t)yn
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1.8 Linear Equations 113

for al t. If k isaconstant, then

d(kyn)_k%
dt ~  dt

= ka(t)yn

= a(t)(kyn).

We conclude that ky (t) isalso asolutionto dy/dt = a(t)y.
Thistheorem is not very surprising. A homogeneous linear equation
dy
dt
is separable. Separating variablesyields

1
—dy = t) dt,
[ro-fan

and if we integrate the left-hand side, we get In|y| + ¢ = [ a(t) dt, where ¢ isacon-
stant of integration. Exponentiating both sides, removing the absolute value sign, and
rewriting the constant produces

y() = ke/ 2O

wherek isan arbitrary constant. In thisform, we can see that the nonzero solutions are
constant multiples of each other. (Note that the equilibrium solution y(t) = O for all t
isasolution to every homogeneous equation.)
For example, consider the homogeneous equation
dy

o= (cost)y.

All solutions are constant multiples of
y(t) = g costdt _ gosint

In other words, the general solution of this equation is y(t) = keS"!, where k is an
arbitrary constant (see Figure 1.93).

y Figure 1.93
6 J‘f The slope field and graphs of various solutions to
; T dy = (cost)y
2 at .
t Note that the solutions are constant multiples of

one another.
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114 CHAPTER 1 First-Order Differential Equations

Remember that the Linearity Principle applies only to homogeneous linear equa-
tions. For example, it is easy to check that y;1(t) = 1/(1 — t) isasolution of the non-
linear equation

dy 2
at - y
and that yo(t) = 2y1(t) = 2/(1 —t) isnot asolution (see Exercise 17).

The nonhomogeneous case

Although the Linearity Principle does not hold for a honhomogeneous linear equation
(see Exercises 18 and 34), there is a nice relationship between its solutions and the so-
lutions to its associated homogeneous equation.

EXTENDED LINEARITY PRINCIPLE Consider the nonhomogeneous equation

dy
P at)y +b()

and its associated homogeneous equation

dy
pri a()y.

1. If yh (1) isany solution of the homogeneous equation and y, (t) isany solution of the
nonhomogeneous equation (“p” stands for particular), then yn (t) 4 yp(t) isaso a
solution of the nonhomogeneous equation.

2. Suppose yp(t) and yq(t) are two solutions of the nonhomogeneous equation. Then
Yp(t) — yq(t) isasolution of the associated homogeneous equation.

Therefore, if yh (1) isnonzero, kyn (t) + yp(t) isthe general solution of the nonhomoge-
neous equation. =

If kyn(t) isthe general solution of the homogeneous equation, then the first half
of the Extended Linearity Principle says that

Kyh(t) + yp(t)

is a solution of the nonhomogeneous equation for any value of the constant k. The
second half of the Extended Linearity Principle says that any solution yq (t) of the non-
homogeneous equation can be written as

kyn(t) + yp(t)

for some value of k. Therefore, kyp (t) + yp(t) isthe general solution of the nonhomo-
geneous equation. We often summarize this observation by saying that

“The general solution of the nonhomogeneous equation is the sum of the general
solution of the homogeneous equation and one solution of the nonhomogeneous
equation.”
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For example, consider the nonhomogeneous equation

2—¥ = (cost)y + %(1— t cost).
We have already seen that the general solution to its associated homogeneous equation
dy/dt = (cost)y isy(t) = keS"t, wherek is an arbitrary constant. It is also easy to
verify that y, (t) = t/5isasolution to the nonhomogeneous equation (see Exercise 32).
Once we have the particular solution yp (t) = t/5, the Extended Linearity Principletells
us that the general solution of the nonhomogeneous equation is

t .
t — _ ksmt,
y(®) 5+ e

wherek isan arbitrary constant (see Figure 1.94).

We can verify the Extended Linearity Principle by substituting the functions into
the differential equation just as we did when we verified the Linearity Principle earlier
in this section (see Exercise 33).

y Figure 1.94

s L The slope field and graphs of various solutions to
\

6 d

pas d—{ = (cost)y + %(l— t cost).
\

We obtain these graphs by taking the graphsin
"— U Figure 1.93 and adding them to the graph of
y =t/5.

Solving Linear Equations

We now have a three-step procedure for solving linear equations. First, we find the
general solution of the homogeneous equation, separating variables if necessary. Then
we find one “particular” solution of the nonhomogeneous equation. Finally, we obtain
the general solution of the nonhomogeneous equation by adding the general solution of
the homogeneous equation to the particular solution of the nonhomogeneous equation.
In theory, we could solve any linear differential equation using this procedure.
In practice, however, this technique is used only for special linear equations such as
constant-coefficient equations. The limitation is caused by the fact that the second step
requires that we produce a particular solution of the nonhomogeneous equation. If a(t)
is not a constant, this step can be quite difficult. If a(t) is a constant, then we can
sometimes succeed using atime-honored mathematical technique. We guess.
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The lucky guess
For example, consider the nonhomogeneous linear equation

dy ¢

i 2y +e.

The associated homogeneous equation is dy/dt = —2y, and its general solution is
y(t) = ke~Z. (You could solve this homogeneous equation by separating variables,
but its general solution should be second nature by now. See page 6.)

The hardest part of guessing a solution to the nonhomogeneous equation is de-
ciding what to guess, and this task is made easier if we rewrite the equation so that all
terms that involve y are on the left-hand side. In other words, we rewrite the equation
in question as

dy ;
at +2y=e.
Now we need to guess a function yp(t) such that, if we insert y,(t) into the left-hand
side of the equation, out pops e! on the right-hand side. We probably should not guess
sines or cosines for yp(t) because the left-hand side would still involve trigonometric
functions after the computation. Similarly, polynomialswould not work. What we need
to guess is an exponential function. Guessing y,(t) = e' seemsto be a natural choice
because its derivative is also e!. Unfortunately, when we compute

we get et + 2e!, which does not equal e!. Close, but no cigar.

This guess y,(t) = e' almost worked. We were only off by the constant factor
of 3. Perhaps we should guess a constant multiple of e!, and in fact, perhaps we should
let the differential equation tell us what the constant should be. In other words, we
should replace the guess yp (t) = e' with the guess y, (t) = e, where « isa constant
to be named later. This method is called the Method of the Undetermined Coefficient:
We must determine the coefficient o so that yp(t) = oel isasolution of the nonhomo-
geneous equation.

Starting with this more flexible guess of y, (t) = ae!, we check to seeif it works.
We substitute yp (t) into dy/dt + 2y and obtain

d
% +2yp = ae' + 2qe!

= 3el.

In order for yp(t) to be asolution, 3wet must equal e!. That is, 3« = 1, which implies
o = 1/3. Therefore, the guess of y,(t) = e'/3 isasolution, and the general solution
of dy/dt = —2y +elis

y(t) =ke 2 + Let,

wherek isan arbitrary constant.
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Another lucky guess
In the previous example, we guessed y,(t) = «e' because the equation was

dy

— + 2y = b(t),

at +2y (t)
where b(t) was an exponentia involving e'. Now let's consider a nonhomogeneous
equation where b(t) isatrigonometric function. For example,

dy

— + 2y = cos3t.

at 7
Then the general solution of the homogeneous equation is still y(t) = ke=%. However,
guessing an exponentia will not work for this equation. Thistime wetry

yp(t) = @ cos3t + Bsin3t.

Note that the simpler guesses of yp(t) = «cos3t and yp(t) = « Sin3t are destined to
fail because we end up with both sines and cosines when we compute dy /dt + 2y (see
Exercise 13).

To determine « and B, we substitute yp (t) into dy/dt + 2y and obtain

d d(a cos3t sin3t
Do | 5y, = @ djﬁ )

it + 2(ax cos3t + Bsin3t)
= —3wsin3t + 38 cos3t + 2« cos3t + 28 sin3t
= (—3a + 2B)sin3t + (2« + 38) cos3t.
In order for yp(t) to be asolution, we must find « and 8 so that
(=3 4+ 2B) sin3t 4 (2 + 3B) cos3t = cos3t
for all t. To accomplish this, we solve the simultaneous algebraic equations
—30+28=0
20 +38=1
for o and 8. Weobtain e = 2/13 and 8 = 3/13. So
Yp(t) = & cos3t + S sin3t

is a solution of the nonhomogeneous equation.
Therefore, the general solution of dy/dt 4+ 2y = cos3t is

-2t 2 3 o
y(t) = ke = + {3 cos3t + 73 sin3t,

where k is an arbitrary constant. Solutions for several different initial conditions are
shown in Figure 1.95.
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y Figure 1.95
0.5+ Graphs of several solutions of
dy
—— 4 2y = cos3t.
ANvANYS
/- \/ \/Zn Note that all of these graphs tend to merge
relatively quickly.
—0.5--

How lucky do you need to be?
After alittle practice, you will find that there really isn't much luck involved. If b(t) is
made up of nice functions (sines, cosines, exponentials, ... ), you guess a particular so-
Iution made up of the same types of functions. If you make an inappropriate guess (for
example, forgetting the g sin 3t term in the second example), then it will be impossible
to find choices of the constants that make the guess a solution. If that happens, simply
refine the original guess based on what you learned from the previous computation.
Also, you should be careful to avoid acommon mistake. Throughout this process,
it is important to remember that the undetermined constants are treated as constants
during the differentiation step. Do not force a guess of the wrong form to work by
turning « (or any other undetermined constant) into a nonconstant function «(t) during
the last step in the computation.

Qualitative Analysis

The previous example gives a great dea of insight into the qualitative behavior of so-
lutions of many nonhomogeneous, linear differential equations. Note that the general
solution of the associated homogeneous equation, ke=2, tends to zero quickly. Conse-
guently, every solution is eventually close to the particular solution

yp(t) = Zcos3t + 5 sin3t.

We seethisclearly in Figure 1.95, where solutions with different initial conditions tend
toward the same periodic function. (This periodic solution is called asteady-state solu-
tion because every solution tends toward it in the long term. Note that this steady-state
solution oscillatesin a periodic fashion unlike an equilibrium solution that remains con-
stant for all time.)

We could have predicted some of this behavior without computation. If we look
at the slope field for this equation (see Figure 1.96), we seethat for y > 1/2, the slopes
are negative, and for y < —1/2, the slopes are positive. Graphs of solutionswith initial
conditions that are outside the interval —1/2 < y < 1/2 eventually enter the strip of
the ty-plane determined by the inequalities —1/2 < y < 1/2. The detailed behavior of
solutions near the t-axis is harder to see from the ope field. However, it is clear that
solutions oscillate in some manner.
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y Figure 1.96
Slopefield of

dy
— =2 cos3t.

at - YT
Notethat, if y > 1, thendy/dt < —1.
Similarly, if y < —1, thedy/dt > 1. Hence,
S [ A A o S AV Sy SR S A S any solution that entersthestrip—1 <y <1
remainsin that strip ast — oo.

Looking again at the general solution
y(t) = ke ? + Z cos3t + 3 sin3t,

we see that the long-term behavior of the solution is an oscillation with period 27 /3
(see Figure 1.95). Note that this period is the same as the period of cos3t. However,
the amplitude and the phase (that is, the locations of the maxima and minima) for the
solution are not exactly the same as the amplitude and phase of cos3t. (We study the
amplitude and phase of solutionsto linear equationsin detail in Chapter 4.)

These same ideas hold for any nhonhomogeneous equation of the form

dy
i Ay +b(t)
as long as A is negative. As before, the homogeneous equation associated with this
equationis
Y _x
at =

whose general solutioniske*!. If A < 0, these functions tend to zero exponentially fast.
If one solution of the nonhomogeneous equation is yp(t), then the general solution of
the nonhomogeneous equation is

y(t) = ke™ +yp(t),

and we see that all solutions are close to y, (t) for large t. In other words, the solution
of the homogeneous part of the equation tends to zero, and al solutions merge toward
yp(t) over thelong term.

The fact that all solutions converge over time definitely relies on the fact that A is
negative. If A > 0, very different behavior is possible (see Exercises 25-28).

Second Guessing

Sometimes, our first guess may not work no matter how reasonableitis. If thishappens,
we simply guess again.
Consider the equation
dy —2t

Y oy+3
i y + 3e
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120 CHAPTER 1 First-Order Differential Equations

To compute the general solution, we first note that the general solution of the homoge-
neous equation is y(t) = ke~2. To find a particular solution of the nonhomogeneous
equation we rewrite the equation as

dy 2t
Loy —
dt +2y =3e

and guess yp(t) = ae~2 with o as the undetermined coefficient. Substituting this
guessinto dy/dt + 2y, we get

dyp d(Ole_Zt) _2t
—— +2yyg=—— -+ 2
dt + Yp dt + 2ce
= —20e % 4 20672
=0.

Thisis upsetting. No matter how we pick the coefficient «, we always get zero when
we substitute yp(t) into dy/dt + 2y. None of the solutions of the nonhomogeneous
equation are of the form yp(t) = ae~%. We failed because our guess, we~2, is a
solution of the associated homogeneous equation. When we substitute yp(t) = ae 2
intody/dt + 2y, we are guaranteed to get zero.

Our guess must contain a factor of e~ to have any hope of being a solution.
Unfortunately, there is a wide variety of possible choices. We need a second guess for
yp(t) that contains an e~2 term, is not a solution of the homogeneous equation, and is
as simple as possible. Guesses of the form ae~2 sint or ae are clearly destined to
fail. We need a guess whose derivative has one term that is just like itself and another
term that involves e=2. The Product Rule suggests a product of t and our first guess,
so wetry

Ypt) = ate™?,
where « is our undetermined coefficient. The derivative of yp(t) isa (1 — 2t)e=2, and
substituting this derivative into dy /dt + 2y, we obtain

% +2yp =a(l—2t)e 2 4 2ate™2

=qe 2,

Since wewant dy /dt + 2y to be 3e=%, the guess y, (t) = ate~2 isasolutionif « = 3.
(This calculation illustrates why multiplying our first guess by t is a good idea.) The
general solution to this nonhomogeneous equation is

y(t) = ke + 3te™%,

wherek isan arbitrary constant.
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Rule of thumb for second guessing

The last example indicates what is so unsatisfying about guessing techniques. How did
we know to make the second guess a product of t and our first guess? The answer is
that we have either seen a similar problem before or we can figure out at least the form
of the guess by another technique. Methods for arriving at the second guess with less
guesswork but more computation are given in Exercise 23 of Section 1.9, in Chapter 6,
and in Exercises 17 and 18 of Appendix B.

EXERCISES FOR SECTION 1.8

In Exercises 1-6, find the general solution of the equation specified.

dy_ dy_

1. =2 =-4 -t 2. 2 =—4 -t
at y + 9 it y + 3e
dy dy _

3. T —3y + 4cos2t 4, i 2y +sin2t
dy _ 3t dy Y t/2

5'dt_3y 4e 6.dt_2+4e

In Exercises 7-12, solve the given initial-value problem.

7. Loy —etB y0 =1 8. 2y—%? y0=10
dt dt

9. 3—{ +y=cos2t, y0) =5 10. 3—{ +3y =cos2t, y(0) =-1

11. 3—¥—Zy=7e2t, y(0) =3 12. 2—¥—2y:7e2‘, y(0) =3

13. Consider the nonhomogeneous linear equation

dy
— + 2y = cos3t.
at
To find a particular solution, it is pretty clear that our guess must contain a cosine

function, but it isnot so clear that the guess must also contain a sine function.

(a) Guess yp(t) = « cos3t and substitute this guess into the equation. |s there a
value of « such that yp(t) isasolution?

(b) Write a brief paragraph explaining why the proper guess for a particular solu-
tionisyp(t) = o cos3t + Bsin3t.

14. Consider the nonhomogeneous linear equation

dy
A 2t.
i Ay + cos2t
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122 CHAPTER 1 First-Order Differential Equations

To find its general solution, we add the general solution of the associated homo-
geneous equation and a particular solution y, (t) of the nonhomogeneous equation.
Briefly explain why it does not matter which solution of the nonhomogeneous equa-
tion we use for yp(t).

15. The graph to the right is the graph y
of a solution of a homogeneous lin- 3+
ear equation dy/dt = a(t)y. Give .
rough sketches of the graphs of the
solutions to this equation that sat- __/,,:& ;
isfy the initial conditions y(0) = O, 1l
y(0) = 2,y(0) = 3,y(0 = -1, ol
and y(0) = —2.5. “al
16. The two graphs to the right are y
graphs of solutions of a nonhomo- 4+
geneous linear equation dy/dt = 3+
a(t)y + b(t). Give rough sketches 2t
of the graphs of the solutions to this +
equation that satisfy the initial con- ¢
ditions y(0) = 2, y(0) = 3.5 1
y(0) = —1,and y(0) = —2. ol

17. Consider the nonlinear differential equation dy/dt = y2.
(a) Show that y1(t) = 1/(1 —t) isasolution.
(b) Show that y»(t) = 2/(1 — t) isnot asolution.
(c) Why don't these two facts contradict the Linearity Principle?

18. Consider the nonhomogeneous linear equation dy /dt = —y + 2.
(a) Compute an equilibrium solution for this equation.
(b) Verify that y(t) = 2 — et isasolution for this equation.
(c) Using your results in parts (&) and (b) and the Uniqueness Theorem, explain
why the Linearity Principle does not hold for this equation.

19. Consider a nonhomogeneous linear equation of the form

Y aty =i +bott),
that is, b(t) iswritten as a sum of two functions. Suppose that y (t) is a solution of
the associated homogeneous equation dy/dt + a(t)y = O, that y1(t) is a solution
of the equation dy/dt + a(t)y = b1(t), and that y»(t) is a solution of the equation
dy/dt +a(t)y = ba(t). Show that yh(t) + y1(t) + y2(t) isasolution of the original
nonhomogeneous equation.
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1.8 Linear Equations 123

20. Consider the nonhomogeneous linear equation

d
d—¥+2y=3t2+2t—1.

In order to find the general solution, we must guess a particular solution y, (t). Since
the right-hand side is a quadratic polynomial, it is reasonable to guess a quadratic for
yp(t), solet

yp(t) = at? + bt +c,

where a, b, and ¢ are constants. Determine values for these constants so that y, (t)
isasolution.

In Exercises 21-24, find the general solution and the solution that satisfies the initial
condition y(0) = 0.

dy dy

2L o +2y =t 2+ 14e" 22. - +y=t+sn3
d d .
23. d_¥_3y=2t_e4t 24, d—i/+y=c052t+3sm2t+e‘t

In Exercises 25-28, give a brief qualitative description of the behavior of solutions.
Note that we only give partia information about the functions in the differential equa-
tion, so your description must allow for various possibilities. Be sureto dea withinitial
conditions of different sizes and to discuss the long-term behavior of solutions.

25. 3—{ + 2y = b(t), where —1 < b(t) < 2for al t.
dy
26. - 2y = b(t), where —1 < b(t) < 2foral t.
dy
27. at +y = b(t), whereb(t) - 3ast — oc.
dy -
28. at + ay = cos3t + b, wherea and b are positive constants.

29. A person initialy places $1,000 in a savings account that pays interest at the rate of
1.1% per year compounded continuously. Suppose the person arranges for $20 per
week to be deposited automatically into the savings account.

(a) Write a differential equation for P (t), the amount on deposit after t years (as-
sume that “weekly deposits’ is close enough to “continuous deposits’ so that
we may model the balance with a differential equation.)

(b) Find the amount on deposit after 5 years.
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30. A student has saved $70,000 for her college tuition. When she starts college, shein-
vests the money in a savings account that pays 1.5% interest per year, compounded
continuously. Suppose her college tuition is $30,000 per year and she arranges with
the college that the money will be deducted from her savings account in small pay-
ments. In other words, we assume that she is paying continuously. How long will
she be able to stay in school before she runs out of money?

31. A college professor contributes $5,000 per year into her retirement fund by making
many small deposits throughout the year. The fund grows at a rate of 7% per year
compounded continuously. After 30 years, she retires and begins withdrawing from
her fund at arate of $3000 per month. If she does not make any deposits after retire-
ment, how long will the money last? [Hint: Solve thisin two steps, before retirement
and after retirement.]

32. Verify that the function y(t) = t /5 satisfies the nonhomogeneous linear equation

d
d_)t/ = (cost)y + %(1 — t cost).
33. Inthisexercise, we verify the Extended Linearity Principle for the nonhomogeneous
equation
dy

3¢ =2y +b.

(@) Let yn(t) be asolution of the associated homogeneous equation and let y, (t)
be any solution of the nonhomogeneous equation. Show that yh (t) + yp(t)
satisfies the nonhomogeneous equation by calculating d (yn + yp)/dt.

(b) Assume that y,(t) and yq(t) are solutions to the nonhomogeneous equation.
Show that yp(t) — yq(t) isasolution to the associated homogeneous equation
by computing d (yp — yq)/dt.

34. Suppose that every constant multiple of a solution is also a solution for afirst-order

differential equation dy/dt = f(t, y), where f (t, y) is continuous on the entire ty-
plane. What can be said about the differential equation?

1.9 INTEGRATING FACTORS FOR LINEAR EQUATIONS

In Section 1.8 we described a guessing technique for solving certain first-order nonho-
mogeneous linear differential equations. In this section we develop a different analytic
method for solving these equations. It is more general than the technique of the previ-
ous section, so it can be applied successfully to more equations. It also avoids “guess-
ing.” Unfortunately, this method involves the calculation of an integral, which may be
aproblem as we will see. It is aso not as amenable to qualitative analysis. At the end
of this section, we discuss the pros and cons of both methods.
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Integrating Factors
Given a nonhomogeneous linear differential equation

dy
FTi a(t)y + b(t),

how can we go about finding the general solution? There is a clever trick that turns an
equation of this form into a differential equation that can be solved by integration. As
with many techniques in mathematics, the cleverness of this trick might leave you with
that “how could | ever think of something like this?’ feeling. The thing to remember
is that differential egquations have been around for more than 300 years. Given three
centuries, it is not so surprising that mathematicians were able to discover and refine a
slick way to treat these equations.

The idea behind the method
We begin by rewriting the nonhomogeneous equation as

dy
— t)yy = b(t
it + gy = b(t),
where g(t) = —a(t). We use this form and change the notation for two reasons. The

form of the left-hand side of the equation suggests this method, and replacing —a(t) by
g(t) avoids a number of annoying minus signsin the calculations.

After staring at this equation for a while (a couple of decades or so), we notice
that, with sufficiently poor eyesight, the left-hand side looks somewhat like what we
get when we differentiate using the Product Rule. That is, the Product Rule says that
the derivative of the product of y(t) and afunction w.(t) is

du®y®) dy
ot MO

Note that one term on the right-hand side has dy/dt in it and the other term has y in it
just like the left-hand side of our nonhomogeneous linear equation.

Here's the clever part. Multiply both sides of the original differential equation by
an (as yet unspecified) function w(t). We obtain the new differential equation

du
—Zy(t).
+ 4y ®

dy
“(t)ﬁ + r®)g)y = n®)b(t)

whose |eft-hand side looks even more like the derivative of a product of two functions.
For the moment, let’s assume that we have a function p.(t) so that the left-hand side
actually is the derivative of the product . (t) y(t). That is, suppose we have found a
function w.(t) that satisfies

dp®)y) dy
—at M(t)a +u®g)y.
Then the new differential equation isjust
du(t) y(t
YD) _ b,
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126 CHAPTER 1 First-Order Differential Equations

How does this help? We can integrate both sides of this equation with respect to t
to obtain

w(®) y(t) = / (bt dt,
and conseguently,

(t)—if ) b(t) dt

yO="2mo /* :

That is, assuming we have such a . (t) and can evaluate [ 4(t) b(t) dt, we can compute
our solution y (t).

Finding the integrating factor
This derivation of y(t) is based on one pretty big assumption. How can we find a func-
tion w(t) such that

du®yt)  dy
SR — 02 + pOgOy®

in the first place?
Applying the Product Rule to the left-hand side, we see that the desired . (t) must
satisfy

(t)d—y+d—M t) = (t)d—y+ gy
O 5 dty =HUgp TH g®y().
Canceling the . (t)(dy/dt) term on both sides leaves

d
STYO = OO Y.
So, if wefind afunction w(t) that satisfies the equation

du

— = u(t) gt

at () g(t),
we get our desired 1. (t). However, thislast equation isjust d i /dt = g(t)u, whichisa
homogeneous linear differential equation, and we already know that

(See page 113 for the derivation of this solution.)

Given this formulafor . (t), we now see that this strategy is going to work. The
function w(t) iscaled an integrating factor for the original nonhomogeneous equation
because we can solve the equation by integration if we multiply it by the factor r(t). In
other words, whenever we want to determine an explicit solution to

dy
dt

we first compute the integrating factor w(t). Then we solve the equation by multiply-
ing both sides by .(t) and integrating. Note that, when we calculate w(t), thereis an

+ gty = b(),
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arbitrary constant of integration in the exponent. Since we only need one integrating
factor . (t) to solve the equation, we choose the constant to be whatever is most conve-
nient. That choiceis usualy zero.

To see this method at work, let’s ook at some examples. The method looks very
general. However, because there are two integrals to calculate, we may get stuck before
we obtain an explicit solution.

Complete success
Consider the nonhomogeneous linear equation
dy 2

&2 i1
at Tty

First we compute the integrating factor
w(t) = e/ o dt _ of@/tydt _ g2Int _ Int?) _ 2

Remember that the idea behind this method is to multiply both sides of the differen-
tial equation by w(t) so that the left-hand side of the new equation is the result of the
Product Rule. In this case, multiplying by w(t) = t2 yields

tzz—i' + 2ty = t2(t — 1).

Note that the left-hand side is the derivative of the product of t2 and y(t). In other
words, this equation is the same as

d o 3 2
a(t y) =t° —t°
Integrating both sides with respect tot yields

t4 3
2y = — — — 4k,
y=2-37%

wherek isan arbitrary constant. The general solutionis

L
YO=72"37¢

Of course, we can check that these functions satisfy the differential equation by substi-
tuting them back into the equation.

It isimportant to note the role of constants of integration in this example. When
we calculated (t) = t2, we ignored the constant because we only need one integrat-
ing factor. However, after we multiplied both sides of the original equation by (1)
and integrated, it was important to include the constant of integration on the right-hand
side. If we had omitted that constant, we would have computed just one solution to the
nonhomogeneous equation rather than the general solution.
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Thisexampleisalso agood illustration of the Extended Linearity Principle. Note
that k /t2 is the general solution of the associated homogeneous equation

dy 2
dt ~ ot
and
yo="1 -1
43

is one solution of the nonhomogeneous equation.

Problems with the integration
The previous example was chosen carefully. Another linear equation which does not
look any more difficult is

dy 5
— =t t—1
gt Y

We rewrite the differential equation as
dy
= —ty=t-1
at Y

and compute the integrating factor
w(t) = ef —t2dt _ e—t3/3.
Next we multiply both sides by w(t) and obtain

e*t3/3d—y 12 PBy — e3¢ — 1.

dt
Note that the left-hand side is the derivative of the product of e~°/3 and y(t), so we
have d
(e 3y = o3¢t —
it (e y) e t—-1).

Integrating both sides yields
e /3y — /e*‘3/3(t —1dt

but then we are stuck. It turns out that theintegral on the right-hand side of this equation
is not expressible in terms of the familiar functions (sin, cos, In, and so on), so we
cannot obtain explicit formulas for the solutions.

This example indicates what can go wrong with techniques that involve the cal-
culation of explicit integrals. Even reasonable-looking functions can quickly lead to
complicated integrating factors and integrals. On the other hand, we can express the
solution in terms of integrals with respect to t, and although many integrals are impos-
sible to calculate explicitly, many others are possible. Indeed, as we have mentioned
before, there are a number of computer programs that are quite good at calculating the
indefinite integrals involved in this technique.
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Mixing Problems Revisited

In Section 1.2 we considered a model of the concentration of a substance in solution.
Typically in these problems we have a container in which there is a certain amount of
fluid (such as water or air) to which a contaminant is added at some rate. The fluid
is kept well mixed at al times. If the total volume of fluid is kept fixed, then the re-
sulting differential equation for the amount of contaminant is autonomous and can be
solved either by separating variables or by the Extended Linearity Principle along with
a guessing technique. If the total volume of fluid changes with time, then the differen-
tial equation is nonautonomous and must be solved using an integrating factor.

A polluted pond

Consider a pond that has an initial volume of 10,000 cubic meters. Suppose that
a timet = 0, the water in the pond is clean and that the pond has two streams flowing
into it, stream A and stream B, and one stream flowing out, stream C (see Figure 1.97).
Suppose 500 cubic meters per day of water flow into the pond from stream A, 750 cubic
meters per day flow into the pond from stream B, and 1250 cubic meters flow out of the
pond via stream C.

Attimet = 0, the water flowing into the pond from stream A becomes contami-
nated with road salt at a concentration of 5 kilograms per 1000 cubic meters. Suppose
the water in the pond is well mixed so the concentration of salt at any given timeis con-
stant. To make matters worse, suppose also that at timet = 0 someone begins dumping
trash into the pond at arate of 50 cubic meters per day. The trash settles to the bottom
of the pond, reducing the volume by 50 cubic meters per day. To adjust for the incom-
ing trash, the rate that water flows out via stream C increases to 1300 cubic meters per
day and the banks of the pond do not overflow.

The description looks very much like the mixing problems we have already con-
sidered (where “pond” replaces “vat” and “stream” replaces “pipe”). The new element
here is that the total volume is not constant. Because of the dumping of trash, the vol-
ume decreases by 50 cubic meters per day.

If we let S(t) be the amount of salt (in kilograms) in the pond at time t, then
dS/dt is the difference between the rate that salt enters the pond and the rate that salt

Figure 1.97
Schematic of the pond with three streams.
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leaves the pond. Salt enters the pond from stream A only. The rate at which it enters
is the product of its concentration in the water and the rate at which the water flowsin
through stream A. Since the concentration is 5 kilograms per 1000 cubic meters and the
rate that water flows into the pond from stream A is 500 cubic meters per day, the rate
at which salt enters the pond is (500)(5/1000) = 5/2 kilograms per day. The rate at
which the salt leaves the pond via stream C is the product of its concentration in the
pond and the rate at which water flows out of the pond. The rate at which water flows
out is 1300 cubic meters per day. To determine the concentration, we note that it is the
guotient of the amount S of salt in the pond by the volume V. Because the volume is
initially 10,000 cubic meters and it decreases by 50 cubic meters per day, we know that
V (t) = 10,000 — 50t. Hence, the concentration is S/(10,000 — 50t), and the rate at
which salt flows out of the pond is

S
1300 <1o, 000 — 50t > ’

which simplifiesto 26S /(200 — t). Therefore, the differential equation that models the
amount of salt in the pond is

ds 5 265

dt 2 200-t
This model isvalid only as long as there is water in the pond—that is, as long as the
volume V (t) = 10,000 — 50t is positive. So the differential equation is valid for
0 <t < 200. Becausethe water isclean at timet = 0, theinitial conditionis S(0) = 0.
Since this equation is nonautonomous, we solve this initial-value problem using
an integrating factor. Rewriting the differential equation as

ds N 26 S _ 5
dt 20—t/ 2
indicates that the integrating factor is
) =e/ g At _ —26In(200-t) _ 4In((200-t)~%) _ (200 — 1)~ 28,
Multiplying both sides by () gives
_6dS —27e O _26
(200 —t) m +26(200 —t)™“'S = E(ZOO—t) .
By the Product Rule, this equation is the same as the differential equation
d 5
2 (200 —1)-265) = 2(200 — t)-26.
= (( 00 — ) s) (@00-1)
Integrating both sides yields
5
(200 — t)=%65 = > /(200— t)~2dt

_5(00-t)~*

C,
2 25 *
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where c isan arbitrary constant. Solving for S, we obtain the general solution
_ 200t
10

Using theiinitial condition S(0) = 0, we find that ¢ = —20/200% and the partic-
ular solution for the initial-value problem is

S +¢(200 — )%,

S

200 — t —t\%®
_ oo (20—t
10 200

Thisis an unusual-looking expression because of the large number 200%6. However, the
graph revealsthat its behavior isnot at all unusual (see Figure 1.98). The amount of salt
in the pond rises fairly quickly, reaching amaximum closeto S = 20 att ~ 25. After
that time, the amount of salt decreases almost linearly, reaching zero at t = 200.

The behavior of this solution is quite reasonable if we recall that the pond starts
out containing no salt and that eventually it is completely filled with trash. (It contains
no salt or water at timet = 200.) Aswe mentioned above, the concentration of salt in
the pond water isgiven by C(t) = S(t)/V (t) = S(t)/(10,000 — 50t). Graphing C(t),
we see that it increases asymptotically toward 0.002 kilograms per cubic meter even as
the water level decreases (see Figure 1.99).

S C
20+ 0.002+
10+
f [ f — t f f f — t
50 100 150 200 50 100 150 200
Figure 1.98 Figure 1.99
Graph of the solution of Graph of concentration of salt versustime for
dS/dt = 5/2 — 26S/(200 — t), with the solution graphed in Figure 1.98.
S(0) =0.

Comparing the Methods of Solution for Linear Equations
Thereis an old saying that goes
“If the only tool you have is ahammer, then every problem looks like a nail.”

If you know only one method for solving linear differential equations, then you cer-
tainly save time thinking about which method to use when confronted with such an
equation. However, we have two and each method has its advantages and disadvan-
tages.
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132 CHAPTER 1 First-Order Differential Equations

Which method should you use for a given linear differential equation? Trying
to guess a solution to the nonhomogeneous equation that we just solved would be a
nightmare. Hence, the method of integrating factors is the only reasonable choice for
that equation.

On the other hand, consider alinear equation such as

dv
— + 0.4v = 3cos2t
gt O ’

which istypical for the voltage over a capacitor in an RC circuit with a periodic volt-
age source (see Section 1.4). The integrating factor for this equation is . (t) = e%4.
Therefore, the integral you must computeis

feo"“(s cos2t) dt.

Thisintegral can certainly be done by hand using integration by parts but it would take
some effort.
If you use aguessing technique, you would guess a particular solution of the form

vp(t) = acos2t 4+ gsin2t

and solve for &« and 8. The computation requires some algebra but not much calculus
(see Exercise 21).

So which method is better for this equation? Both end up with the same gen-
eral solution but the guessing method is arguably faster. One advantage of the guessing
method is that it exploits the Extended Linearity Principle and we see the qualitative
behavior of the solutions more directly. We know the general solution of the homoge-
neous equation is ke %4, which tends to zero in an exponential fashion, and over the
long term, all solutions converge to the periodic solution vy (t) (see Figure 1.100).

In theory, the method of integrating factors works more generally but theintegrals
involved might be difficult or impossible to do. The guessing technique described in the
previous section avoids the integration but is only practical for certain linear equations
such as constant-coefficient equations with relatively simple functionsb(t).

Most importantly, you need to understand what it means to be a linear equation
and the implications of the Linearity and Extended Linearity Principles. It isalso im-
portant that you remember the clever idea behind the development of integrating fac-
tors. Each of the methods teaches us something about linear differential equations.

v Figure 1.100
3+ Graphs of various solutions of
| d
V\ /\ / d—': +0.4v = 3cos2t.
/A— T t t
‘ \/z T \/éﬂ Note that all solutions converge to the
‘ solution
—3+ vp(t) = %’costhLg—gsinZt

over thelong term (see Exercise 21).
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1.9 Integrating Factors for Linear Equations 133

EXERCISES FOR SECTION 1.9

In Exercises 1-6, find the general solution of the differential equation specified.

dy y dy 3 5
1. —=—>=+42 2. — = - t
at -t at o
dy y 2 dy —t2
- =T 4t 4, — = -2t
S T P dt y+de
dy 2t B dy 2 34
St 1re’ =3 R T A
In Exercises 7-12, solve the given initial-value problem.
dy y _ dy 1 2 _
7. i 1_H—i—Z, y(0) =3 8. dt_t+1y+4t +4t, y(1) =10
o W _ Vs ya=3 10 Y _ oy tae? yo) =3
dt t ’ dt ’
dy 2y 2 dy 3 3.2t
11, = — = =2t -2)=4 12, = ——-y=2t 1)=0
at n . Y(=2) at ty e”, vy

In Exercises 13-18, the differential equation is linear, and in theory, we can find its
general solution using the method of integrating factors. However, since this method
involves computing two integrals, in practice it is frequently impossible to reach afor-
mulafor the solution that is free of integrals. For these exercises, determine the general
solution to the equation and expressit with as few integrals as possible.

dy . dy 2
13. =~ = (sint 4 14, =2 =t 4
it (sint)y + at y +
dy 'y dy 2
15. =2 — L 1 4cost 16. -2 — y + 4cost
dt t2 + 4.cos at Yy + 4cos
dy y dy y
17. -2 = -2 t 18. -2 = —2 4t
it e + cos it _t3_3+

19. For what value(s) of the parameter a isit possible to find explicit formulas (without
integrals) for the solutions to
dy

L _aty + 4672
at v

20. For what value(s) of the parameter r isit possible to find explicit formulas (without
integrals) for the solutionsto
dy
— =t'y+4?
at - YT
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134 CHAPTER 1 First-Order Differential Equations

21. Consider the nonhomogeneous equation

d
d_lt) + 0.4v = 3cos2t.

(a) Find the general solution using the method of integrating factors.
(b) Find the general solution using the guessing technique from Section 1.8.

Comment on which method was easier for you.
22. In this exercise, we explore the connections between the method of integrating fac-

tors discussed in this section and the Extended Linearity Principle. Consider the
nonhomogeneous linear equation

dy

— =a(t b(t

it a(ty +b(),
where a(t) and b(t) are continuous for al t.

(a) Let
I'L(t) —e~ fé a(r) df.
Show that . (t) isan integrating factor for the nonhomogeneous equation.
(b) Show that 1/.(t) is asolution to the associated homogeneous equation.
(c) Show that

1 t
t=— f p(t)b(r)dr
Ye u(t) Jo
is a solution to the nonhomogeneous equation.
(d) Use the Extended Linearity Principle to find the general solution of the nonho-

mogeneous equation.
(e) Compare your result in part (d) to the formula

1
t)y=—— t) b(t) dt
y(® M(t)/u() ®

for the general solution that we obtained on page 126.
(f) Hlustrate the calculations that you did in this exercise for the example

dy _i2
— =2ty +4e".
at Y+
23. Consider the nonhomogeneous equation
dy _2t
—= +2y =3¢ “.
at + 2y e

In Section 1.8, we saw that the guess y,(t) = ae~2 does not produce a solution
because it is a solution to the associated homogeneous equation. We then guessed
yp(t) = ate~2. Use the method of integrating factors to explain why this guessis a
good idea.
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24. A 30-gallon tank initially contains 15 gallons of salt water containing 6 pounds of
salt. Suppose salt water containing 1 pound of salt per gallon is pumped into the top
of the tank at the rate of 2 gallons per minute, while a well-mixed solution leaves
the bottom of the tank at arate of 1 gallon per minute. How much salt isin the tank
when the tank isfull?

25. A 400-gallon tank initialy contains 200 gallons of water containing 2 parts per bil-
lion by weight of dioxin, an extremely potent carcinogen. Suppose water containing
5 parts per billion of dioxin flows into the top of the tank at a rate of 4 gallons per
minute. The water in the tank is kept well mixed, and 2 gallons per minute are re-
moved from the bottom of the tank. How much dioxin is in the tank when the tank
isfull?

26. A 100-gallon tank initially contains 100 gallons of sugar water at a concentration of
0.25 pounds of sugar per gallon. Suppose that sugar is added to the tank at a rate of
p pounds per minute, that sugar water is removed at a rate of 1 gallon per minute,
and that the water in the tank is kept well mixed.

(a) What value of p should we pick so that, when 5 gallons of sugar solution isleft
in the tank, the concentration is 0.5 pounds of sugar per gallon?

(b) Isit possible to choose p so that the last drop of water out of the bucket has a
concentration of 0.75 pounds of sugar per gallon?

27. Suppose a 50-gallon tank contains a volume Vg of clean water at timet = 0. At
timet = 0, we begin dumping 2 gallons per minute of salt solution containing
0.25 pounds of salt per gallon into the tank. Also at timet = 0, we begin remov-
ing 1 gallon per minute of salt water from the tank. As usual, suppose the water in
the tank is well mixed so that the salt concentration at any given time is constant
throughout the tank.

(a) Set up the initial-value problem for the amount of salt in the tank. [Hint: The
initial value of Vg will appear in the differential equation.]

(b) What isyour equation if Vo = 0 (thetank isinitially empty)? Comment on the
validity of the model in this situation. What will be the amount of salt in the
tank at timet for this situation?
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136 CHAPTER 1 First-Order Differential Equations

REVIEW EXERCISES FOR CHAPTER 1

Short answer exercises: Exercises 1-10 focus on the basic ideas, definitions, and vo-
cabulary of this chapter. Their answers are short (a single sentence or drawing), and
you should be able to do them with little or no computation. However, they vary in
difficulty, so think carefully before you answer.

1. Give an example of a first-order differential equation that has the function
y(t) = 2t + 3asasolution.

. What is the general solution of the differential equation dy/dt = 3y?
. Find al equilibrium solutions for the differential equation dy/dt = t2(t2 + 1).
. Find one solution of the differential equationdy/dt = —|sin®y|.

g A WD

. Find all of the equilibrium solutions for the differential equation

dy  (t*=4Q+yye
dt — t-D1B-y)

6. Sketch the phase line for the autonomous equation dy/dt = sin®y.

7. Give an example of afirst-order differential equation that is autonomous, separable,
linear, and homogeneous.

8. Give an example of a first-order, autonomous, linear, nonhomogeneous differential
equation that has the equilibrium solution y(t) = 2 for al t.

9. Suppose the phase line to the right is the phase line for the au-
tonomous differential equation dy/dt = f(y). What can you y=0
say about the graph of f (y)?

10. What are the bifurcation values of the one-parameter family of differential equations
dy/dt =a+4?

True-false: For Exercises 11-20, determine if the statement istrue or false. If it istrue,
explain why. If it isfalse, provide a counterexample or an explanation.

11. Thefunction y(t) = —e~! isasolution to the differential equation dy/dt = |y|.
12. Every separable differential equation is autonomous.

13. Every autonomous differential equation is separable.

14. Every linear differential equation is separable.

15. Every separable differential equation is a homogeneous linear equation.

16. Every homogeneous linear differential equation is separable.

17. The solution of dy/dt = (y — 3)(sinysint 4+ cost + 1) with y(0) = 4 satisfies
y(t) > 3foralt.
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18. Suppose that f (y) is a continuous function for al y. The phase line for dy/dt =
f (y) must have the same number of sources as sinks.

19. Suppose that f (y) is continuously differentiable for all y. Exactly one solution of
dy/dt = f(y) tendsto co ast increases.

20. Every solution of dy/dt =y + e~ tendsto +oo or —oco ast — oo.

In Exercises 21-29,

(a) specify if the given equation is autonomous, linear and homogeneous, linear and
nonhomogeneous, and/or separable, and

(b) find its general solution.

21.3%:3—2y 22.3—3;=ty 23'%=3y+e7t
24.3—{:12't2 25.3—¥:—5y+sin3t 26.%=t+%
27.%:3+y2 28.%:2y—y2 29.%:—3y+e‘2t+t2
In Exercises 30-39,

(a) specify if the given equation is autonomous, linear and homogeneous, linear and
nonhomogeneous, and/or separable, and

(b) solvetheinitial-value problem.

30. 3—): = -2tx, x(0)=e 31. z—i/ =2y +cosdt, y0 =1
32. g—{ =3y +2%, yO0) =-1 33. % =t2y3+y3  y0) =-1/2
34, 3—{ 15y =39 y0)=-2 35. z—¥ — 2ty + 3te”’, y0) =1
36. z—f = ((:/1711))22 y(0) =0 37. :T{ =2ty? +3t%y%, y(1)=-1
38. z—lt’ =1-y2 yO0 =1 39. % = ﬁ y(0) = —2

40. Consider theinitial-value problem dy/dt = y2 — 2y +1, y(0) = 2.
(a) Using Euler's method with At = 0.5, graph an approximate solution over the
interval 0 <t < 2.
(b) What happens when you try to repeat part (@) with At = 0.05?
(c) Solve this initial-value problem by separating variables, and use the result to
explain your observationsin parts (a) and (b).
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138 CHAPTER 1 First-Order Differential Equations

41. Consider the autonomous differential equation dy/dt = f(y) where the graph of
f (y) isgiven below.

f(y)

y
2 —\ 1

(a) Give arough sketch of the slope field that corresponds to this equation.

(b) Give arough sketch of the graph of the solutionto dy/dt = f (y) that satisfies
theinitial condition y(0) = 0.

42. Consider the autonomous differential equation dy/dt = f(y) where the graph of
f (y) isgiven below.

f(y)

Vi

(a) Sketch the phase line for this equation and identify the equilibrium points as
sinks, sources, or nodes.

(b) Give arough sketch of the slope field that corresponds to this equation.

(c) Giverough sketches of the graphs of the solutions that satisfy the initial condi-
tionsy(0) = —3,y(0) =0, y(0) =1,and y(0) = 2.

4\y

-
I\)A.f
w

43. The dlope field to the right is the

field for the differential equation y

|

|

d il

—y=(y—2)(y+1—cost). 2}

dt |
Describe the long-term behavior of j 4 i 2 t

solutions with various initial values 1

att = 0. Then confirm your answer ~2T

with HPGSolver.
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44. The dlope field to the right is the

field for the differential equation )‘/
4+
d |
o= - Dy -2 -, 3T
|
2T
Describe the long-term behavior of 1+
solutions with various initial values 1 1
! —— ‘ — t
at t = 0. Then confirm your answer _6 ; 6
with HPGSolver. 1T

45. Consider the differential equation

dy 2 2
— =t 1 te.

(a) Find its general solution by separating variables.

(b) Note that this equation is also a nhonhomogeneous linear equation. Find the
general solution of its associated homogeneous equation.

(c) Calculate the equilibrium solutions of the nonhomogeneous equation.

(d) Using the Extended Linearity Principle, find the general solution of the nonho-
mogeneous equation. Compare your result to the one you obtained in part (a).

46. Consider the differential equation
dy 2y+1
dt — t
(a) Compute its general solution by separating variables.

(b) What happens to these solutionsast — 07?
(c) Why doesn’t this example violate the Uniqueness Theorem?

47. Consider the initial-value problem dy/dt = 3 — y2, y(0) = 0.
(a) Using Euler’smethod with At = 0.5, plot the graph of an approximate solution
over theinterval 0 <t < 2.
(b) Sketch the phase line for this differential equation.

(c) What does the phase line tell you about the approximate values that you com-
puted in part (a)?

48. A cup of soup isinitially 150°. Suppose that it coolsto 140° in 1 minute in aroom
with an ambient temperature of 70°.

(a) Assume that Newton's law of cooling applies: The rate of cooling is propor-
tional to the difference between the current temperature and the ambient tem-
perature. Write an initial-value problem that models the temperature of the
soup.

(b) How long doesiit take the soup to cool to atemperature of 100°?
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140 CHAPTER 1 First-Order Differential Equations

49. Eight differential equations and four slope fields are given below. Determine the
equation that corresponds to each slope field and state briefly how you know your
choiceis correct. You should do this exercise without using technology.

Nody Lody 2 o dy 5 . dy
0) it =t—-1 (i) it =1-—y* (iii) it =y—t° (iv) it =1-t
dy ~ody 2 o dy oody o
v) a_1—y (vi) E_y+t (vii) a_ty—'[(vm) a_y -1
(@) y (b) y
2+ 2
1- 1
: : — et ; e ¢
-2 -1 1 2 -2 -1 1 2
~1+ <1
27 2+
© y (d) y
2+ 2+
1 1+
| | | — t ! f——— A ¢
-2 -1 1 2 -2 -1 1 2
=1 N
ra2+ v+

50. Bethinitially deposits $400 in a savings account that paysinterest at therate of 1.1%
per year compounded continuously. She also arranges for $20 per week to be de-
posited automatically into the account.

(a) Assume that weekly deposits are close enough to continuous deposits so that
we can reasonably approximate her balance using adifferential equation. Write
an initial-value problem for her balance over time.

(b) Approximate Beth's balance after 4 years by solving the initial-value problem
in part (a).
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51. Consider the linear differential equation

az—)t/ +vy=h,
where a and b are positive constants.
(a) Sketch the phase line associated with this equation.
(b) Describe the long-term behavior of all solutions.
(c) How many different methods do you know to calculate its general solution?
(d) Using your favorite method, calculate the general solution.
(e) Using your least favorite method, cal culate the general solution.
(f) Using your answer in parts (d) and (€), confirm your answer to part (b).

52. Consider the differential equation dy/dt = —2ty?2.
(a) Calculate its general solution.
(b) Find all values of yg such that the solution to the initial-value problem
dy 2
— = —2ty4, -1 = yo,
it Yo, y(=D =yo

does not blow up (or down) in finite time. In other words, find al yg such that
the solution is defined for all real t.

53. The air in a small rectangular room 20 ft by 5 ft by 10 ft is 3% carbon monoxide.
Starting at t = 0, air containing 1% carbon monoxide is blown into the room at the
rate of 100 t3 per hour and well mixed air flows out through a vent at the same rate.

(a) Write an initial-value problem for the amount of carbon monoxide in the room
over time.

(b) Sketch the phase line corresponding to the initial-value problem in part (a), and
determine how much carbon monoxide will be in the room over the long term.

(c) When will the air in the room be 2% carbon monoxide?

54. A 1000-gallon tank initially contains a mixture of 450 gallons of colaand 50 gallons
of cherry syrup. Colais added at the rate of 8 gallons per minute, and cherry syrup
is added at the rate of 2 gallons per minute. At the same time, awell mixed solution
of cherry colais withdrawn at the rate of 5 gallons per minute. What percentage of
the mixture is cherry syrup when the tank is full?
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LAB 1.1 Rate of Memorization Model

Human learning is, to say the least, an extremely complicated process. The biology and
chemistry of learning is far from understood. While simple models of learning cannot
hope to encompass this complexity, they can illuminate limited aspects of the learning
process. In this lab we study a simple model of the process of memorization of lists
(lists of nonsense syllables or entries from tables of integrals).

The model is based on the assumption that the rate of learning is proportional to
the amount |eft to be learned. We let L (t) be the fraction of the list already committed
to memory at timet. So L = 0 corresponds to knowing none of the list, and L = 1
corresponds to knowing the entire list. The differential equation is

dL
Different people take different amounts of time to memorize alist. According to
the model this means that each person has his or her own personal value of k. The value
of k for agiven individual must be determined by experiment.
Carry out the following steps:

1. Four lists of three-digit numbers are given in Table 1.9, and additional lists can be
generated by a random number generator on a computer. Collect the data necessary
to determine your personal k value as follows:

(a) Spend one minute studying one of the lists of numbersin table Table 1.9. (Mea-
sure the time carefully. A friend can help.)

(b) Quiz yourself on how many of the numbers you have memorized by writing
down as many of the numbers as you remember in their correct order. (You
may skip over numbers you don’'t remember and obtain “credit” for numbers
you remember later in thelist.) Put your quiz aside to be graded |ater.

(c) Spend another minute studying the same list.

(d) Quiz yourself again.

Repeat the process ten times (or until you have learned the entire list). Grade your
quizzes (a correct answer is having a correct number in its correct position in the
list). Compile your datain agraph with t, the amount of time spent studying, on the
horizontal axis, and L, the fraction of the list learned, on the vertical axis.

2. Use this data to approximate your personal k-value and compare your data with the
predictions of the model. You may use numeric or analytic methods, but be sure to
carefully explain your work. Estimate how long it would take you to learn alist of
50 and 100 three-digit numbers.

3. Repest the process in Part 1 on two of the other lists and compute your k-value on
theselists. Isyour personal k-value really constant, or doesit improve with practice?
If k does improve with practice, how would you modify the model to include this?
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Table 1.9
Four lists of random three-digit numbers

List1 List 2 List3 List4
1 457 167 733 240
2 938 603 297 897
3 363 980 184 935
4 246 326 784 105
5 219 189 277 679
6 538 846 274 011
7 790 040 516 020
8 895 891 051 013
9 073 519 925 144
10 951 306 102 209
11 7 424 826 419
12 300 559 937 191
13 048 911 182 551
14 918 439 951 282
15 524 140 643 587
16 203 155 434 609
17 719 847 921 391
18 518 245 820 364
19 130 752 017 733
20 874 552 389 735

Your report: In your report, you should give your data in Parts 1 and 3 neatly and
clearly. Your answer to the questions in Parts 2 and 3 should be in the form of short
essays. You should include hand- or computer-drawn graphs of your data and solutions
of the model as appropriate. (Remember that one carefully chosen picture can be worth
athousand words, but a thousand pictures aren’t worth anything.)

LAB 1.2 Growth of a Population of Mold

In the text, we modeled the U.S. population using both an exponential growth model
and a logistic growth model. The assumptions we used to create the models are easy
to state. For the exponential model we assumed only that the growth of the population
is proportional to the size of the population. For the logistic model we added the as-
sumption that the ratio of the population to the growth rate decreases as the population
increases. In this lab we apply these same principles to model the colonization of a
piece of bread by mold.
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Place a piece of mold-free bread in a plastic bag with a small amount of water and
leave the bread in awarm place. Each day, record the area of the bread that is covered
with mold. (One way to do thisis to trace the grid from a piece of graph paper onto a
clear piece of plastic. Hold the plastic over the bread and count the number of sguares
that are mostly covered by mold.)

Warning: It takes at |east two weeks to accumul ate a reasonable amount of data. Some
types of bread seem to be resistant to mold growth, and the bread just dries out. If
the mold grows, then after about a week the bread will look pretty disgusting. Take
precautions to make sure your assignment isn’t thrown out. In your report, address the
following questions:

1. Model the growth of mold using an exponential growth model. How accurately does
the model fit the data? Be sure to explain carefully how you obtained the value for
the growth-rate parameter.

2. Model the growth of mold using a logistic growth model. How accurately does the
model fit the data? Be sure to explain carefully how you obtained the value of the
growth-rate parameter and carrying capacity.

3. Discuss the models for mold growth population. Were there any surprises? Does
it matter that we are measuring the area covered by the mold rather than the total
weight of the mold? To what extent would you believe predictions of future mold
populations based on these models?

Your report: You should include in your report the details of the type of bread used,
where it was kept, and how and how often the mold was measured. Your analysis of the
models may include qualitative, numerical, and analytic arguments, and graphs of data
and solutions of your models as appropriate. (Remember that a well-chosen picture can
be worth a thousand words, but a thousand pictures aren’t worth anything.) Do not
hand in the piece of bread.

LAB 1.3 Logistic Population Models with Harvesting

In this lab, we consider logistic models of population growth that have been modified
to include terms that account for “harvesting.” In particular, you should imagine a fish
population subject to various degrees and types of fishing. The differential equation
models are given below. (Your instructor will indicate the values of the parameters k,
N, a1, and ap you should use. Several possible choicesarelisted in Table 1.10.) In your
report, you should include a discussion of the meaning of each variable and parameter
and an explanation of why the equation is written the way it is.

We have discussed three general approaches that can be employed to study a dif-
ferential equation: Numerical techniques yield graphs of approximate solutions, geo-
metric/qualitative techniques provide predictions of the long-term behavior of the solu-
tion and in special cases analytic techniques provide explicit formulas for the solution.
In your report, you should employ as many of these techniques as is appropriate to help
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understand the models, and you should consider the following equations:

1. (Logistic growth with constant harvesting) The equation

represents a logistic model of population growth with constant harvesting at a rate
a. Fora = aj, what will happen to the fish population for various initial condi-
tions? (Note: This equation is autonomous, so you can take advantage of the special
techniques that are available for autonomous equations.)

2. (Logistic growth with periodic harvesting) The equation

dp p .
T =kp (1— W> —a(l+sinbt)
is a nonautonomous equation that considers periodic harvesting. What do the pa-
rameters a and b represent? Letb = 1. If a = aj, what will happen to the fish
population for variousinitial conditions?

3. Consider the same equation as in Part 2 above, but let a = a. What will happen to
the fish population for variousinitial conditions with this value of a?

Your report: In your report you should address these three questions, one at atime, in
the form of a short essay. Begin Questions 1 and 2 with a description of the meaning of
each of the variables and parameters and an explanation of why the differential equation
istheway it is. You should include pictures and graphs of data and of solutions of your
models as appropriate. (Remember that one carefully chosen picture can be worth a
thousand words, but a thousand pictures aren’t worth anything.)

Table 1.10
Possible choices for the parameters
Choice k N ai ao

1 0.25 4 0.16 0.25
2 0.50 2 0.21 0.25
3 0.20 5 0.21 0.25
4 0.20 5 0.16 0.25
5 0.25 4 0.09 0.25
6 0.20 B 0.09 0.25
7 0.50 2 0.16 0.25
8 0.20 5 0.24 0.25
9 0.25 4 0.21 0.25
10 0.50 2 0.09 0.25
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LAB 1.4 Exponential and Logistic Population Models

In the text, we modeled the U.S. population over the last 210 years using both an expo-
nential growth model and a logistic growth model. For this lab project, we ask that you
model the population growth of a particular state. Population data for several states are
givenin Table 1.11. (Your instructor will assign the state(s) you should consider.)

We have also discussed three general approaches that can be employed to study
a differential equation: numerical techniques yield graphs of approximate solutions,
geometric/qualitative techniques provide predictions of the long-term behavior of the
solution, and in special cases analytic techniques provide explicit formulas for the so-
[ution. In your report, you should use as many of these techniques as is appropriate to
help understand the models.

Table 1.11
Population (in thousands) of selected states (see www . census . gov)

Year Massachusetts New York North Carolina  Alabama Florida  Cdifornia Montana Hawaii

1790 379 340 394

1800 423 589 478 1

1810 472 959 556 9

1820 523 1373 639 128

1830 610 1919 738 310 35

1840 738 2429 753 591 54

1850 995 3097 869 772 87 93

1860 1231 3881 993 964 140 380

1870 1457 4383 1071 997 188 560 21

1880 1783 5083 1400 1263 269 865 39

1890 2239 6003 1618 1513 391 1213 143

1900 2805 7269 1893 1829 529 1485 243 154
1910 3366 9114 2206 2138 753 2378 376 192
1920 3852 10385 2559 2348 968 3427 549 226
1930 4250 12588 3170 2646 1468 5677 538 368
1940 4317 13479 3572 2833 1897 6907 559 423
1950 4691 14830 4062 3062 2771 10586 591 500
1960 5149 16782 4556 3267 4952 15717 675 633
1970 5689 18241 5084 3444 6791 19971 694 770
1980 5737 17558 5880 3894 9747 23668 787 965
1990 6016 17990 6628 4041 12938 29760 799 1108
2000 6349 18976 8049 4447 15982 33871 902 1212
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Your report should address the following items:

1. Using an exponential growth model, determine as accurate a prediction as possible
for the population of your state in the year 2010. How much does your prediction
differ from the prediction that comes from linear extrapolation using the popul ations
in 1990 and 2000? To what extent do solutions of your model agree with the histor-
ical data?

2. Produce a logistic growth model for the population of your state. What is the car-
rying capacity for your model? Using Euler’s method, predict the population in the
years 2010 and 2050. Using analytic techniques, obtain aformulafor the population
function P (t) that satisfies your model. To what extent do solutions of your model
agree with the historical data?

3. Comment on how much confidence you have in your predictions of the future popu-
lations. Discuss which model, exponential or logistic growth, is better for your data
and why (and if neither is very good, suggest alternatives).

Your report: The body of your report should address al three items, one at a time,
in the form of a short essay. For each model, you must choose specific values for cer-
tain parameters (the growth-rate parameter and the carrying capacity). Be sure to give
a complete justification of why you made the choices that you did. You should include
pictures and graphs of data and of solutions of your models as appropriate. (Remem-
ber that one carefully chosen picture can be worth a thousand words, but a thousand
pictures aren’t worth anything.)

LAB 1.5 Modeling Oil Production

There are two things that are clear about crude oil. Oneisthat we use alot of it. The
world consumption of crude oil is approximately 80 million barrels per day, and world
consumption grew by 3.4% in 2004.*

The other is that the earth’s oil reserves are finite. The processes that created the
crude oil that we use today arefairly well understood. There may be significant deposits
of crude oil yet to be discovered, but it is alimited resource.

Governments, economists, and scientists argue endlessly about almost every other
aspect of oil production. Exactly how much oil is left in the earth and what fraction of
that oil can or will ever be removed is difficult to estimate and has significant financial
ramifications. Substantial disagreement on oil policy is not surprising.

Predictions of the decline in production are notoriously difficult, and it is easy
to find examples of such predictions that ended up being absurdly wrong.®On the other
hand, sometimes predictions of decline in production are accurate. In Hubbert’s Peak,*
Kenneth Deffeyes recounts the work of geologist M. King Hubbert. Hubbert fit alogis-
tic model, precisely like those in this chapter, to the production data for crude oil in the

*See New Scientist, 21 May, 2005, page 7.
@ See, for example, http://www._econlib.org/library/Enc/NaturalResources.html.
©ODeffeyes, K. S., Hubbert’s Peak, Princeton University Press, Princeton and Oxford, 2001.
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United States. Using production data up to the mid 1950s along with approximations
of the total amount of recoverable crude oil, Hubbert predicted that production would
peak inthe U.S. in the 1970s. He was right.

In this lab we model the U.S. and world crude oil production using a logistic
model, where the carrying capacity represents the total possible recoverable crude oil.
Your report should address the following items:

1. Find parameter values for a logistic differential equation that fit the crude oil pro-
duction datafor the U.S. (see Table 1.12).*

2. Predicting both the growth rate and the total amount of recoverable crude oil from
the data is difficult. Model the crude oil production of the U.S. assuming the total
amount of recoverable crude oil in the U.S. is 200 billion barrels. (This assumption
includeswhat has already been recovered and servesthe role of the carrying capacity
in the logistic model.)

3. Repeat Part 2 replacing 200 billion barrels with 300 billion barrels.

4. Model the world crude oil production based on estimates of total recoverable crude
oil (past and future) of 2.1 trillion barrels and of 3 trillion barrels. (Both of these
estimates are commonly used. They are based on differing assumptions concerning
what it means for crude oil to be “recoverable””) When do the models predict that
the rate of production of oil reaches its maximum?

5. The decline in production of crude oil will certainly result in an increase in price of
oil products. This price increase will provide more funds for crude oil production,
perhaps slowing the rate of decline. Describe how this price increase might affect
the predictions of your model for world oil production and how you might modify
your model to reflect these assumptions.

Your report: Present your models one at atime. Discuss how well they fit the data and
how sensitive thisfit isto small changesin the parameters.

Table 1.12
Oil production per five year periodsin billions of barrels

Year U.S. Oil World Oil Year U.S. Ol World Oil
1920-24 29 4.3 1965-69 15.8 65.4
192529 4.2 6.2 1970-74 17.0 93.9
1930-34 4.3 7.0 1975-79 15.3 107
1935-39 5.8 9.6 1980-84 15.8 101
194044 7.5 11.3 1985-89 15.2 104
1945-49 9.2 15.2 1990-94 12.9 110
1950-54 11.2 224 1995-99 115 118
1955-59 12.7 31.9 200004 10.4 126
196064 134 44.6 200508 74 107

*Data from Twentieth Century Petroleum Statistics, 1984, by DeGolyer and MacNaughton and
www.ela.doe.gov.
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-ORDER
SYSTEMS

Few phenomena are completely described by a single number. For example,
the size of a population of rabbits can be represented using one number, but
to know its rate of change, we should consider other quantities such as the
size of predator populations and the availability of food.

In this chapter we begin the study of systems of differential
equations—systems of equations that involve more than one dependent
variable. As with first-order equations, the techniques for studying these
systems fall into three general categories: analytic, qualitative, and numeric.
Only special types of systems such as linear systems can be solved using
analytic methods, so we focus primarily on qualitative and numerical methods
in this chapter.

We continue to study models that involve differential equations by
discussing some that have more than one dependent variable. One particularly
important example is the harmonic oscillator, which has numerous applications
in many branches of science such as mechanics, electronics, and physics.

149

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



150 CHAPTER 2 First-Order Systems

2.1 MODELING VIA SYSTEMS

In this section we discuss models of two very different phenomena—the evolution of
the two populations in a predator-prey system, and the motion of a mass-spring system.
Initially these models seem quite different, but from the correct point of view, they pos-
sess a number of similarities.

The Predator-Prey System Revisited

We begin our study of systems of differential equations by considering two versions
of the predator-prey model discussed briefly in Section 1.1. Recall that R(t) denotes
the population (in thousands, or millions, or whatever) of prey present at time t and
that F (t) denotes the population of predators. We assume that both R(t) and F(t) are
nonnegative. One system of differential equations that might govern the changes in the
population of these two species is

4R _ )R _12RF
at

dF

aF  E . o9RF.
dt +

The 2R term in the equation for dR/dt represents exponential growth of the prey in
the absence of predators, and the —1.2RF term corresponds to the negative effect on
the prey of predator-prey interaction. The —F term in dF/dt corresponds to the as-
sumption that the predators die off if there are no prey to eat, and the 0.9RF term cor-
responds to the positive effect on the predators of predator-prey interaction.

The coefficients 2, —1.2, —1, and 0.9 depend on the species involved. Similar
systems with different coefficients are considered in the exercises. (We choose these
values of the parameters in this example solely for convenience.)*

The presence of the RF terms in these equations makes this system difficult to
solve. It is impossible to derive explicit formulas for the general solution, but there are
some initial conditions that do yield simple solutions. For instance, suppose that both
R = 0and F = 0. Then the right-hand sides of both equations vanish (dR/dt =
dF/dt = 0) for all t, and consequently the pair of constant functions R(t) = 0 and
F(t) = 0 form a solution to the system. By analogy to first-order equations, we call
such a pair of constant functions an equilibrium solution to the system. This equilib-
rium solution makes perfect sense: If both the predator and prey populations vanish, we
certainly do not expect the populations to grow at any later time.

We can also look for other values of R and F that correspond to constant

*For more details on the development, use, and limitations of this system as a model of predator-prey
interactions in the wild, we refer the reader to the excellent discussions in J.P. Dempster, Animal Population
Ecology (New York: Academic Press, 1975) and M. Braun, Differential Equations and Their Applications
(New York: Springer-Verlag, 1993).
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2.1 Modeling via Systems 151

solutions. We rewrite the system as

dR
i = (2—-1.2F)R
dF
i =(—-1+0.9R)F

and note that both equations vanish if R =1/0.9 ~ 1.11and F = 2/1.2 ~ 1.67. Thus
the pair of constant functions R(t) ~ 1.11 and F(t) ~ 1.67 together form another
equilibrium solution. This solution says that, if the prey population is 1.11 and the
predator population is 1.67, the system is in perfect balance. There are just enough
prey to support a constant predator population of 1.67, and similarly there are neither
too many predators (which would cause the population of prey to fall) nor too few (in
which case the number of prey would rise). Each species’ birth rate is exactly equal
to its death rate, and these populations are maintained indefinitely. The system is in
equilibrium.

For certain initial conditions, we can use the techniques that we have already de-
veloped for first-order equations to study systems. For example, if R = 0, the first
equation in this system vanishes. Therefore the constant function R(t) = O satisfies
this differential equation no matter what initial condition we choose for F. In this case
the second differential equation reduces to

dF

I - )

which we recognize as the exponential decay model for the predator population—
a familiar and very simple differential equation. From this equation we know that the
population of predators tends exponentially to zero. This entire scenario for R = 0 is
reasonable because, if there are no prey at some time, then there never will be any prey
no matter how many predators there are. Moreover, without a food supply, the predators
must die out.

In similar fashion, note that the equation for d F/dt vanishes if F = 0, and the
equation for dR/dt reduces to

dR
— =2R
dt ’

which is an exponential growth model. As we saw in Section 1.1, any nonzero prey
population grows without bound under these assumptions. Again, these conclusions
make sense because there are no predators to control the growth of the prey population.
On the other hand, we could make the more realistic assumption that the prey popula-
tion obeys a logistic growth law. Our second example in this section incorporates this
additional assumption.
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152 CHAPTER 2 First-Order Systems

R(t)- and F(t)-graphs
In order to understand all solutions of this predator-prey system

dR R _12RF
at

dF

o F 1 09RF.
at +

it is important to note that the rate of change of either population depends both on R
and on F. Hence we need two numbers, an initial value Ry of R and an initial value Fy
for F, to determine the manner in which these populations evolve over time. In other
words, an initial condition which determines a solution to this system of equations is
a pair of numbers, Rg and Fg, which are then used to determine the initial values of
dR/dt and d F/dt. This initial condition yields a solution of the system which consists
of two functions R(t) and F (t) that, taken together, satisfy the system of equations.

For the study of solutions to systems of differential equations, there is good news
and bad news. The bad news is that for many systems there are few analytic techniques
that yield formulas for the solutions. The good news is that there are numerical and
qualitative methods that give us a good understanding of the solutions even if we cannot
find analytic representations for them. For example, if we specify the initial conditions
Ro = 1 and Fy = 0.5, we can use a numerical method akin to Euler’s method to obtain
approximate values for the corresponding solutions R(t) and F(t). (We will develop
this method in Section 2.5.)

In Figures 2.1 and 2.2 we graph the solutions R(t) and F(t) that correspond to
the initial condition Rg = 1 and Fg = 0.5, and we see that both R(t) and F(t) rise and
fall in a periodic fashion.

R F

4 4

3 3

2 2

1 1
} } — t } } — t
5 10 15 5 10 15

Figure 2.1 Figure 2.2

The R(t)-graph if Rg = 1and Fy = 0.5. The F(t)-graph if Rg = 1 and Fg = 0.5.

In Figure 2.3 we graph both R(t) and F(t) on the same set of axes. Although
this graph is somewhat misleading because there are really two scales on the vertical
axis—one corresponding to the units of R(t) and the other corresponding to the units
of F(t), it does provide information that is hard to read from the individual R(t)- and
F (t)-graphs. For example, for this particular solution we see that the increases in the
predator population lag the increases in the prey population and that the predator pop-
ulation continues to increase for a short amount of time after the prey population starts

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2.1 Modeling via Systems 153

R, F Figure 2.3

4] F() R(®) The R(t)- and F(t)-graphs given by the initial
condition Ry = 1 and Fp = 0.5. Note that

there are really two scales on the vertical

I N
e
3 axis—one corresponding to the units of R and
2+ the other corresponding to the units of F. Note
also that both R(t) and F(t) repeat with the

11 same period.

f f —t

5 10 15

to decline. Perhaps the most important observation that we can make from this graph is
that both R(t) and F(t) seem to repeat with the same period (roughly five time units).
Although we could reach the same conclusion by closely studying Figures 2.1 and 2.2,
this fact is much easier to observe if both the R(t)- and F(t)-graphs are drawn on the
same pair of axes.

The phase portrait for this system

There is another way to graph the solution of the system that corresponds to the initial
condition (Rg, Fp) = (1,0.5). Given R(t), F(t), and a value of t, we can form the
pair (R(t), F(t)) and think of it as a point in the RF-plane. In other words, the co-
ordinates of the point are the values of the two populations at time t. As t varies, the
pair (R(t), F(t)) sweeps out a curve in the RF-plane. This curve is the solution curve
determined by the original initial condition. The coordinates of each point on the curve
are the prey and predator populations at the associated time t, and the point (Rg, Fo)
that corresponds to the initial condition for the solution is often referred to as the initial
point of this solution curve.

It is often helpful to view a solution curve for a system of differential equations
not merely as a set of points in the plane but, rather in a more dynamic fashion, as
a point following a curve that is determined by the solution to the differential equa-
tion. In Figure 2.4 we show the solution curve corresponding to the solution with initial

F Figure 2.4
1 The solution curve for the predator-prey
4 system
dR
34 E:ZR—I.ZRF
dF =—-F +0.9RF,
2L dt
corresponding to the initial condition
P = (Rg, Fg) = (1,0.5).
1 —+
f f f — R
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154 CHAPTER 2 First-Order Systems

conditions Rg = 1 and Fp = 0.5 in the RF-plane. This curve starts at the point
P = (1,0.5). Ast increases, the corresponding point on the curve moves to the right.
This motion implies that R(t) is increasing but that F(t) initially stays relatively con-
stant. Near R = 3, the solution curve turns significantly upward. Thus the predator
population F(t) starts increasing significantly. As F(t) nears F = 2, the curve starts
heading to the left. Thus R(t) has reached a maximum and is starting to decrease. As
t increases, the values of R(t) and F(t) change as indicated by the shape of the solu-
tion curve. Eventually the solution curve returns to its starting point P and begins its
cycle again.

The RF-plane is called the phase plane, and it is analogous to the phase line
for an autonomous first-order differential equation. Just as the phase line has a point
for each value of the dependent variable but does not explicitly show the corresponding
value of time, the phase plane has a point for each ordered pair (R, F) of populations.
The dependence of a solution on the independent variable t can only be imagined as a
point moving along the solution curve as t evolves.

We can plot many solutions curves on the phase plane simultaneously. In Fig-
ure 2.5 we see the complete phase portrait for our predator-prey system. Of course,
since negative populations do not make sense for this model, we restrict our attention to
the first quadrant of the R F-plane.

Equilibrium solutions are solutions that are constant, and consequently they pro-
duce solution curves (R(t), F(t)), where R(t) and F(t) never vary. In other words, the
solution curves that correspond to equilibrium solutions are really just points, and we
refer to them as equilibrium points. Just as with the phase line, the equilibrium points
in the phase plane are especially important parts of the phase portrait, and therefore we
usually mark them with large dots. (Note the dots at the equilibrium points at (0, 0) and
(1.11, 1.67) in Figure 2.5.)

In this predator-prey system, all other solutions for which Rg > O and Fyp > 0
yield solution curves that loop around the equilibrium point (1.11, 1.67) in a counter-
clockwise fashion. Ultimately, they return to their initial points, and hence this model
predicts that except for the equilibrium solution, both R(t) and F(t) rise and fall in a
periodic fashion.

F Figure 2.5
The phase plane for the predator-prey system
4 -+
dr =2R - 12RF
dt
37 dF
— =—F +0.9RF.
dt *
27 Note the two equilibruim points. The other
solution curves correspond to solutions that are
1+ periodic.
f f f f R
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2.1 Modeling via Systems 155

A Modified Predator-Prey Model

We now consider a modification of the predator-prey model in which we assume that in
the absence of predators, the prey population obeys a logistic rather than an exponential
growth model. One such model for this situation is the system

d—R=2R 1—E —1.2RF
dt 2

dF
e F + 0.9RF.

In this system, when the predators are not present (that is, F = 0), the prey popula-
tion obeys a logistic growth model with carrying capacity 2. Once again, with the use
of numerical methods we see that the behavior of solution curves (and therefore the
predictions made by this model) are quite different from those made by the previous
predator-prey model.

First, let’s find the equilibrium solutions for this system. Recall that these solu-
tions occur at points (R, F) where the right-hand sides of both of the differential equa-
tions vanish. As before, (R, F) = (0, 0) is one equilibrium solution. There are two
other equilibria—(R, F) = (2,0) and (R, F) = (10/9,20/27) ~ (1.11,0.74) (see
Exercise 12 in Section 2.2).

As in our first predator-prey model, if there are no prey present, the predator pop-
ulation declines exponentially. In other words, if R = 0, then dR/dt = 0 for all t,
so R(t) = 0. Then the equation for d F/dt reduces to the familiar exponential decay
model

dF
dt

In the absence of predators the situation is somewhat different. If F = 0, we have

dF/dt = 0 for all t, and the equation for R simplifies to the familiar logistic model

dR R
—~ —2R(1-~).
F dt ( 2)

2+ From this equation we see that the growth coefficient for low populations of prey is 2
and the carrying capacity is 2. Thus, if F = 0, we expect any nonzero initial population
of prey to approach 2 eventually.

1T When both R and F are nonzero, the evolution of the two populations is more
D c complicated. In Figure 2.6 we plot three solution curves fort > 0. Note that, in all
cases, the solutions tend to the equilibrium point A, which has coordinates (R, F) =
(1.11, 0.74). Once we have the solution curve that corresponds to a given initial condi-
tion, we know what the model predicts for the solution that satisfies this initial condi-
Figure 2.6 tion. For example, we see that the initial condition B in Figure 2.6 corresponds to an
The three equilibrium points ~ overabundance of both predators and prey. Following the solution curve we see that the
and three solution curves for  predator population initially rises while the prey population declines. However, once
the logistic predator-prey the supply of prey is sufficiently low, the predator population declines and eventually
model. approaches the equilibrium value F = 0.74. On the other hand, the prey population
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156 CHAPTER 2 First-Order Systems
eventually recovers, and this population also tends to stabilize at the equilibrium value

R = 1.11. This evolution of R(t) and F(t) is exactly what we see if we plot the corre-
sponding R(t)- and F (t)-graphs (see Figure 2.7).

R, F

2+ F(©) R(t)

N

Figure 2.7
The R(t)- and F(t)-graphs for the
solution curve B in Figure 2.6.

The other two solution curves that are shown in Figure 2.6 can be interpreted in
a similar fashion (see Figures 2.8 and 2.9). Note that the graphs of both F(t) and R(t)
tend to the equilibrium values R = 1.11 and F = 0.74. We can predict this from the
solution curves in the phase plane (see Figure 2.6).

R, F R, F
R(t)
2 Rty F® 2 | F()
1 Y 1
l f f — 1 lx’/ } f —
4 8 12 4 8 12
Figure 2.8 Figure 2.9
The R(t)- and F(t)-graphs for the The R(t)- and F(t)-graphs for the
solution curve C in Figure 2.6. solution curve D in Figure 2.6.

The Motion of a Mass Attached to a Spring

At first glance, the standard model of the motion of an undamped mass-spring system
seems quite different from the population models that we have just discussed, but there
are some important similarities in the corresponding mathematical models.

Consider a mass that is attached to a spring and that slides on a frictionless table
(see Figure 2.10). We wish to understand its horizontal motion when the spring is

Figure 2.10
A mass-spring
system.
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2.1 Modeling via Systems 157

stretched (or compressed) and then released. In order to keep the model as simple as
possible, we assume that the only force acting on the mass is the force of the spring. In
particular, we ignore air resistance and other forces that would dampen the motion of
the mass.

There are two key quantities in this model—a quantity that measures the dis-
placement of the mass from its natural rest position and the restoring force on the mass
caused by the spring. We wish to determine the position of the mass as a function of
time, so we let y(t) denote the position of the mass at time t. It is convenient to let
y = 0 represent the rest position of the mass (see Figure 2.11). At the rest position the
spring is neither stretched nor compressed, and it exerts no force on the mass. We adopt
the convention that y(t) < O if the spring is compressed and y(t) > 0 if the spring is
stretched using whatever units are convenient (see Figures 2.11-2.13).

The main idea from physics needed to derive the differential equation that models
this motion is Newton’s second law,

Force F = mass x acceleration.

Since the displacement is y(t), the acceleration is d2y/dt2. If we let m denote the mass,
Newton’s law becomes
d?y
dt2”

To complete the model we must specify an expression for the force that the spring
exerts on the mass. We use Hooke’s law of springs as our model for the restoring
force Fs of the spring:

F=m

The restoring force exerted by a spring is linearly proportional to the spring’s dis-
placement from its rest position and is directed toward the rest position.

y=0 Figure 2.11

| The rest position of the

mass, y = 0.

Figure 2.12
A compressed position
of the mass, y < 0.

Figure 2.13
A stretched position of
the mass, y > 0.
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158 CHAPTER 2 First-Order Systems

Therefore we have
Fs = _ky,

where k > 0 is a constant of proportionality called the spring constant—a parame-
ter we can adjust by changing springs. Combining this expression for the force with
Newton’s law, we obtain the differential equation

d?y
Fs = —ky =m—,
S y dtz
which models the motion of the mass. It is traditional to rewrite this equation in the
form 5
dey k
— +—y=0.
dt2 Ty

This equation is the differential equation for what is often called a simple (or un-
damped) harmonic oscillator. Since the equation contains the second derivative of the
dependent variable vy, it is a second-order differential equation. The coefficients m
and k are parameters that are determined by the particular mass and spring involved.

From a notational point of view, this second-order equation seems to have little
in common with the first-order predator-prey systems that we discussed earlier in this
section. In particular, the equation contains only a single dependent variable, and it
involves a second derivative rather than two first derivatives.

However, once we attempt to use this second-order equation to describe the mo-
tion of a particular mass-spring system, the similarities start to emerge. For example,
suppose that we want to describe the motion of the mass. What do we need for initial
conditions? Certainly we need an initial condition yg that corresponds to the initial dis-
placement of the mass, but does yg alone determine the subsequent motion of the mass?
The answer is no because we cannot ignore the initial velocity vg of the mass. For ex-
ample, the motion that results from extending the mass-spring system by 1 foot and
releasing it is different than the motion that results from extending the system by 1 foot
and then pushing with an initial velocity of 1 foot/second. There is a theory of existence
and uniqueness for solutions to this equation just as with first-order equations (see Sec-
tion 2.5), and this theory tells us that we need two numbers, yo and vg, to determine the
motion of the simple harmonic oscillator.

Now that the velocity of the motion has been identified as a key part of the over-
all picture, we are only one step away from completing the analogy between first-order
systems such as the predator-prey system and second-order equations such as the equa-
tion for the simple harmonic oscillator. If we let v(t) denote the velocity of the mass
at time t, then we know from calculus that v = dy/dt. Therefore, the acceleration
d?y/dt? is the derivative dv/dt of the velocity, and we can rewrite our second-order

equation
d?y k
@~ m’
as
dv k
—_— __y.

dt = m
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2.1 Modeling via Systems 159

In other words, we can rewrite the second-order equation as the first-order system

dy _
dt
dv _ _k
dt m”

This technique of reducing the order of the system by increasing the number of depen-
dent variables gives us two ways of representing the same model for the motion of the
mass. Each representation has its advantages and disadvantages. The representation
of the mass-spring system as a second-order equation involving one variable is more
convenient for certain analytic techniques, whereas the representation as a first-order
system is much better for numerical and qualitative analysis.

An initial-value problem

To demonstrate the connections between these two points of view, we consider a very
specific initial-value problem. Suppose m and k are fixed so that k/m = 1. Then the
second-order equation simplifies to

d?y
dt2

In other words, the second derivative of y(t) is —y(t). Two such functions, sine and
cosine, come to mind immediately. As we will see in Chapter 3, there are many other
functions that also satisfy this differential equation, but for the purposes of this discus-
sion, we focus on the initial-value problem (y(0), v(0)) = (Yo, vo) = (1,0). In this
case the function y(t) = cost satisfies this initial condition since y(0) = cos0 = 1 and
y'(0) = —sin0 = 0.

If we convert this second-order equation to a first-order system where v = dy/dt,

we obtain

dy

a =0

dv

dt
In this context the same initial condition yields a solution that consists of the pair of
functions y(t) = cost and v(t) = —sint. Their y(t)- and v(t)-graphs are shown in
Figure 2.14.

Figure 2.14
y(t) v(®) Graphs of the solutions y(t) and v(t) for the

\ /\ initial-value problem
d2
\\/ 21 \\/ dt2+y—0 yO =1, v(0) =0.
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v
) y
Figure 2.15
The solution curve in the
yv-phase plane for the
initial-value problem
d2y
A =0,
dt2 +y
with the initial-condition
(y(0),v(0)) = (1,0) is

a circle of radius 1
centered at the origin.

In the yv-phase plane the corresponding solution curve is
(y(t), v(t)) = (cost, —sint).

With the help of a little trigonometry we see that

y? + 1% = (cost)? + (—sint)?> =1,

and therefore this curve sweeps out the unit circle centered at the origin. Due to the
minus sign in v(t) = —sint, the unit circle is swept out in a clockwise direction (as
indicated by the arrowhead on the circle in Figure 2.15).

Either the periodic y(t)- and v(t)-graphs (Figure 2.14) or the parameterization of
the unit circle in the yv-plane (Figure 2.15) indicates that the solution is periodic, with
y(t) and v(t) alternately increasing and decreasing, repeating the same cycle again and
again. The mass oscillates back and forth across its rest position, y = 0, forever. Of
course, this phenomenon is possible only because we have neglected damping.

Taken together, Figures 2.14 and 2.15 give a complete picture of the solution. It
would be nice if we could make one picture that included all of the information in both
Figures 2.14 and 2.15. Such a picture must be three-dimensional since three impor-
tant variables—t, y, and v—are involved. Due to the fact that we are so familiar with
the functions that arise in this example, we can be successful for this equation (see Fig-
ure 2.16). Note that Figure 2.14 comes from the projections of Figure 2.16 into both the
ty- and tv-planes and that Figure 2.15 is the projection of Figure 2.16 into the yv-phase
plane.

Drawing these types of three-dimensional figures requires considerable graphical
skill even when the solution y(t) is the very familiar cosine function. In addition, in-
terpreting these pictures requires an even greater skill in visualization. We therefore
generally avoid graphs that involve all three variables at once. We restrict our attention
to the graphs of the solutions, the y(t)- and v(t)-graphs, and the solution curve in the
yv-phase plane.

Figure 2.16
The graph of a solution of

in tyv-space and its projections onto the ty-, tv-,
and yv-coordinate planes. Note that the y(t)-graph
is the graph of cost, the v(t)-graph is the graph

of —sint, and the solution curve in the yv-phase
plane is the unit circle.
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2.1 Modeling via Systems 161

The Study of Systems of Differential Equations

In Chapter 1 we learned that there are three basic ways to understand the solutions of a
differential equation—with the use of analytic, geometric (or qualitative), and numeric
techniques. In the subsequent sections of this chapter, we will concentrate on analogous
approaches for systems and second-order equations. In the next section we introduce
vector notation in order to provide a geometric approach. In Sections 2.3 and 2.4, we
discuss analytic techniques that we can use to find explicit formulas for solutions in
somewhat specialized situations, and in Section 2.5 we generalize Euler’s method to
systems of differential equations.

EXERCISES FOR SECTION 2.1

Exercises 1-6 refer to the following systems of equations:

(i dx X (i) dx Xy
a_10x(1—E)—20xy o =03 — =
dy Xy dy y
=5+ a_15y(1—E)+25xy.

1. In one of these systems, the prey are very large animals and the predators are very
small animals, such as elephants and mosquitoes. Thus it takes many predators to
eat one prey, but each prey eaten is a tremendous benefit for the predator population.
The other system has very large predators and very small prey. Determine which
system is which and provide a justification for your answer.

2. Find all equilibrium points for the two systems. Explain the significance of these
points in terms of the predator and prey populations.

3. Suppose that the predators are extinct at time to = 0. For each system, verify that
the predators remain extinct for all time.

4. For each system, describe the behavior of the prey population if the predators are
extinct. (Sketch the phase line for the prey population assuming that the predators
are extinct, and sketch the graphs of the prey population as a function of time for
several solutions. Then interpret these graphs for the prey population.)

5. For each system, suppose that the prey are extinct at time tp = 0. Verify that the
prey remain extinct for all time.

6. For each system, describe the behavior of the predator population if the prey are
extinct. (Sketch the phase line for the predator population assuming that the prey are
extinct, and sketch the graphs of the predator population as a function of time for
several solutions. Then interpret these graphs for the predator population.)
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162 CHAPTER 2 First-Order Systems

7. Consider the predator-prey system F
dR R T
—=2(1-—-)R—-RF
5 =2(13)
aF _ 2F +4RF
dt ' 2T

The figure to the right shows a computer- 1
generated plot of a solution curve for this sys-

tem in the RF-plane. i R
(a) Describe the fate of the prey (R) and predator (F) populations based on this
image.

(b) Confirm your answer using HPGSystemSolver.

8. Consider the predator-prey system

F
dR R 1
“C _2R(1---)-15RF 2 ¢
dF
— =—F +0.8RF
dt *
1 =+
and the solution curves in the phase plane on
the right. D
(a) Sketch the R(t)- and F(t)-graphs for 1 1
the solutions with initial points A, B, C, 1 5 R
and D.
(b) Interpret each solution curve in terms of the behavior of the populations over
time.

(c) Confirm your answer using HPGSystemSolver.

Exercises 9-14 refer to the predator-prey and the modified predator-prey systems dis-
cussed in the text (repeated here for convenience):

M 4R ok 12RF @ dR _or(1-R) _12rrF
dt dt 2
dF dF
O FLo09RF o o _F109RF.
dt + dt +

9. How would you modify these systems to include the effect of hunting of the prey at
a rate of « units of prey per unit of time?

10. How would you modify these systems to include the effect of hunting of the preda-
tors at a rate proportional to the number of predators?
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11. Suppose the predators discover a second, unlimited source of food, but they still pre-
fer to eat prey when they can catch them. How would you modify these systems to
include this assumption?

12. Suppose the predators found a second food source that is limited in supply. How
would you modify these systems to include this fact?

13. Suppose predators migrate to an area if there are five times as many prey as predators
in that area (that is, if R > 5F), and they move away if there are fewer than five
times as many prey as predators. How would you modify these systems to take this
into account?

14. Suppose prey move out of an area at a rate proportional to the number of predators
in the area. How would you modify these systems to take this into account?

15. Consider the two systems of differential equations

(i dx (i) dx
i 0.3x — 0.1xy i 0.3x — 3xy
dy dy
rTi —0.1y + 2xy i —2y 4 0.1xy.

One of these systems refers to a predator-prey system with very lethargic predators—
those who seldom catch prey but who can live for a long time on a single prey (for
example, boa constrictors). The other system refers to a very active predator that re-
quires many prey to stay healthy (such as a small cat). The prey in each case is the
same. Identify which system is which and justify your answer.

16. Consider the system of predator-prey equations

d_R=2<1—5>R—RF

at 3
dF

9F _ 16F +4RF.
at +

The figure below shows a computer-generated plot of a solution curve for this system
in the RF-plane.

(a) What can you say about the fate of the rabbit R and fox F populations based
on this image?
(b) Confirm your answer using HPGSystemSolver.

F
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164 CHAPTER 2 First-Order Systems

17. Pesticides that kill all insect species are not only bad for the environment, but they
can also be inefficient at controlling pest species. Suppose a pest insect species in
a particular field has population R(t) at time t, and suppose its primary predator is
another insect species with population F(t) at time t. Suppose the populations of
these species are accurately modeled by the system

dR

4R R _12RF
at

dF

9F F09RF
at +

studied in this section. Finally, suppose that at time t = 0 a pesticide is applied to the
field that reduces both the pest and predator populations to very small but nonzero
numbers.

(a) Using Figures 2.3 and 2.5, predict what will happen as t increases to the popu-
lation of the pest species.

(b) Write a short essay, in nontechnical language, warning of the possibility of the
“paradoxical” effect that pesticide application can have on pest populations.

18. Some predator species seldom capture healthy adult prey, eating only injured or
weak prey. Because weak prey consume resources but are not as successful at re-
production, the harsh reality is that their removal from the population increases prey
population. Discuss how you would modify a predator-prey system to model this
sort of interaction.

19. Consider the initial-value problem

2
ey =0
with y(0) = 0and y’(0) = v(0) = 1.
(a) Show that the function y(t) = sint is a solution to this initial-value problem.
(b) Plot the solution curve corresponding to this solution in the yv-plane.
(c) In what ways is this solution curve the same as the one shown in Figure 2.15?

(d) How is this curve different from the one shown in Figure 2.15?

20. Consider the equation
d?y Kk
24 2y =0
dt2 * m’
for the motion of a simple harmonic oscillator.
(a) Consider the function y(t) = cosSt. Under what conditions on g is y(t) a
solution?
(b) What initial condition (t = 0) in the yv-plane corresponds to this solution?
(c) In terms of k and m, what is the period of this solution?
(d) Sketch the solution curve (in the yv-plane) associated to this solution. [Hint:
Consider the quantity y2 + (v/8)2.]
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21. A mass weighing 12 pounds stretches a spring 3 inches. What is the spring constant
for this spring?

22. A mass weighing 4 pounds stretches a spring 4 inches.

(a) Formulate an initial-value problem that corresponds to the motion of this un-
damped mass-spring system if the mass is extended 1 foot from its rest position
and released (with no initial velocity).

(b) Using the result of Exercise 20, find the solution of this initial-value problem.

23. Do the springs in an “extra firm” mattress have a large spring constant or a small
spring constant?

24. Consider a vertical mass-spring system as shown in the figure below.

Y1 Y2

I
o
|
[

Y1

Il
o

— Y2

Before the mass is placed on the end of the spring, the spring has a natural length.
After the mass is placed on the end of the spring, the system has a new equilibrium
position, which corresponds to the position where the force on the mass due to grav-
ity is equal to the force on the mass due to the spring.

(a) Assuming that the only forces acting on the mass are the force due to gravity
and the force of the spring, formulate two different (but related) second-order
differential equations that describe the motion of the mass. For one equation,
let the position y (t) be measured from the point at the end of the spring when
it hangs without the mass attached. For the other equation, let y,(t) be mea-
sured from the equilibrium position once the mass is attached to the spring.

(b) Rewrite these two second-order equations as first-order systems and calculate
their equilibrium points. Interpret your results in terms of the mass-spring
system.

(c) Given a solution y1(t) to one system, how can you produce a solution yz(t) to
the second system?

(d) Which choice of coordinate system, y; or y, do you prefer? Why?
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Exercises 25-30 refer to a situation in which models similar to the predator-prey pop-
ulation models arise. Suppose A and B represent two substances that can combine to
form a new substance C (chemists would write A + B — C). Suppose we have a
container with a solution containing low concentrations of substances A and B, and A
and B molecules react only when they happen to come close to each other. If a(t) and
b(t) represent the amount of A and B in the solution, respectively, then the chance that
a molecule of A is close to a molecule of B at time t is proportional to the product
a(t) - b(t). Hence the rate of reaction of A and B to form C is proportional to ab. Sup-
pose C precipitates out of the solution as soon as it is formed, and the solution is always
kept well mixed.

25. Write a system of differential equations that models the evolution of a(t) and b(t).
Be sure to identify and describe any parameters you introduce.

26. Describe an experiment you could perform to determine an approximate value for
the parameter(s) in the system you developed in Exercise 25. Include the calcula-
tions you would perform using the data from your experiment to determine the pa-
rameter(s).

27. Suppose substances A and B are added to the solution at constant (perhaps unequal)
rates. How would you modify your system to include this assumption?

28. Suppose A and B are being added to the solution at constant (perhaps unequal) rates,
and, in addition to the A + B — C reaction, a reaction A + A — D also can
occur when two molecules of A are close and substance D precipitates out of the
solution. How would you modify your system of equations to include these assump-
tions?

29. Suppose A and B are being added to the solutions at constant (perhaps unequal)
rates, and, in addition to the A + B — C reaction, a reaction B + B — A can
also occur when two molecules of B are close. How would you modify your system
of equations to include these assumptions?

30. Suppose A and B are being added to the solution at constant (perhaps unequal) rates,
and, in addition to the A + B — C reaction, a reaction A + 2B — D can occur
when two B and one A molecules are close. Suppose substance D precipitates out
of the solution. How would you modify your system of equations to include these
assumptions?

2.2 THE GEOMETRY OF SYSTEMS

In Section 2.1 we displayed R(t)- and F(t)-graphs of solutions to two different pred-
ator-prey systems, but we did not describe how we generated these graphs. We will
ultimately answer this question in Section 2.5 in which we generalize Euler’s method
to produce numerical approximations to solutions, but we must begin the explanation
by introducing some vector notation. This notation provides a convenient shorthand for
writing systems of differential equations, but it is also important for a more fundamental
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2.2 The Geometry of Systems 167

reason. Using vectors, we build a geometric representation of a system of differential
equations. As we saw when we used slope fields in Chapter 1, having a geometric
representation of a differential equation gives us a convenient way to understand its
solutions.

The Predator-Prey Vector Field
Recall that the predator-prey system

9R _ )R _12RF
at

dF

oF F09RF
at +

models the evolution of two populations, R and F, over time. In the previous section
we studied two different (but related) ways to visualize this evolution. We can plot the
graphs of R(t) and F (t) as functions of t, or we can plot the solution curve (R(t), F(t))
in the RF-plane. Although we can think of (R(t), F(t)) as simply a combination of the
two scalar-valued functions R(t) and F(t), there are advantages if we take a different
approach. We consider the pair (R(t), F(t)) as a vector-valued function in the RF-
plane.
For each t, we let P(t) denote the vector

(R
P(t)_< FO )

Then the vector-valued function P(t) corresponds to the solution curve (R(t), F(t)) in
the RF-plane.

To compute the derivative of the vector-valued function P(t), we compute the
derivatives of each component. That is,

dR
dP dt
dt | dF
dt
Using this notation, we can rewrite the predator-prey system as the single vector equa-
tion
dR
dP | dt | ([ 2R—12RF
dt | dF | \ —=F+09RF /)’
dt

So far we have only introduced more notation. We have converted our first-order system
consisting of two scalar equations into a single vector equation involving vectors with
two components.
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The advantages of the vector notation start to become evident once we consider
the right-hand side of this system as a vector field. The right-hand side of the predator-
prey system is a function that assigns a vector to each point in the RF-plane. If we
denote this function using the vector V, we have

v R)_(2R-12RrF
F ) \ —F4+09RF |’

For example, at the point (R, F) = (2, 1),

v(2)_(2@-1200 \_[16
1) \ —-@w+092@ ) \os )’

To save paper, we will sometimes write vectors vertically (as “column” vectors) and
at other times horizontally (as “row” vectors). The vertical notation is more consistent
with how we have written systems up to now, whereas the horizontal notation is easier
on trees. In any case, we always write vectors in boldface type to distinguish them from
scalars. Written as a row vector, the predator-prey vector field is expressed as

V(R, F) = (2R — 1.2RF, —F 4+ 0.9RF),

and V(2,1) = (1.6,0.8).
In the previous computation there was nothing special about the point (R, F) =
(2,1). Similarly, we have V(1,1) = (0.8, —0.1), V(0.5,2.2) = (—0.32, —1.21), and

F so forth. The function V(R, F) can be evaluated at any point in the RF-plane.
4+ The use of vectors enables us to simplify the notation considerably. We can now
\ write the predator-prey system very economically as
3 .
/ P _ V(P).
2T« 4 dt
1*/ \\ / The vector notation is much more than just a way to save ink. It also gives us
" — a new way to think about and to visualize systems of differential equations. We can
% % % — R sketch the vector field V by attaching the vector V(P) to the corresponding point P
1 2 3 4 in the plane. Computing V(P) for many different values of P and carefully sketching
Figure 2.17 these vectors in the plane is tedious work for a human, but it is just the sort of job that

computers and calculators are good at. A few vectors in the predator-prey vector field V
Selected vectors in the vector ~ are shown in Figure 2.17. In general we visualize this vector field as a “field” of arrows,
field V(R, F). one based at each point in the RF-plane.

The Vector Field for a Simple Harmonic Oscillator

In Section 2.1 we modeled the motion of an undamped mass-spring system by a second-
order differential equation of the form

d?y Kk
_— —yv =0
+my ,
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where K is the spring constant and m is the mass. We also saw that this mass-spring
system can be written as the first-order system

dy
a—v
dv_ k
E__Hy’

where v = dy/dt is the velocity of the mass. In the special case where k/m = 1, we
obtained the especially nice system

dy
, at "
dv
L dt
l/ // : One reason this system is so nice is that its vector field F(y, v) = (v, —Yy) in the yv-
! I, D \ plane is relatively easy to understand. After plotting a few vectors in the vector field, it
v\ \\\ /‘l ' y is natural to wonder if all of the vectors are tangent to circles centered at the origin and
\ <_\_;/ /) in fact, they are (see Figure 2.18 and Exercise 20).

- S Although computers can take the tedium out of the process of plotting vector
D fields, there is one aspect of vector fields that make them much harder to plot than slope
fields. By definition, the vectors in a vector field have various lengths as determined

by the system of equations. Some of the vectors can be quite short while others can be
quite long. Therefore if we plot a vector field by evaluating it over a regular grid in the
plane, we often get overlapping vectors. For example, Figure 2.19 is a plot of the vector
field F(y, v) = (v, —y) for the simple harmonic oscillator. We don’t need to take many
points before we end up with a picture that is basically useless.

To avoid the confusion of overlapping vectors in our pictures of vector fields, we
often scale the vectors so they all have the same (short) length. The resulting picture
is called the direction field associated to the original vector field. Figure 2.20 is a plot
of the direction field associated to the vector field F(y, v) = (v, —y) for a simple har-
monic oscillator.

Figure 2.18
Selected vectors in the vector
field F(y, v) = (v, —y)

Figure 2.19 Figure 2.20
Vector field for F(y, v) = (v, —Y). Direction field for F(y, v) = (v, —Y).
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170 CHAPTER 2 First-Order Systems

While the direction field gives a picture that is much easier to visualize than the
vector field, there is some loss of information. The lengths of a vector in the vector field
give the speed of the solution as it passes through the associated point in the plane. In
the direction field all information about the speed of the solution is lost. Because of the

artistic advantages of using the direction field, we are almost always willing to live with
this loss.

Examples of Systems and Vector Fields

In general, for a system with two dependent variables of the form

dx Fx.y)
at
dy

a—g(X,y),

we introduce the vector Y (t) = (x(t), y(t)) and the vector field

FOY) =FX, y) = (f(x,y),9(x, ).

With this notation the system of two equations may be written in the compact form

dx
dy | dt Foy) =F(),
dt dy g(x, y)
dt
or even more economically as
ay oY)
dt '
Elementary (but important) examples
The system
dx y
dt
dy
at y

yields the vector field F(x, y) = (X, y), and the vectors in the vector field always point
directly away from the origin (see Figure 2.21). On the other hand, the system

dx

i

dy

it =
yields the vector field G(x, y) = (—x, —Y), and the vectors in the vector field always
point toward the origin (see Figure 2.22).

-y
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Figure 2.21 Figure 2.22 Figure 2.23
Direction field for F(x, y) = (X, y). Direction field for G(x, y) = (—x, —y). Direction field for H(x, y) = (—x, —2y).
The system
dx _
dt
dy
at =Y

also yields a vector field H(x, y) = (—x, —2y) which (more or less) points toward the
origin (see Figure 2.23). We will soon see that the trained eye can distinguish important
differences between the vector field G(x, y) in Figure 2.22 and the vector field H(x, y)
in Figure 2.23.

The Geometry of Solutions

We can think of the picture of a vector field or a direction field as a picture of a system
of differential equations, and we can use this picture to sketch solution curves of the
system. To be more precise, let’s consider a system of the form

dx — . y)
at Y
dy

E—Q(X,y)-

As we have seen, this system yields the vector field F(x, y) = (f (X, y), g(X, y)). Let-
ting Y (t) = (x(t), y(t)), the system can be written in terms of the vector equation

dy

— =F(Y).

it (Y)
Interpreting this vector equation geometrically is the key to a geometric understanding
of this system of differential equations. If we think of a solution Y (t) = (x(t), y(t)) as
a parameterization of a curve in the xy-plane, then dY /dt yields the tangent vectors of
the curve. Therefore the equation dY/dt = F(Y) says that the tangent vectors for the
solution curves are given by the vectors in the vector field.
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N

Figure 2.24 Figure 2.25
A direction field that spirals A solution curve corresponding
about the origin. to the initial condition indicated.

One consequence of this geometric interpretation is that we can go directly from
a vector field F (or its direction field) to a sketch of the solution curves of the equation
dY/dt = F(Y) without ever knowing a formula for F (see Figures 2.24 and 2.25).

Metaphor of the parking lot

To help visualize solution curves of a system from this point of view, imagine an in-
finite, perfectly flat parking lot. At each point in the lot, an arrow is painted on the
pavement. These arrows come from the vector field F(Y). As you drive through the
parking lot, your instructions are to look out your window at the ground and drive so
that your velocity vector always agrees with the arrow on the ground. (Imagine you
are a professional driver in a closed parking lot.) You steer so that your car goes in the
direction given by the direction of the arrow, and you go as fast as the length of the
vector indicates. As you move, the arrow outside your window changes, so you must
adjust the speed and direction of the car accordingly. The path you follow is the solu-
tion curve associated to a solution of the system. In fact, as you will soon see, you can
use exactly this idea to sketch solution curves of a system using only this interpretation
of the vector field. (Do not text while you do these exercises.)

v A solution curve of the harmonic oscillator
For example, in Section 2.1 we saw that the functions y(t) = cost and v(t) = —sint

satisfy the simple harmonic oscillator system
%\ dy
y at - v
dv
- aa =

Since y2 + v% = 1, we know that the vector-valued function

Figure 2.26 Y(t) = (v(t ) — t _sint

The unit circle in the ® = (y®), v(®) = (cost, —sint)

yv-plane is a solution curve ~ sweeps out the unit circle centered at the origin of the yv-plane in a clockwise fashion.
for the harmonic oscillator As we see in Figure 2.26, the velocity vectors for this motion agree precisely with the

system vectors in the vector field F(y, v) = (v, —Y).
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F A solution curve for a predator-prey system
4 In Section 2.1 we plotted the solution curve to the system
dR
— =2R —1.2RF
2 dt
dF
2 4 at *
corresponding to the initial condition (Rg, Fo) = (1, 0.5). In Figure 2.27 we see the
Figure 2.27 relationship between the solution curve and the vectors in the vector field from the

predator-prey system.

Equilibrium Solutions

Just as there are special points—equilibrium points—on the phase line, there are distin-
guished points in the phase plane of systems of the form

Xty
at - Y
dy

E—Q(X,y)-

These points also correspond to constant solutions.

DEFINITION  The point Yy is an equilibrium point for the system dY/dt = F(Y) if
F(Yo) = 0. The constant function Y(t) = Y is an equilibrium solution. m

Equilibrium points are simply points at which the right-hand side of the system
vanishes. If Yq is an equilibrium point, then the constant function

Y(t) =Yy forallt

is a solution of the system. To verify this claim, note that the constant function has
dY/dt = (0, 0) for all t. On the other hand, F(Y(t)) = F(Yp) = (0, 0) at an equi-
librium point. Hence equilibrium points in the vector field correspond to constant solu-
tions.

Computation of equilibrium points

The system
d_x =3X +
dt y
dy
a7

has only one equilibrium point, the origin (0, 0). To see why, we simultaneously solve
the two equations

xX+y=0
X —y=0,
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which are given by the right-hand side of the system. (Add the first equation to the sec-
ond to see that x = 0, then use either equation to conclude that y = 0.) If we look
at the vector field for this system, we see that the vectors near the origin are relatively
short (see Figure 2.28). Thus solution curves move slowly as they pass near the origin.
Although all nonzero vectors in the direction field are the same length by definition,
we can still tell that there must be an equilibrium point at the origin because the di-
rections of the vectors in the direction field change radically near the origin (0, 0) (see

Figure 2.29).
y y
xxsix.\\‘—» YIS W Uatusdiag
— N T T T
5/’/’//¢+\x\\\;>—”“' /////Jl\\ ST
/ ¥ v \\‘ — o < /J - > >
//////*‘ _,/v/;' o o /¢\ —_ —> >
gl Ly « Ty > > > «
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Figure 2.28 Figure 2.29
Vector field. Direction field.

As a solution passes near an equilibrium point, both dx/dt and dy/dt are close
to zero. Therefore, the x (t)- and y(t)-graphs are nearly flat over the corresponding time

interval (see Figure 2.30).

y
13
X,y
// "
S ——— _— % X
=3 3 y®
. / ; t
—3d 2 4
3 1 x®
Figure 2.30
As a solution curve travels near an equilibrium point, the x(t)- and y(t)-graphs are
nearly flat.
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A Population Model for Two Competing Species

To illustrate all of the concepts introduced in this section, we conclude with an analysis

of the system
d
X =2X (1— i) — Xy

dt 2
3—¥=3y(1—%>—2xy.

We think of x and y as representing the populations of two species that compete for
the same resource. Note that, left on its own, each species evolves according to a lo-
gistic population growth model. The interaction of the two species is modeled by the
xy-terms in both equations. For example, the effect of the population y on the rate of
change of x is determined by the term —xy in the dx /dt equation. This term is negative
since we are assuming that the two species compete for resources. Similarly, the term
—2xy determines the effect of the x population on the rate of change of y. Since x and
y represent populations, we focus our attention on the solutions whose initial conditions
lie in the first quadrant.

Finding the equilibrium points
First, we find the equilibrium points by setting the right-hand sides of the differential
equations to zero and solving for x and y in the resulting system of equations

2x<1—g>—xy=0

3y<1—%>—2xy:0.

These equations can be rewritten in the form

X2—-x—-y)=0
y@3—y—2x)=0.

The first equation is satisfied if x = 0 orif 2 — x — y = 0, and the second equation is
satisfied if eithery =00or3—y — 2x = 0.

Suppose first that x = 0. Then the equation y = 0 yields an equilibrium point at
the origin, and the equation 3 — y — 2x = 0 yields an equilibrium point at (0, 3).

Now suppose that 2 — x — y = 0. Then the equation y = 0 yields an equilibrium
point at (2, 0), and the equation 3 — y — 2x = 0 yields an equilibrium point at (1, 1).
(Solve the equations 2 — x —y = 0 and 3 — y — 2x = 0 simultaneously.) Hence the
equilibrium points are (0, 0), (0, 3), (2,0), and (1, 1).

Sketching the phase portrait

Next, we use the direction field to sketch solution curves. To get a good sketch of the
phase portrait, we must choose enough solutions to see all the different types of solution
curves, but not so many curves that the picture gets messy (see Figure 2.31). It is ad-
visable to make the sketch with the aid of a computer or calculator, and in Section 2.5
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176 CHAPTER 2 First-Order Systems

we will generalize Euler’s method to numerically approximate solution curves. Note
that the phase portrait for this competing species model suggests that for most initial
conditions, one or the other species dies out and the surviving population stabilizes.

y Figure 2.31
3 Direction field and phase portrait for the competing
species model
dx X
2 =2 (1-3) -
dy y
) a_3y(1—§>—2xy.

Note that this phase portrait suggests that for most
initial conditions, one or the other species dies out and
x  the surviving population stabilizes.

Just as we did in Chapter 1 when we started sketching slope fields and graphs of
solutions, we should pause and wonder if sketches such as this one represent the true
behavior of the solutions. For example, how do we know that distinct solution curves
in the phase plane do not cross or even touch? As in Chapter 1 the answer follows from
a powerful theorem regarding the uniqueness of solutions. We will study this theorem
in Section 2.5, but in the meantime, you should assume that, if the differential equations
are sufficiently nice, then distinct solution curves will not cross or even touch.

X(t)- and y(t)-graphs

As we saw in Section 2.1, the phase portrait is just one way of visualizing the solutions
of a system of differential equations. Not all information about a particular solution can
be seen by studying its solution curve in the phase plane. In particular, when we look at
a solution curve in the phase plane, we do not see the time variable, so we do not know
how fast the solution traverses the curve. One way to get information about the time
variable is to watch a computer sketch the solution curve in real time. Another way is
to view its x(t)- and y(t)-graphs.

In Figure 2.32, we see the x(t)- and y(t)-graphs for two solutions of the compet-
ing species model. For the initial condition corresponding to the graph on the left, the
X population does not die out until at least t = 15, but for the initial condition corre-
sponding to the graph on the right, the y population is essentially extinct after t = 8.

Even though solution curves and x (t)- and y(t)-graphs display different informa-
tion about solutions, it is important to be able to connect the two different represen-
tations. The two solution curves that come from these particular initial conditions are
shown in Figure 2.33. From the solution curve corresponding to the initial condition
on the right, we can conclude that the solution approaches the equilibrium point (2, 0).
In particular, for this initial condition the y population becomes extinct. The solution
for the left initial condition approaches the equilibrium point (0, 3), so the x population
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Figure 2.32

The x(t)- and y(t)-graphs for two solutions with nearby initial conditions.
Note that these graphs illustrate distinctly different long-term behaviors.

becomes extinct. We observed the same long-term behavior when we plotted the x(t)-
and y(t)-graphs (see Figure 2.32).

In the phase plane we also note that the solution curve for the initial condition on
the left crosses the line y = x. In other words, from the solution curve in the phase
plane, we can see from the phase portrait that there is one time t at which the two pop-
ulations are equal. However, to determine that particular time, we must consult the
corresponding x (t)- and y(t)-graphs. Similarly, for the other initial condition, we know
that the x population is always larger than the y population.

y Figure 2.33
Two solution curves for solutions to the system
dx X
a =2 (t-3)-x
dy y
d_t_3y<1_ §) — 2Xy.

These curves correspond to solutions with
nearby initial conditions. The long-term
behavior of these two solutions is also
illustrated in Figure 2.32.

Qualitative Thinking

In all the systems considered so far, the independent variable has not appeared on the
right-hand side. As we said in Section 1.6, systems with this property are said to be au-
tonomous. The word autonomous means self-governing, and an autonomous system is
self-governing because it evolves according to differential equations that are determined

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



178 CHAPTER 2 First-Order Systems

entirely by the values of the dependent variables. An important geometric consequence
of this observation is the fact that the vector field associated with an autonomous system
depends only on the dependent variables and not explicitly on the value of the indepen-
dent variable. Therefore, we do not need to consider the independent variable when we
sketch the vector field, the direction field, the solution curves, or the phase portrait.

Although we will continue to focus on autonomous systems for the remainder of
this chapter and throughout Chapter 3, many important systems are nonautonomous.
We will first encounter nonautonomous systems in Chapter 4. In the sections of this
chapter that follow this one, we complement the geometric approach introduced here
with analytic and numerical approaches.

EXERCISES FOR SECTION 2.2

In Exercises 1-6:
(a) Determine the vector field associated with the first-order system specified.

(b) Sketch enough vectors in the vector field to get a sense of its geometric structure.
('You should do this part of the exercise without the use of technology.)

(c) Use HPGSystemSolver to sketch the associated direction field.

(d) Make a rough sketch of the phase portrait of the system and confirm your answer
using HPGSystemSolver.

(e) Briefly describe the behavior of the solutions.

1. dx 2. dx 3. dy
a ! a = * T
dy dy dv
at ~° T at Y

4. du —u—1 5. dx —x 6. dx .
dt dt dt
dv dy dy
a_v—l a——y d_t_zy

7. Convert the second-order differential equation

d2y

az V=0

into a first-order system in terms of y and v, where v = dy/dt.
(a) Determine the vector field associated with the first-order system.

(b) Sketch enough vectors in the vector field to get a sense of its geometric struc-
ture. (You should do this part of the exercise without the use of technology.)

(c) Use HPGSystemSolver to sketch the associated direction field.
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(d) Make a rough sketch of the phase portrait of the system and confirm your an-
swer using HPGSystemSolver.

(e) Briefly describe the behavior of the solutions.

8. Convert the second-order differential equation

d?y
— +2y=0
dt2 +2y
into a first-order system in terms of y and v, where v = dy/dt.
(a) Determine the vector field associated with the first-order system.

(b) Sketch enough vectors in the vector field to get a sense of its geometric struc-
ture. (You should do this part of the exercise without the use of technology.)

(c) Use HPGSystemSolver to sketch the associated direction field.

(d) Make a rough sketch of the phase portrait of the system and confirm your an-
swer using HPGSystemSolver.

(e) Briefly describe the behavior of the solutions.

9. Consider the system

dx 2L

- 2

it X+ 2y

dy _

dt
and its corresponding direction field. ) 2

(a) Sketch a number of different solution
curves on the phase plane.

-y

(b) Describe the behavior of the solu- _oL
tion that satisfies the initial condition
(X0, Yo) = (=2, 2).
10. Consider the system

dx 2

29

at X+Yy

dy

dt
and its corresponding direction field. e 2

(a) Sketch a number of different solution
curves on the phase plane.

_2y

(b) Describe the behavior of the solu- Lol
tion that satisfies the initial condition
(X0, Yo) = (0, 2).
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11. Eight systems of differential equations and four direction fields are given below. De-
termine the system that corresponds to each direction field and state briefly how you
know your choice is correct. You should do this exercise without using technology.

(i) dx (i) dx 2 (iii) dx (iv) dx
— = =X — =x=-1 — =X 2 — =2X
dat dt at <t dt
dy dy dy dy
—_— = —1 —_— = _——= = —_— =
at Y at 7 at = Y at Y
(v) dx (vi) dx (vii) dx 2 (viii) dx
— = —=x-1 —=x"-1 — =X-2
at ~ at at ~~ at 7
dy dy dy dy
—:2 _— = — _— = — _— = —
at Y at Y at =Y dt
@) y (0) y
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\\,\4;,/22';;;\\\ PR i P e I I
NN S A A AN T ol e D
NN A A S N e a s a oa
\\\¢//l‘7'/’/ LN e _ __///»/J
I R B N CHEC ey N
"\*\/a/a/a/‘/+\.\>—> b l N A T
_?,v/VH'\v\v\v\‘\ i -7 > POAN '¥1T //,/1/,»2,
St X A v _» X T P A Ay oo s
/'/'/‘?b\‘\'\\\?/‘/'/' et
A PENNNNN o, el e
//M\_\Zz_\\?f//v e B
VA A A A AV 25 25 & B B 4
© y (d) y
XA ttrrrz —+
N R AL LR
AL UL UL trrrrn CHLLAA AN
NN e AT LR R I
AN N U U U T B S S P P 4 “““““““551§}\:
S N N P A n R ERaR R EPEDe PENR NN
1 1 1 b= x 1 1 1 b= x
2w #ly g IRV RN e R AN A
AR RN ::I:tii??f???
KX A A AT LN NN N
SN NN L U S S
A PV VNN
wRRRRRNYY A
AAAAES S EINNNN N L
YRV —27

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2.2 The Geometry of Systems 181

12. Consider the modified predator-prey system

dR R
9R _or(1-RY) _12rF
w-R(1-3)

dF

9F  F.io9RF

dt +

discussed in Section 2.1. Find all equilibrium solutions.

In Exercises 13-18,
(a) find the equilibrium points of the system,
(b) using HPGSystemSolver, sketch the direction field and phase portrait of the
system, and
(c) briefly describe the behavior of typical solutions.

13 OI—X=4x—7y+2 W dR R 7F 1
dt dt
Z—¥=3x+6y—1 Z—:=3R+6F—12
5. dz_ 16. d_xzy
dt dt
(:j—zfz—erw 2—¥=X—x3—y
17. %:y 18. 2—)t(=y(x2+y2—1)
z—i/:—cosx—y j—)t/:—x(szryz—l)
19. Convert the second-order differential equation
%+23—:—3x+x3:0

into a first-order system in terms of x and v, where v = dx/dt.
(a) Determine the vector field associated with the first-order system.
(b) Find all equilibrium points.
(c) Use HPGSystemSolver to sketch the associated direction field.

(d) Use the direction field to make a rough sketch of the phase portrait of the sys-
tem and confirm your answer using HPGSystemSolver.

(e) Briefly describe the behavior of the solutions.

20. Show that all vectors in the vector field F(y, v) = (v, —Yy) are tangent to circles
centered at the origin (see Figure 2.18). [Hint: You can verify this fact using slopes
or the dot product of two vectors.]
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21. Consider the four solution curves in the phase portrait and the four pairs of x(t)- and
y(t)-graphs shown below.

Match each solution curve with its corresponding pair of x (t)- and y(t)-graphs. Then
on the t-axis mark the t-values that correspond to the distinguished points along the

curve.
@ y () y
2 2#
1 1,‘, /\
— = t
oyl ) i\
21 —2
© 4 y (C) y
24 2

22. Use the DETool s program GraphingSolutionsQui z to practice sketching the
X (t)- and y(t)-graphs associated to a given solution curve in the xy-phase plane.

In Exercises 23-26, a solution curve in the xy-plane and an initial condition on that
curve are specified. Sketch the x(t)- and y(t)-graphs for the solution.

23. 24,y

X
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25. y 26. y
3 2

] ] ]

3 2 -1 1 2 3 !

27. The following graphs are the x(t)- and the y(t)-graphs for a solution curve in the
xy-phase plane. Sketch that curve and indicate the direction that the solution travels
as time increases.

2.3 THE DAMPED HARMONIC OSCILLATOR

In this section we describe an analytic technique that applies to one of the most impor-
tant models in this book—the damped harmonic oscillator. This second-order differen-
tial equation is used to model phenomena as varied as mass-spring systems, RLC cir-
cuits in electric circuit theory, and the blood glucose regulatory system in humans.

For example, consider the suspension in an automobile. It smooths out the ride
on a bumpy road and helps keep the tires in contact with the surface of the road. We are
mainly concerned with the spring and shock absorber in the suspension (see Figures
2.34 and 2.35). The springs absorb the forces caused by bumps in the road and keep
the tires in contact with the road. The shock absorber consists of a piston that moves
through a reservoir of oil. The oil slows the movement of the piston and the spring (see
Figure 2.36). Consequently, it absorbs the force caused by the bump.

We start with the simple harmonic oscillator that we discussed in Section 2.1. As
before, we let y(t) denote the position of the mass as measured from the rest position
of the spring. The undamped harmonic oscillator equation is

d?y

— 7 — _k
M at2 v

where m is the mass and k is the spring constant.
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v
Figure 2.34 Figure 2.35 Figure 2.36
Location of the shock absorber. Automobile suspension. Shock absorber.

In Sections 2.1 and 2.2, we saw that this equation has solutions that involve sine
and cosine functions. Such solutions oscillate forever with constant amplitude, and
therefore they correspond to perpetual motion. To make the model more realistic, we
include some form of friction or damping. A damping force slows the motion, dissi-
pating energy from the system. A realistic model including air resistance and frictional
forces is very complicated because friction is a surprisingly subtle phenomenon.* In
this model, we lump together all of the damping forces and assume that the strength of
this force is proportional to the velocity. Thus the damping force is given by

(&)

where b > 0 is called the damping coefficient. The minus sign indicates that the damp-
ing pushes against the direction of motion, always reducing the speed. The parameter b
can be adjusted by adjusting the viscosity of the medium through which the mass moves
(for example, by putting the whole mechanism in the bathtub).

To obtain the new model, we use Newton’s second law and get

dy _ d?%
—k
Y =bg at a2
which is typically written as
4%y dy
b ky =0.
"o TPar Y=

This second-order differential equation is called the damped harmonic oscillator. To
simplify the notation, we often let p = b/m and g = k/m, and rewrite the equation as

d?y  dy
qz PGty =0

*See Jacqueline Krim, “Friction at the Atomic Scale,” Scientific American, Vol. 275, No. 4, Oct. 1996 for
an interesting discussion of friction.

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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We can convert this second-order equation into a system by letting v denote the
velocity. Then v = dy/dt, and we have

dy

v _,

dt

dv

— =-—qy — pv.

it Al
Guessing Solutions

To get an idea of the behavior of solutions of the damped harmonic oscillator, it would
be nice to have some explicit solutions, and we can use another time-honored guess-
and-test method to obtain some. The idea behind this method is to make a reasonable
guess of the form of the solution and then to substitute this guess into the differential
equation. The hope is that we can obtain a solution by adjusting the guess.

Consider the equation

d?y | .dy

qi2 +3dt +2y =0.
A solution y(t) is a function whose second derivative can be expressed in terms of
y, dy/dt, and constants. The most familiar function whose derivative is almost ex-
actly itself is the exponential function, so we guess that there is a solution of the form
y(t) = e’ for some choice of the constant s. (In engineering courses, the variable s
is typically used. In Chapter 3, we sometimes use the letter s, and sometimes we use
the greek letter 1. The reason for this schizophrenic behavior will become clear at that
time.) To determine which (if any) choices of s yield solutions, we substitute y(t) = eSt
into the left-hand side of the differential equation and obtain

d2y dy d2(est) d(est) st

dt2 dt Y= +3 dt +2()
= 565! 4 3seSt 4 2¢t
— (s? + 3s + 2)est.

In order for y(t) = e to be a solution, this expression must equal the right-hand side
of the differential equation for all t. In other words, we must have

(s> +3s+2)et =0
for all t. Now, et = 0 for all t, so we must choose s so that
s24+35+2=0.

This equation is satisfied only if s = —1 or s = —2. Hence this process yields two
solutions, y1(t) = e~ and y,(t) = e~2t, of this equation.
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v
2A,
T S A | S A
Y \ 2
_oi

Figure 2.37

The two solution curves that correspond to the
solutions yq (t) = et and y»(t) = e 2L, Both
curves lie on lines in the yv-plane.

These solutions can be converted into solutions of the system by letting

_dn

dy;
A TE at

—t
and =
T

V1 22,

S0, Y1(t) = (ya(t), vi(t)) = (67", —e™") and Ya(t) = (y2(t), va(t)) = (672, —2e~2")
are solutions of the associated system.

The solution curves and the y(t)- and v(t)-graphs for these two solutions are
given in Figures 2.37-2.39. The direction field indicates that all solutions tend to the
origin. This is no surprise because the damping reduces the speed. The two particu-
lar solutions we have computed are special because the solution curves lie on lines in
the phase plane. From the direction field we can see that most solution curves are not
straight lines.

Y1, v1 Y2, v2
2 2+
— t — t
1 1
-1 v1(t) -1+ vp (1)
-2+ ) ,‘,
Figure 2.38 Figure 2.39
The y(t)- and v(t)-graphs for the solution The y(t)- and v(t)-graphs for the solution
yi(t) =e”t. yo(t) = e,
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How General is this Method?

This guess-and-test method leads to many questions. For example, what initial-value
problems can we solve using this approach? What happens if the roots of the result-
ing quadratic equation are complex numbers rather than real numbers? In Chapter 3,
we study linear systems (including the damped harmonic oscillator) in great detail. We
will see that this method can be generalized so that we can always find an analytic ex-
pression for the general solution of any damped harmonic oscillator equation.

EXERCISES FOR SECTION 2.3

In Exercises 1-4, a harmonic oscillator equation for y(t) is given.

(a) Using HPGSystemSolver, sketch the associated direction field.

(b) Using the guess-and-test method described in this section, find two nonzero solu-
tions that are not multiples of one another.

(c) For each solution, plot both its solution curve in the yv-plane and its y(t)- and
v(t)-graphs.

d?y _dy d?y _dy
1. —2 17X f10y = 2. — 2 452 =
57 T g T 10y o t55, 6y =0
d?y  dy d?y | .dy
sy = 4 — L 162 47y =
3 dt2+ dt+y 0 dt2+6dt+ y=0

In the damped harmonic oscillator, we assume that the coefficients m, b, and k are pos-
itive. However, the rationale underlying the guess-and-test method made no such as-
sumption, and the same analytic technique can be used if some or all of the coefficients
of the equation are negative. In Exercises 5 and 6, make the same graphs and perform
the same calculations as were specified in Exercises 1-4. What is different in this case?

d2y _dy d%y | dy
5 —+3——-10y=0 6. — +—-2y=0
a2 Foar Y a2 Tar ~
7. Consider any damped harmonic oscillator equation
d?y  dy

(a) Show that a constant multiple of any solution is another solution.
(b) Hlustrate this fact using the equation
d?y | . dy
— 4+3—=+4+2y=0
dt2 + at
discussed in the section.

(c) How many solutions to the equation do you get if you use this observation
along with the guess-and-test method described in this section?

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



188 CHAPTER 2 First-Order Systems

8. Consider any damped harmonic oscillator equation

dy  dy
m— +b— +ky =0.
a2 PP Y
(a) Show that the sum of any two solutions is another solution.
(b) Using the result of part (a), solve the initial-value problem
d?y . dy
—= +3—=+2y=0, 0) =2, 0) =-3.
gz TSar T y(0) v(0)
(c) Using the result of part (a) in Exercise 7 along with the result of part (a) of this
exercise, solve the initial-value problem
d?y . dy
— 4+3—=+4+2y=0, 0) =3, 0) = —5.
dt2+dt+y y(0) v(0)

(d) How many solutions to the equation
dy | .dy
— +3-—+2y=0
a e T

do you get if you use the results of Exercise 7 and this exercise along with the
guess-and-test method described in this section?

In Exercises 9 and 10, we consider a mass sliding on a frictionless table between two
walls that are 1 unit apart and connected to both walls with springs, as shown below.

Let k; and ko be the spring constants of the left and right spring, respectively, let m
be the mass, and let b be the damping coefficient of the medium the spring is sliding
through. Suppose L1 and L are the rest lengths of the left and right springs, respec-
tively.

9. Write a second-order differential equation for the position of the mass at time t.
[Hint: The first step is to pick an origin, that is, a point where the position is 0. The
left-hand wall is a natural choice.]

10. (a) Convert the second-order equation of Exercise 9 into a first-order system.
(b) Find the equilibrium point of this system.
(c) Using your result from part (b), pick a new coordinate system and rewrite the
system in terms of this new coordinate system.
(d) How does this new system compare to the system for a damped harmonic os-
cillator?
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2.4 ADDITIONAL ANALYTIC METHODS FOR SPECIAL SYSTEMS

When we studied first-order differential equations in Chapter 1, we saw that we could
sometimes derive a formula for the general solution if the differential equation had a
special form. When that happened, the analytic techniques for computing the solutions
were especially adapted to the form of the differential equation.

For systems of differential equations, the special forms for which we can apply
analytic techniques to find explicit solutions are few and far between. Because they
are rare, these special systems are very valuable. We can use them to develop intuition
(even wisdom) that we then use when studying systems for which analytic techniques
are unavailable.

The most important class of systems that we can solve explicitly, the linear sys-
tems, is studied at length in Chapter 3. In this section we discuss analytic techniques
that apply to very special classes of systems. We use the formulas that we obtain to
become more familiar with solution curves and x (t)- and y(t)-graphs.

Checking Solutions

As noted above, finding formulas for a solution of a system can range from difficult to
impossible. However, once we have the formulas, checking that they give a solution is
not so bad. This observation is important for two reasons. First, we can double-check
the (sometimes daunting) algebra we did while calculating the formulas. Second, and
more important, many of the “techniques” for solving systems are really just sophisti-
cated guessing schemes. Once we make a guess, we test to see if our guess actually is
a solution.
Consider the system

dx Y+
dt y
dy
— = —3x —by.
at =
We can rewrite this system in vector notation as
dy
— =F(Y
it (Y),
where Y (t) = (x(t), y(t)) and F(x, y) = (—x + Y, —3x — 5y). Now suppose someone

says that
Y(©) = (x(1),y@t) = (" -3, —3e74 3¢

is a solution to this system.
To verify this claim, we compute the derivatives of both x (t) and y(t). We have

dx dEe ™ —3e?)

dt dt -
dy d(-3e ™ +3e?)
dt dt -

4™ 4 e~

12~ —pe &,
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We must also substitute x (t) and y(t) into the right-hand side of the system. We get

x4y =—("" -3 4 (3 +3e7%) = —de7H 1 6o
and
—3x —5y = —3(e™" —3e7*) — 5(—3e " 4+ 3e7) = 12¢7* —6e .

Thus dx /dt is equal to —x + y and dy/dt is equal to —3x — 5y for all t. Hence
Y(t) = (x(1), y(t) = (7 — 3¢, —3e4 4 372

is a solution.
Note that Y (0) = (—2, 0). Consequently we have checked that Y (t) is a solution
of the initial-value problem

dv _ FY), Y(0) = (-2,0).

dt

As a second example, consider the system
dx
2 —
at =Y
dy
— =X-2y,
dt y

and suppose we want to see if the function Y (t) = (e~t, 3e~!) is a solution that satisfies
the initial condition Y (0) = (1, 3).

To check that Y(t) satisfies the initial condition, we evaluate it att = 0. This
gives Y(0) = (e79,3e7%) = (1, 3). Next we check to see if the first equation of the
system is satisfied. We have

dx de™ ot
dt — dt ’
Substituting x (t) and y(t) into the right-hand side of the equation for dx /dt gives
2x —y=2et—-3et=_—¢t
Thus the first equation holds for all t. Finally, we must check the second equation in
the system. We have
dy d@@e™
dt ~ dt

—3e7

and
X—2y=e'—2@B3e" = —5e '

Since the second equation is not satisfied, the function Y(t) = (e, 3e™!) is not a
solution of the initial-value problem.

The moral of these two examples is very important and often overlooked. Given
a formula for a function Y(t), we can always check to see if that function satisfies the
system simply by direct computation. This type of computation is certainly not the most
exciting part of the subject, but it is straightforward. We can immediately determine if
a given vector-valued function is a solution.
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Decoupled Systems

One of the things that makes systems of differential equations so difficult (and so in-
teresting) is that the rate of change of each of the dependent variables often depends
on the values of other dependent variables. However, sometimes there is not too much
interdependence among the variables, and in that case we can often derive the general
solution using techniques from Chapter 1.

A system of differential equations is said to decouple if the rate of change of one
or more of the dependent variables depends only on its own value.

A completely decoupled example
Consider the system

dx _
dt
dy_
dt

—2X

Since the equation for dx /dt involves only x and the equation for dy/dt involves only
y, we can solve the two equations separately. When this happens, we say the system is
completely decoupled. The general solution of dx /dt = —2x is x (t) = kie 2, where
ky is any constant. The general solution of dy/dt = —y is y(t) = koe™!, where k is
any constant. We can put these together to find the general solution

(X(1), y(1)) = (ke ™%, koe™)

of the system. This general solution has two undetermined constants, k; and ka. These
constants can be adjusted so that any given initial condition can be satisfied. For exam-
ple, given the initial condition Y (0) = (1, 1), we let k; = 1 and k, = 1 to obtain the

solution
—2t
e
(1)
e

In Figure 2.40 we plot this curve along with the direction field associated to the vec-
tor field F(x, y) = (—2x, —y). From the formula for Y(t), we note that Y (t) gives a
parameterization of the upper half of the curve x = y? in the plane because

(y)? = H? =e 2 =x().

We only obtain the upper half of this parabola because y(t) = e~t > 0 for all t.

The solution curve in the phase plane hides the behavior of our solution with re-
spect to the independent variable t. The solution actually tends exponentially toward
the origin. Since we have the formulas for x(t) and y(t), it is not difficult to sketch the
X (t)- and y(t)-graphs (see Figure 2.41).
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X,y
A
-1 ‘ y(t)
\ X(t)
L ; — t
-1 2 4
Figure 2.40 Figure 2.41
The solution curve The x(t)- and y(t)-graphs for the solution
Yt =2 e, (x(®). y(t) = (=% e,
A partially decoupled example
Our next example is the system
dx
— =2Xx+3
at - T
dy
—= = —4y.
at

For this system the rate of change of x depends on both x and y, but the rate of change
of y depends only on y. We say that the dependent variable y decouples from the sys-
tem and the system is partially decoupled.

The general solution of the equation for y is y(t) = koe~, where k is an arbi-
trary constant. Substituting this expression for y into the equation for x gives

dx
=2 = 2% + 3kpe ™.
at + 3Ko

This is a first-order linear equation which we can solve using the methods discussed in
Sections 1.8 and 1.9. From the Extended Linearity Principle, we know that we need one
particular solution x,(t) of the nonhomogeneous equation as well as the general solu-
tion of the associated homogeneous equation. To find x,(t), we rewrite the equation

as y
X
—= 2% = 3kpe M,
dt 2
and guess a solution of the form x(t) = ae—*t, Substituting this guess into the equa-
tion yields
—4oe — 206~ = 3koe ™™,

which simplifies to
—6ae ™ = 3k,
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Therefore, x,(t) is a solution if « = —k,/2. The general solution of the associated

homogeneous equation is
k]_eZt,

where ky is an arbitrary constant. Combining x,(t) with the general solution of the
homogeneous equation gives the general solution

X(t) = kye® — Tkoe

of the nonhomogeneous equation.
Putting this formula for x(t) together with the general solution of the equation
for y, we obtain the general solution

X)) = kleZt — %kze“"

y(t) = ke ™™

of the partially decoupled system. The constants k1 and k, can be adjusted to obtain
any desired initial condition. For example, suppose we have x(0) = 0 and y(0) = 1.
To find the appropriate values of k1 and ko, we substitute t = 0 into the formula for the
general solution and solve. That is,

x(0) =0 = ki — ko
y(0) =1=ky,

which gives k; = 1/2 and ko = 1. So the solution of the initial-value problem is

x(t) = e?t — le7¥

y(t) =e 4.

For the initial condition (x(0), y(0)) = (—1/2, 1), we can follow the same steps
as above, obtaining k; = 0 and ko = 1. The formula for this solution is

X(t) = —3e~*

y(t) = e .

Note that y(t)/x(t) = —2 for all t and that the solution tends toward the equilibrium
point at the origin as t increases and toward infinity as t decreases. Since the ratio y/x
is constant, the solution curve lies on a line through the origin in the phase plane (see
Figure 2.42). The fact that this system has a solution curve that lies on a line is an
artifact of the simple algebra of the equations. This sort of special geometry will be
extensively exploited in Chapter 3.
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X,y
1
y(®)
R SR b X -t
-1 1 1
X(t)
A
—14 14+

Figure 2.42
Even though the x(t)- and y(t)-graphs are graphs of exponential functions, the
corresponding solution curve lies on a line in the xy-phase plane.

EXERCISES FOR SECTION 2.4

In Exercises 1-4, we consider the system

dx
— =2 2
at X+ 2y
dy
a_x—|r3y.

For the given functions Y (t) = (x(t), y(t)), determine if Y (t) is a solution system.
L (x(1), y(t)) = (2¢', —e")

2. (x(1), y(t)) = (3e? +et, —el +e*)

3. (X(1), y()) = (2e' — e, —et 4 %)

4. (x(1), y(1)) = (de' +e*, —2et +e*)

In Exercises 5-12, we consider the partially decoupled system

dx

— =2

i X+y
dy
a7

5. Although we can use the method described in this section to derive the general so-
lution to this system, why should we immediately know that Y (t) = (x(t), y(t)) =
(€% —e~t e~2) is not a solution to the system?

6. Although we can use the method described in this section to derive the general so-
lution to this system, is there an easier way to show that Y(t) = (x(t), y(t)) =
(4e? — et 3e~1!) isasolution to the system?
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10.

11.

12.
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. Use the method described in this section to derive the general solution to this system.

(a) Can you choose constants in the general solution obtained in Exercise 7 that
yield the function Y(t) = (e, 3e7")?

(b) Suppose that the result of Exercise 7 was not immediately available. How
could you tell that Y (t) = (e~t, 3e~!) is not a solution?

(a) Using the result of Exercise 7, determine the solution that satisfies the initial
condition Y (0) = (x(0), y(0)) = (1, 0).

(b) In the xy-phase plane, plot the solution curve associated to this solution.

(c) Plot the corresponding x (t)- and y(t)-graphs.

(a) Using the result of Exercise 7, determine the solution that satisfies the initial
condition Y(0) = (x(0), y(0)) = (-1, 3).

(b) In the xy-phase plane, plot the solution curve associated to this solution.

(c) Plot the corresponding x (t)- and y(t)-graphs.

(a) Using the result of Exercise 7, determine the solution that satisfies the initial
condition Y (0) = (x(0), y(0)) = (0, 1).

(b) Using HPGSystemSolver, plot the corresponding solution curve in the xy-

phase plane and compare the result with the curve that you would have drawn
directly from the direction field for the system.

(c) Using only the solution curve, sketch the x (t)- and y(t)-graphs.
(d) Compare your sketch with the x (t)- and y(t)-graphs of HPGSystemSolver.

(a) Using the result of Exercise 7, determine the solution that satisfies the initial
condition Y (0) = (x(0), y(0)) = (1, —-1).

(b) Using HPGSystemSolver, plot the corresponding solution curve in the xy-
phase plane and compare the result with the curve that you would have drawn
directly from the direction field for the system.

(c) Using only the solution curve, sketch the x(t)- and y(t)-graphs.
(d) Compare your sketch with the x(t)- and y(t)-graphs of HPGSystemSolver.

13. Consider the partially decoupled system

dx

—— =2x —8y?
it X — 8y
dy

— = —3y.
dt y

(a) Derive the general solution.
(b) Find the equilibrium points of the system.
(c) Find the solution that satisfies the initial condition (xg, yo) = (0, 1).

(d) Use HPGSystemSolver to plot the phase portrait for this system. Iden-
tify the solution curve that corresponds to the solution with initial condition

(X0, Yo) = (0, 1).
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2.5 EULER'S METHOD FOR SYSTEMS

Many of the examples in this chapter include some type of plot of solutions, either as
curves in the phase plane or as x(t)- or y(t)-graphs. In most cases these plots are pro-
vided without any indication of how we obtain them. Occasionally the solutions are line
segments or circles or ellipses, and we are able to verify this analytically. But more of-
ten the solutions do not lie on familiar curves. For example, consider the predator-prey

type system
z—)t( =2x — 1.2xy
dy
— = 1.2
it y + 1.2xy

and the solution that satisfies the initial condition (x(0), y(0)) = (1.75,1.0). Fig-
ure 2.43 shows this solution in the phase plane, the xy-plane, and Figure 2.44 con-
tains the corresponding x(t)- and y(t)-graphs. Figure 2.43 suggests that this solution
is a closed curve, but the curve is certainly neither circular nor elliptical. Similarly, the
X (t)- and y(t)-graphs appear to be periodic, although they do not seem to be graphs of
any of the standard periodic functions (sine, cosine, etc.). So how did we compute these
graphs?

The answer to this question is essentially the same as the answer to the analogous
question for first-order equations. We use a dependable numerical technique and the aid
of a computer. In this section we define Euler’s method for first-order systems. Other
numerical methods are discussed in Chapter 7.

y .y y
3+ 3T
X(t)
2+ 29 \
HWAWY.
f f X f — t
1 2 3 10
Figure 2.43 Figure 2.44
A solution curve corresponding to the initial ~ The corresponding x(t)- and y (t)-graphs for
condition (xg, Yg) = (1.75, 1.0). the solution curve in Figure 2.43.

Derivation of Euler’s Method

Consider the first-order autonomous system

dx

A

i (X, y)
dy

T g(x,y),
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2.5 Euler’s Method for Systems 197

y along with the initial condition (x(tp), Y(to)) = (X0, Yo). We have seen that we can use
vector notation to rewrite this system as

— dy
[\ E = F(Y),

{ where Y = (x,y), dY/dt = (dx/dt,dy/dt), and F(Y) = (f(x,y),g(X,y)). The
‘ vector-valued function F yields a vector field, and a solution is a curve whose tangent
\\7__,,,, vector at any point on the curve agrees with the vector field (see Figure 2.45). In other
X words the “velocity” vector for the curve is equal to the vector F(x(t), y(t)).

As we saw in Section 1.4, Euler’s method for a first-order equation is based on
the idea of approximating the graph of a solution by line segments whose slopes are
obtained from the differential equation. Euler’s approximation scheme for systems is
the same basic idea interpreted in a vector framework.

Given an initial condition (xo, Yo), how can we use the vector field F(x, y) to
approximate the solution curve? Just as for equations, we first pick a step size At. The
vector F(Xo, Yo) is the velocity vector of the solution through (X, Yo), SO we begin our
F(xo0. Yo) approximate solution by using At F(xp, Yo) to form the first “step.” In other words we

step from (X, Yo) to (X1, Y1), where the point (x1, y1) is given by

Figure 2.45

A solution curve is a curve
that is everywhere tangent to
the vector field.

(X1, Y1) = (X0, Yo) + At F(Xo, Yo)

(X1, Y1)
(X0, YO). (see Figure 2.46). This corresponds to traveling along a straight line for time At with
velocity F(Xo, Yo).
Having calculated a point (X1, y1) on the approximate solution curve, we calcu-
Figure 2.46 late the new velocity vector F(x1, y1). The second step in the approximation is

The vector at (Xg, yg) and

the point (xq. 1) obtained (X2, ¥2) = (X1, y1) + At F(X1, y1).

fro't'?] O(;‘e step of Euler’s We repeat this scheme and obtain an approximate solution curve (see Figure 2.47).
methoada.
F(x3,y3)
35 g, y2)
F(x1, y1)

(4. ya) F(x0. o)
(x3.¥3)

(X2, yz).
(X1, yl).

(X0, Yo) ’

Figure 2.47
The approximate solution curve obtained
from four Euler steps.
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198 CHAPTER 2 First-Order Systems

In practice we choose a step size At that is small enough to provide an accurate
solution over the given time interval. (See Chapter 7 for a technical discussion of how
small is small and how small is too small.)

Euler’s Method for Autonomous Systems
Euler’s method for systems can be written without the vector notation as follows.
Given the system

dx

AN

i (X, y)
dy

FT g(x,y),

the initial condition (X, Yo), and the step size At, we calculate the Euler approx-
imation by repeating the calculations:

mg = (X, Yk)

Nk = g(Xk, Yk)»

Xk41 = Xk + Mg At

Yk+1 = Yk + NKAL.

Euler's Method Applied to the Van der Pol Equation
For example, consider the second-order differential equation

d?x 5 dx

— —(1—=x9)—+x=0.

dt2 ( et

This equation is called the Van der Pol equation. To study it numerically, we first

convert it into a first-order system by letting y = dx/dt. The resulting system is

dx
at Y
dy 2
i X+ (L —x9)y.
Suppose we want to find an approximate solution for the initial condition (x(0), y(0)) =
(1,1). We do a few calculations by hand to see how Euler’s method works, and then
turn to the computer for the repetitive part. The method is best illustrated by doing a
calculation with a relatively large step size, although in practice we would never use
such a large value for At.

Let At = 0.25. Given the initial condition (Xo, Yo) = (1, 1), we compute the
vector field

FX, y) = (v, =X + (L = x?)y)

at (1, 1). We obtain the vector F(1, 1) = (1, —1). Thus our first step starts at (1, 1) and
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2.5 Euler’s Method for Systems 199
ends at
(X1, Y1) = (X0, Yo) + At F(Xo, Yo)
=(1,1)+0.25(1, -1)
= (1.25,0.75).

In other words, since At = 0.25, we obtain (x1, y1) from (X, yo) by stepping one-
quarter of the way along the displacement vector (1, —1) (see Figure 2.48).

The next step is obtained by computing the vector field at (x1, y1). We have
F(1.25,0.75) = (0.75, —1.67) (to 2 decimal places). Consequently, our next step starts
at (1.25, 0.75) and ends at

(X2, y2) = (1.25,0.75) + 0.25 (0.75, —1.67)

= (1.44,0.33)
(see Figure 2.48).
1+ (X0, Yo) = Figure 2.48 ’ _
Two steps of Euler’s method applied to the
(X1, Y1) Van der Pol equation with initial condition
(X0, Yo) = (1, 1) and step size At = 0.25.
(x2.y2) *
1 1
1 2
—1+

James H. Curry (1948- ) received his Ph.D. in Mathematics at the Univer-
sity of California at Berkeley in 1976. He spent several years as a Postdoctoral
Fellow at MIT and the National Center for Atmospheric Research where he met
and worked with E. N. Lorenz. He has also taught at Howard University and
the University of Colorado where he currently holds the position of Professor
of Applied Mathematics.

Curry’s research has focused on qualitative methods in differential equa-

tions that model the atmosphere. He has also published extensively on iter-
ative methods for solving nonlinear equations. The methods Curry considers
are faster and more advanced than the numerical methods we discuss in this
section. We describe some of these more advanced techniques in Chapter 7.
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CHAPTER 2 First-Order Systems

Table 2.1

Ten steps of Euler’s method.
[ Xi Yi mj nj
0 1 1 1 -1
1 1.25 0.75 0.75 —1.671875
2 1.4375 0.332031 0.332031 —1.791580
3 1.520507 —0.115864 —0.115864 —1.368501
4 1.491542 —0.457989 —0.457989 —0.930644
5 1.377045 —0.690650 —0.690650 —0.758048
6 1.204382 —0.880162 —0.880162 —0.807837
7 0.984342 —1.082121 —1.082121 —1.017965
8 0.713811 —1.336613 —1.336613 —1.369384
9 0.379658 —1.678959 —1.678959 —1.816611
10 —0.040082 —2.133112

Table 2.1 illustrates the computations necessary to calculate ten steps of Euler’s
method, starting at the initial condition (xg, yo) = (1, 1) with At = 0.25. The resulting
approximate solution curve is shown in Figure 2.49.

As we mentioned above, At = 0.25 is much larger than the typical step size, so
let’s repeat our calculations with At = 0.1. Since we will use a computer to do these
calculations, we might as well do more steps, too. Figure 2.50 shows the result of this
calculation. In this figure we show both the points obtained in the calculation as well as
a graph of an approximate solution curve obtained by joining successive points by line
segments. Note that the curve is hardly a “standard” shape and that it is almost a closed

Ten steps of Euler’s method applied to
the Van der Pol equation with initial
condition (xg, Yo) = (1, 1) and step
size At = 0.25.

curve.
y y
277 i - L o, .
.31~ )
; L / LA
2 I o2 12 '{:)
. o \ .......
o e - “‘
-2 rg e H s
Figure 2.49 Figure 2.50

One hundred steps of Euler’s method
applied to the Van der Pol equation with
initial condition (xg, yo) = (1, 1) and
step size At =0.1.
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2.5 Euler’s Method for Systems

Table 2.2
Ten steps of Euler’s method with tg = 0.
i ti X Yi m; nj
0 0 1 1 1 -1

1 0.25 1.25 0.75 0.75 —1.671875

2 0.50 1.4375 0.332031 0.332031 —1.791580

3 0.75 1.520507 —0.115864 —0.115864 —1.368501

4 1.00 1.491542 —0.457989 —0.457989 —0.930644

5 1.25 1.377045 —0.690650 —0.690650 —0.758048

6 1.50 1.204382 —0.880162 —0.880162 —0.807837

7 1.75 0.984342 —1.082121 —1.082121 —1.017965

X,y X () 8 2.00 0.713811 —1.336613 —1.336613 —1.369384

9 2.25 0.379658 —1.678959 —1.678959 —1.816611

14 y(t) 10 2.50 —0.040082 —2.133112
% vt
1 2

-1 To show the x (t)- and y (t)-graphs for this approximate solution, we must include
ol information about the independent variable t in our Euler’s method table. If we assume
that the initial condition (Xg, Yo) = (1, 1) corresponds to the initial time tg = 0, we can
Figure 2.51 augment that table by adding the corresponding times (see Table 2.2). Thus we are able

The x(t)- and y(t)-graphs
corresponding to the
approximate solution curve
obtained in Table 2.2.

Figure 2.52

I—‘A:/

The approximate solution curve in the

xy-plane.

201

to produce x(t)- and y(t)-graphs of approximate solutions (see Figure 2.51). Figures
2.52 and 2.53 illustrate how the “almost” closed solution curve in the phase plane (the
xy-plane) corresponds to the functions x(t) and y(t), which are essentially periodic.

X,y
sl oy "
4
i
" : o | i

Figure 2.53

The corresponding x (t)- and y(t)-graphs.
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202 CHAPTER 2 First-Order Systems

EXERCISES FOR SECTION 2.5

1. For the system

dx _
dt
dy

at =

-y

the curve Y(t) = (cost,sint) is a solution. This solution is periodic. Its initial
position is Y(0) = (1, 0), and it returns to this position whent = 2. So Y(2r) =
(L,0)and Y(t + 27) = Y (t) forall t.

(a) Check that Y (t) = (cost, sint) is a solution.

(b) Use Euler’s method with step size 0.5 to approximate this solution, and check
how close the approximate solution is to the real solution whent = 4, t = 6,
andt = 10.

(c) Use Euler’s method with step size 0.1 to approximate this solution, and check
how close the approximate solution is to the real solution whent = 4,t = 6,
andt = 10.

(d) The points on the solution curve Y(t) are all 1 unit distance from the origin.
Is this true of the approximate solutions? Are they too far from the origin or
too close to it? What will happen for other step sizes (that is, will approximate
solutions formed with other step sizes be too far or too close to the origin)?

[Use a computer or calculator to perform Euler’s method.]

2. For the system

dx
— =2X
dt
dy
at v
we claim that the curve Y(t) = (e%,3e!) is a solution. Its initial position is

Y(0) = (1, 3).

(a) Check that Y (t) = (e, 3e!) is a solution.

(b) Use Euler’s method with step size At = 0.5 to approximate this solution, and
check how close the approximate solution is to the real solution whent = 2,
t=4,andt =6.

(c) Use Euler’s method with step size At = 0.1 to approximate this solution, and
check how close the approximate solution is to the real solution when t = 2,
t=4,andt =6.

(d) Discuss how and why the Euler approximations differ from the solution.

[Use a computer or calculator to perform Euler’s method.]
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2.5 Euler’s Method for Systems 203

In Exercises 3-6, a system, an initial condition, a step size, and an integer n are given.

The direction field for the system is also provided.
(a) Use EulersMethodForSystems to calculate the approximate solution given
by Euler’s method for the given system with the given initial condition and step

size for n steps.

(b) Plot your approximate solution on the direction field. Make sure that your approx-
imate solution is consistent with the direction field.

(c) Using HPGSystemSolver, obtain a more detailed sketch of the phase portrait

for the system.

3. dx_
at Y
dy

W _ o3
at X9y

(X0, Yo) = (1, D)

At =0.25
n=>5
4, dx_
at Y
dy .
a_—smx

(X0, Yo) = (0, 2)

At = 0.25
n==8
5. dx Y
dy y 6y?
it - *TE YT

(X0, Yo) =(1,1)
At =0.25
n=>5

|
[\)

N
—t———— 1 <
x

N

N

N
NS

Sttt <
>

<

N
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204 CHAPTER 2 First-Order Systems

6. dx Y y
at VY o
dy  x 'y 6y
E R T 11
(Xo, y0)=(—0-5, 0) | | | | ——— X
At =025 -4 -3 =2 -1 1.2
-1+
n=7
—2+

7. Using a computer or calculator, apply Euler’s method to sketch an approximation to
the solution curve for the solution to the initial-value problem

d?y dy
22 L Y L4y =0
az T T =Y

where (Yo, vg) = (2, 0). How does your choice of At affect your result?

8. Using a computer or calculator, apply Euler’s method to sketch an approximation to
the solution curve for the solution to the initial-value problem

d?y dy
5-2 4+ -2 45y=0
dt2+dt+ y ’

where (Yo, vg) = (0, 1). How does your choice of At affect your result?

2.6 EXISTENCE AND UNIQUENESS FOR SYSTEMS

Numerical methods, such as Euler’s method, give approximations to solutions. Con-
trolling the difference between the numerical approximation and the actual solution is a
difficult problem since we usually do not know the actual solution (see Chapter 7). As
we saw in Section 1.5, the Existence and Uniqueness Theorem gives us (among other
things) qualitative information about solutions, which we can use to check our numer-
ics. The same is true for systems.

The Existence and Uniqueness Theorem

In Chapter 1, we treated existence and uniqueness separately because we wanted to em-
phasize that uniqueness required a slightly stronger hypothesis than existence. In this
section, we focus less on the hypotheses of the theorem and more on its consequences.
We consider both autonomous and nonautonomous systems, and we assume that they
are continuously differentiable. In other words, if the right-hand side of the system is

the vector field
f
Fey=( X))
g, x,y)
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2.6 Existence and Uniqueness for Systems 205

then we assume that the six partial derivatives of /at, af /ox, af /dy, dg/dt, dg/dx, and
dg/dy exist and vary continuously over some open subset of the xy-plane. Under these
assumptions, we have both existence and uniqueness of solutions.

EXISTENCE AND UNIQUENESS THEOREM  Let

dy

— =F(t,Y

it t,Y)
be a system of differential equations. Suppose that ty is an initial time and Yy is an
initial value. Suppose also that the function F is continuously differentiable. Then there
isan ¢ > 0and a function Y (t) defined for ty — ¢ <t < tg + €, such that Y (t) satisfies
the initial-value problem

C;—T =F(t,Y) and Y(tp) = Yo.

Moreover, for t in this interval, this solution is unique. =

As was the case with first-order equations in Section 1.5, the ¢ is necessary be-
cause solutions can blow up in finite time, or they can leave the domain in which the
differential equation is defined. For example, consider the system

ax 2

- = 1
ar = +
dy

2 -1

dt

with initial condition (x(0), y(0)) = (0, 0). As we saw in Section 1.5, the solution to
the initial-value problem

ax 9
— =X 1, x(0) = 0,
it + ©
is x(t) = tant. So the solution to the system is (x(t), y(t)) = (tant, t), which blows
upast — /2 from below.

Consequences of Uniqueness for Autonomous Systems

The existence half of the theorem is mostly just reassuring. If we are studying a certain
system, then it is nice to know that what we are studying exists. The uniqueness part of
the theorem is useful in a much more practical way. Roughly speaking, the Uniqueness
Theorem says that two solutions cannot start at the same place at the same time.

For autonomous systems, the vector field does not vary with time, and we have
two related and very useful consequences. First, the solution curve for a single solu-
tion cannot loop back and intersect itself unless the solution is periodic and the solution
curve is a simple, closed curve (see Figure 2.54). In Figure 2.55, we see that nonau-
tonomous systems do not have this property.

Figure 2.54
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206 CHAPTER 2 First-Order Systems

Figure 2.55

A solution curve (left) of a nonautonomous system and its velocity vector as it passes
through a point in the phase plane. For this nonautonomous system, the velocity vector
points in a different direction when the solution curve passes through the point a second
time. Hence, the solution curve crosses itself.

Second, the solution curves for two different solutions cannot intersect unless
they sweep out the same curve. For example, consider the second-order equation
d?y
- +y=0,
az Y

which is equivalent to the system

dy

dt

dv

dt
Note that both Y1(t) = (cost, —sint) and Y2(t) = (sint, cost) are solutions. Note
also that Y1(0) = (1, 0) and Y2(r/2) = (1, 0). Hence, the two solution curves inter-
sect, and they must agree. (In this case, both solution curves are the unit circle centered
at the origin.)

Informally, these two properties of intersecting solution curves follow from the
metaphor of the parking lot as described on page 172. If the system is autonomous, the
vector at a given point in the phase plane does not vary with time. Hence, two solution
curves that visit the same point at different times must trace out the same curve (see
Exercises 6 and 7). We will make this argument more precise at the end of the section.

Consequences for two-dimensional autonomous systems

If a system has exactly two dependent variables (as is the case throughout most of this
book), the consequences of uniqueness for solution curves of automous systems limit
what can happen in the phase plane given the behavior of certain systems. For exam-
ple, a periodic solution corresponds to a closed curve in the the phase plane, and any
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2.6 Existence and Uniqueness for Systems 207

solution with an initial condition that is inside the curve is trapped for all time (see
Figure 2.56). Also, a number of solution curves can form a “fence.” That is, they can
divide the phase plane into separate regions, and solutions with initial conditions on one
side of the fence cannot cross over to the other side (see Figure 2.56).

Figure 2.56 Figure 2.57
A solution curve that is trapped inside a Three solution curves (including an
periodic solution. equilibrium point) when taken together

divide the phase plane into two regions.

Formal verification of the consequences for autonomous systems
To verify our assertions about the consequences of uniqueness for systems, we suppose
that two solution curves intersect at the point Yy in the phase plane. In other words,
suppose

Yi1(t1) = Yo = Ya(t2)

for two solutions Y1 (t) and Y2 (t). Then we consider the function
Y3(t) = Ya(t — (2 — t1)).

Both Y1 (t) and Y3(t) sweep out the same solution curve because Y3(t) is a time trans-
late of Y1(t). On the other hand,

%(t) - %(t — (t2 —t1)) (by the Chain Rule)

=F(Y1(t — (t2 —t1)) (because Y1(t) is a solution)
= F(Y3(t)) (because the system is autonomous).

Hence, Y3(t) is a solution to the system. Moreover, Y3(t2) = Yi(t1), SO uniqueness
implies that Y2 (t) = Y3(t) for all t. In other words,

Yo(t) =Yt — (t2 —1t1)).

(See Exercises 8 and 9.)
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EXERCISES FOR SECTION 2.6

1. Consider the system

ax _ X+
dt y
dy
a- 7

(a) Show that the x-axis consists of three solution curves.

(b) Using HPGSystemSolver, sketch the solution curves for a number of initial
conditions above and below the x-axis. Do these curve intersect the x-axis?
Do they touch the origin? Justify your assertions.

2. Consider the system
dx
dt
dy 2
ity + @ —x%)y.
(a) Using HPGSystemSolver, determine (to two decimal places) an initial con-
dition for a periodic solution.
(b) The periodic solution in part (a) produces a closed curve in the phase plane.
Describe briefly what happens to all solutions with initial conditions that lie
inside this curve.

y

In Exercises 3-5, consider the system

dx
o 3
it X+ 3y
dy
—Z = _3x—y.
dt =y

3. Verify that Y1(t) = (e~'sin(3t), et cos(3t)) is a solution of this system.
4. Verify that Ya(t) = (e~ Dsin3(t — 1)), e~ D cos(3(t — 1))) is a solution.

5. Using HPGSystemSolver, sketch the solution curves for Y1 (t) and Y2(t) in the
xy-phase plane. Why don’t Y1(t) and Y2(t) contradict the Uniqueness Theorem?

6. Recall the Metaphor of the Parking Lot on page 172. Suppose two people, say Gib
and Harry, are both driving cars on the parking lot and both are carefully following
the rules prescribed in the metaphor. If they start at time t = 0 at different points,
will they ever collide? (Neglect the width of their cars.)

7. Consider the two drivers, Gib and Harry, from Exercise 6. Suppose that attimet = 0
they start at different points in the parking lot, but at time t = 1 Gib drives over the
point where Harry started. Will they ever collide? What can you say about their
paths?
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8. (@) Suppose Y1(t) is a solution of an autonomous system dY/dt = F(Y). Show
that Yo (t) = Y1(t + to) is also a solution for any constant t.

(b) What is the relationship between the solution curves of Y1 (t) and Ya(t)?

9. Suppose Y1(t) and Y(t) are solutions of an autonomous system dY/dt = F(Y),
where F(Y) satisfies the hypotheses of the Uniqueness Theorem. Suppose also that
Y2(1) = Y1(0). How are Y1(t) and Y (t) related?

10. Consider the system

dx
2
dt

dy
at

(a) Calculate the general solution for the system.
(b) What solutions go to infinity?
(c) What solutions blow up in finite time?

11. Consider the system

dx—x2-|-
dt y
dy 5
at Y

Show that, for the solution (x(t), y(t)) with initial condition (x(0), y(0)) = (0, 1),
there is a time t,, such that x(t) — oo ast — t,. In other words the solution blows
up in finite time. [Hint: Note that dy/dt > 0 for all x and y.]

2.7 THE SIR MODEL OF AN EPIDEMIC

H1N1 flu, often called “swine flu,” caused a worldwide pandemic in 2009. The out-
break began in Mexico early in the year, and eventually the Mexican government closed
many public and private facilities in Mexico City in an attempt to restrict the spread of
the disease. Nevertheless, the virus spread worldwide. Against the advice of public
health officials, some summer camps in the U.S. went so far as to use drugs such as
Tamiflu in a prophylactic fashion. More typically, we were encouraged to wash our
hands frequently, cough into our sleeves, and stay home during exams.

The pandemic seemed to peak in November of 2009, and by spring of 2010 the
number of cases was in rapid decline. The World Health Organization announced the
end of the pandemic in August of 2010.*

Modeling an Epidemic

The spread of a contagious disease through a population involves intricate interactions
from the level of populations down to the level of individual cells and viruses. How-

*To compare this pandemic to others, see the video “Secrets of the Dead: Killer Flu (1918)” at
http://www.pbs.org/wnet/secrets/episodes/preview-of-killer-flus222/
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ever, itis still possible to learn interesting and useful information from relatively simple
models. A classical model, introduced by Kermack and McKendrick in 1927* is called
the SIR model. In this model, a population is divided into three groups—the susceptible
individuals, the infected individuals, and the recovered individuals.

In this model S(t) denotes the fraction of the population that can catch the disease
attimet, I (t) denotes the fraction of the population that has the disease and can spread
it to the susceptibles, and R(t) denotes the fraction of the population that has recovered
from the disease and cannot catch it again. This model is appropriate for the spread of a
flu epidemic since once a person has had a particular strain of flu, their immune system
prevents them from catching that strain again. Since flu spreads fairly quickly, we can
assume that time is measured in days. While most people recover from the flu fairly
easily, there is a low mortality rate. Those who do not survive are included in R(t).

We assume everyone in the population is either susceptible, infected, or recov-
ered, that is,

St + 1 (1) +R(t) =1

for all t. In addition, we assume that the disease spreads relatively quickly, so it is rea-
sonable to assume that the only change in the size of these groups is due to the disease.

To set up the model, we make some more specific assumptions. First, we as-
sume that the rate that susceptible people and infected people interact is proportional
to both the number of susceptibles and the number of infecteds, that is, proportional to
the product of S(t) and I (t). Some fraction of these interactions lead to a susceptible
becoming infected. We also assume that the infected individuals recover at a rate that
is proportional to the number of infecteds.

Based on these assumptions, our model is

where « is the “contagion” parameter and S is the “recovery” parameter. If we know
S(t) and I (1), then R(t) = 1 — (S(t) + I (1)) (see Exercise 1). Consequently, we need
only keep track of S(t) and I (t), and we can consider the planar system

ds

E = —aSl

dl

— =Sl — BI.
at aS B

The equilibria of this system are the solutions of the simultaneous system of equa-

*See “A contribution to the mathematical theory of epidemics” by W. O. Kermack and A. G. McKendrick,
Proceedings Royal Society of London A 115, 1927, pp. 700-721.

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2.7 The SIR Model of an Epidemic 211

tions
—aSl =0

(@S —p)I =0,

which is precisely the line I = 0. This makes sense since if there are no infecteds, then
no one can catch the disease. The next step is to sketch the direction field, and to do
s0, we must choose values for the parameters. The recovery parameter 8 gives the rate
at which infecteds recover. If we assume that an infected person is contagious for an
average of ten days, then roughly 10% of the infecteds recover each day and g = 0.1.

Choosing « is more difficult since it contains the proportionality constant that
measures the likelihood of interaction within the population as well as the likelihood
of the disease spreading during an interaction. We test several different values of «
starting with « = 0.2. We focus on an initial condition (S(0), 1 (0)) ~ (1, 0) with
1(0) > 0. It corresponds to a few infecteds existing in a population that is otherwise
entirely susceptible. In fact, we use (S(0), 1 (0)) = (0.99, 0.01), that is, one person in
100 is infected.

Note that the smaller we make | (0), the longer it takes the epidemic to manifest
itself. Both S(t) and I (t) change very slowly near the line of equilibrium points along
the S-axis.

The solution shows very interesting behavior (see Figure 2.58). The number 1 (t)
of infecteds grows initially. It peaks neart = 45 with 1 (45) =~ 0.15. Finally, I (t) — 0
ast — oo. The number S(t) of susceptibles initially decreases and then almost levels
offast — oo. However, note that S(t) does not tend to zero ast — oo. Rather, it tends
toward S ~ 0.2. In terms of the disease, the model predicts that the percentage of the
population that is infected will reach a maximum of approximately 15% after 45 days
and then quickly decrease to close to zero after 100 days. The fraction of the population
that contracts the disease during the epidemic is approximately 80%. Approximately
20% of the population never gets the disease.

If we try different values of the parameter «, we see that the predictions made
by the model vary quantitatively. As « increases, the maximum number of infecteds

| S, |
1+ 1
S()

<

1(t)

o 1

T S T T
1 50 100

Figure 2.58
The solution curve and S(t)- and | (t)-graphs for the initial condition
(S(0), 1(0)) = (0.99,0.01) forae =0.2and B = 0.1.
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increases while the number of susceptibles that avoid the disease decreases. We can
use the model to predict the effect of public health measures that alter the values of the
parameters « and B (see Figure 2.59).

| Figure 2.59

Solution curves in the SI-phase plane that
correspond to the initial condition

(S(0), 1(0)) = (0.99, 0.01) with g = 0.1 and

o =0.2,0.3,and 0.4. As « increases, the
maximum number of infecteds increases while the
number of susceptibles that avoid the disease
decreases. If you compare this figure with

Figure 2.58, the solution curves corresponding to
« = 0.2 look different. This apparent difference is
caused by the fact that the distance between 0

and 1 is the same on both axes in this figure while
the distance between 0 and 1 is smaller on the

S . . . .
vertical axis than on the horizontal axis in
Figure 2.58.
A little phase plane analysis
If we write the SIR system as
ds
I — = —aSl
s_ 8 dt
1“’( *1‘_3\\\\ dl ( S IB)I
“ - w W —— = s — 5
1 CT100o. weseethatdl/dt = 0if @S — B = 0. In other words, if S = B/a, the vectors in
phr ey bl DR the vector field are horizontal. To the right of the vertical line in the S1-phase plane,
’ i,«i*\ vy di/dt > 0, and the disease is spreading. To the left of this line, d1/dt < 0, and
SAPPDRRRER the disease is decreasing. Hence, the value S = B/« plays an important role in the
b= xxcT =TT E o evolution of the disease. It is called the threshold value of the model. Given values
1 of @ and B, if S(0) > B/«, then an epidemic occurs. If S(0) < B/«, then there is no
Figure 2.60 epidemic (see Figure 2.60).

The line S = B/« along which the vector field is horizontal is one example of

The threshold value for . . . . . . .
Vel what is called a “nullcline.” In Section 5.2, we will study nullclines in great detail.

a=0.2and g =0.1

An analytic description of the solution curves
Phase plane analysis and numerical solutions for the SIR model give insight into the
evolution of a flu epidemic. Because the equations in this system are relatively simple
from an algebraic point of view, we can go one step further in describing the solutions
curves precisely. The technique we use is one of those ideas that is good to remember.
When it works, it gives a great deal of insight into the behavior of solutions.

Because both S(t) and I (t) are nonnegative, we see that dS/dt < 0, and S(t)
decreases monotonically ast — oo. As as result, we can view the solution curves as
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graphs of functions of the variable S. Moreover, we have

di di/dt
dS ~— dSydt
_ aSl—Bl
Y

_ A
()L

This differential equation is one that we can solve by integrating both sides with respect
to S. We get
p

1(S)=—-S+ =1In(S) +c,
o

where c is a constant of integration.
When an epidemic starts, there are only a few infected individuals, and almost the
entire population is susceptible. That is, S ~ 1, and we have

0~ |(1)=—1+Eln(1)+c=—1+c.
o

In this case, it makes sense to take ¢ = 1. We obtain the function

1(S) = —S + B In(S) + 1.
(07

The graph of this function I (S) for @ = 0.2 and 8 = 0.1 is almost identical to the
solution curve that is shown in Figure 2.58.

For any values of the parameters « and g, we can explicitly compute the maxi-
mum value of I (S), that is, the maximum fraction of the population that is ill during the
epidemic by doing a maximization problem (see Exercise 4). We can also compute the
fraction of the population that completely avoids getting the disease by computing the
value of S, 0 < S < 1, such that 1 (S) = 0. Unfortunately, we cannot solve this equa-
tion algebraically for S, but we can understand the behavior of its roots by graphing the
function I (S) for various values of « and g (see Exercise 5).

Perhaps the most interesting consequence of the computation of the function I (S)
is the fact that 1 (S) is determined by the ratio of 8 to «. In other words, if two choices
of o and B have the same ratio 8/«, then the maximum number of infecteds and the
number who escape infection altogether are the same.

Concluding Remark

A dose of reality is in order. We have made a number of simplifying assumptions while
setting up the SIR model. The situations where this model gives precise, quantitative
predictions are limited to closed environments with simple social dynamics and limited
geographical separation (see Exercises 9 and 10). For an epidemic spreading around
the world, we must include geographical effects as well as the differences in rates of
contact among and within different groups of people. In these cases, the SIR model is
the starting point for more involved models.
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EXERCISES FOR SECTION 2.7

1. For the SIR-model, show that S(t) + I (t) + R(t) = 1 for all t directly from the
system of differential equations.

2. In the SIR model, we assume that everyone in the population is susceptible at time
t = 0 except the very small fraction that is already infected. Suppose that some
fraction of the population has received a vaccine, so they cannot catch the disease.
The vaccine makes the fraction of the population that is susceptible at timet = 0
smaller.

(a) Using HPGSystemSolver applied to the SIR model with « = 0.25 and
B = 0.1, describe the behavior of the solutions with 1(0) = 0.01 and S(0) =
0.9,0.8,0.7, ... . Pay particular attention to the maximum of | (t), that is, the
maximum number of infecteds for each choice of S(0). Also, note the limit of
S(t) ast — oo. (This limit is the fraction of the population that does not catch
the disease during the epidemic.)

(b) If « = 0.25and g = 0.1, how large a fraction of the population must be vacci-
nated in order to keep the epidemic from getting started with 1 (0) = 0.01?

3. Vaccines make it possible to prevent epidemics. However, the time it takes to de-
velop a vaccine may make it impossible to vaccinate everyone in a population before
a disease arrives.

(a) For the SIR model, which initial conditions guarantee that d 1 /dt < 0? [Hint:
Your answer should be expressed in terms of the parameters « and 8.]

(b) For given values of « and 8, what fraction of a population must be vaccinated
before a disease arrives in order to prevent an epidemic?

4. In this section we showed that solution curves of the SIR model with S(0) ~ 1 and
1 (0) ~ 0 are graphs of the function

1(S) = —S+§IH(S)+1.

(Note that the graph depends only on the ratio p = B/« of the parameters. Different
values of the parameters can give the same value of p.)

(a) Determine the maximum value of I (S) in terms of p.

(b) Is the statement “The epidemic cannot get started if 8 > «” true or false?
Justify your answer.

5. Let p denote the ratio 8/« of the parameters « and g in the SIR model. Then
1(S)=—=S+pIn(S) + 1.

(a) Using graphing technology, graph | (S) over the interval 0 < S < 1 for various
values of p between 0.1 and 1.0.

(b) Using the graphs that you produced in part (a), graph the solution of 1(S) = 0
for 0 < S < 1 as a function of p.
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2.7 The SIR Model of an Epidemic 215

(c) What does the graph that you produced in part (b) tell you about the long-term
predictions of the SIR model in terms of the ratio p?

6. One of the basic assumptions of the SIR model is that individuals who recover from
the disease never get it again. However, diseases continually evolve, and new strains
can emerge that can infect those who have recovered from the previous strain. In
this exercise, we modify the SIR model so that recovereds become susceptible again
in a linear rate. We obtain the system of equations

ds
— = —aSl| R
i adl +y
dl
— =aS| — Bl
g ~ st
dR
— =Bl —yR
it Bl —vy
(a) Show that the sum S(t) + I (t) + R(t) is constant as a function of t for this
model.
(b) Derive a system in the two dependent variables S and | using the fact that R =
1—(S+1).

(c) What are the equilibrium points for this model of the two variables S and 1?
(Hint: Both S and | are nonnegative, and S(t) + I (t) < 1 forallt.)

(d) Fixe = 0.3, 8 = 0.15, and ¥ = 0.05 and use HPGSystemSolver to sketch
the phase portrait. Describe the behavior of solutions.

(e) How does the system change if we fix « = 0.3 and g = 0.15, but vary y over
a small interval surrounding y = 0.05?

7. In the movie I Am Legend, the infecteds work together to increase the number of
infecteds. We can modify the SIR model to include the assumption that zombies
actively infect susceptibles by replacing | by +/1 in the interaction term. (Note that
0<1<1,50+/1>1.) We obtain the system

d—Sz—aS\/T
dt
dl

(a) Calculate the equilibrium points of this model.
(b) Find the region of the phase plane where d I /dt > 0.

(c) Use « = 0.2 and B = 0.1 and sketch the phase portrait. What does the model
predict for the spread of the zombies in this case?

8. Many zombie movies are based on the premise that zombies do not stop infecting
new victims until they are destroyed by a susceptible. In addition, the susceptibles
destroy as many zombies as they can. We can model the spread of zombies in such
a movie by assuming that infecteds (zombies) become recovereds (zombies who can
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not infect susceptibles) at a rate proportional to the size of the remaining susceptible
population. We obtain the system

ds

=2 _gsl

at = ¢

dl

2 asl—ys.
at > Y

(a) Calculate the equilibrium points of this model.
(b) Find the region of the phase plane where d I /dt > 0.

(c) Use @« = 0.2 and y = 0.1 and sketch the phase portrait. What does the model
predict for the spread of the zombies in this case?

The SIR model is particularly relevant to a homogenous population in an enviroment
with little geographic distribution. A famous example of exactly this situation occurred
in 1978 at a British boarding school.* A single boy in the school of 763 students con-
tracted the flu and the epidemic spread rapidly, as shown in Table 2.3. (We are assum-
ing that the number of students confined to bed was the same as the number of infected

students.)

Table 2.3

The daily count of the number of infected students.
t Infected t Infected t Infected
0 1 5 222 10 123
1 3 6 282 11 70
2 7 7 256 12 25
3 25 8 233 13 11
4 72 9 189 14 4

9. Assume that the parameter @ = 1.66 in the SIR model for the data in Table 2.3.
(a) Using whatever technology that is most convenient, determine an appropriate
value of B that matches the data in Table 2.3.
(b) Using the value of g that you computed in part (a), calculate the total number
of students who caught the flu during the epidemic.

(c) Interpret the value of 8 that you computed in part (2) in terms of the length of
time that students with the flu remained infected.

10. Using @ = 1.66 and the value of 8 that you determined in Exercise 9, how would the
progress of the epidemic have changed if 200 students had been vaccinated before
the disease started? (Give as precise an answer as possible.)

*Anonymous, “Epidemiology: Influenza in a boarding school,” British Medical Journal, Vol. 4, 1978,
p. 587.
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2.8 THE LORENZ EQUATIONS

As we have seen, the behavior of solutions of autonomous systems of differential equa-
tions can be much more interesting and complicated than solutions of single autonomous
equations. For autonomous equations with one dependent variable, the solutions live
on a phase line, and their behavior is completely governed by the position and nature of
the equilibrium points. Solutions of systems with two dependent variables live in two-
dimensional phase planes. A plane has much more “room” than a line, so solutions in a
phase plane can do many more interesting things. This includes forming loops (periodic
solutions) and approaching and retreating from equilibrium points.

However, there are still definite restrictions on the types of phase portraits that
are possible for autonomous systems. As we learned in Section 2.6, the Uniqueness
Theorem implies that solution curves must agree entirely if they intersect at all. So,
for example, if there is a periodic solution that forms a loop in the phase plane, then
solutions with initial conditions inside the loop must stay inside for all time (see Fig-
ure 2.61). Also, two or three solutions can fit together to divide the phase plane into
distinct regions, and solutions must stay in the same region as their initial condition (see
Figure 2.62). Additional details regarding the implications of the Uniqueness Theorem
are discussed in Section 2.6.

—

/]
Figure 2.61 Figure 2.62
Solutions with initial conditions inside a Two solutions and an equilibrium point cut
periodic solution must stay inside for all the phase plane into regions. Solutions with
time. initial conditions in one region must stay in

that region for all time.

If we raise the number of dependent variables to three, the situation becomes
much more complicated. A solution of an autonomous system with three dependent
variables is a curve in a three-dimensional phase space. The Uniqueness Theorem still
applies, so solution curves either agree completely or do not intersect, but in three
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218 CHAPTER 2 First-Order Systems

dimensions this restriction is not nearly so confining as it is in two dimensions. In Fig-
ure 2.63 we see examples of curves in three dimensions that do not intersect. These
curves can knot and link in very complicated ways.

Figure 2.63
A knot and two links in space.

The first to realize the possible complications of three-dimensional systems was
the French mathematician Henri Poincaré. In the 1890s, Poincaré, while working on
the Newtonian three-body problem for the motion of the planets, realized that systems
with three dependent variables can have behavior so complicated that he did not even
attempt to draw them. Today we can easily draw numerical approximations of compli-
cated solution curves with a computer. The problem now is to make sense of the pic-
tures. This is an active area of current research in dynamical systems, and the complete
story for systems with three dependent variables is still far from being written.

In this section we study a three-dimensional system known as the Lorenz equa-
tions. This system was first studied by Ed Lorenz in 1963 in an effort to model the
weather. It is important because the vector field is formed by very simple equations,
yet solutions are very complicated curves.

The Lorenz System

The behavior of a physical system like the weather on Earth is extremely complicated.
To predict the weather, many mathematical models have been developed. The read-
ings from weather stations and satellites are used as initial conditions, and numerical
approximations of solutions are used to obtain predictions.
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Edward N. Lorenz (1917-2008) began his career as a mathematics gradu-
ate student at Harvard but turned his attention to meteorology during World
War II. In 1961, using a computer primitive by today’s standards, Lorenz
attempted to solve a much simplified model for weather prediction. His
model seemed to simulate real weather patterns quite well, but it also illus-
trated something much more important: When Lorenz changed the initial
conditions slightly, the resulting weather patterns changed completely after a
short time. Lorenz had discovered the fact that simple differential equations

can behave “chaotically.” We describe additional aspects of this important
discovery in Chapters 5 and 8.

The success of long-range weather forecasts (that is, more than five days in the
future) is limited. This lack of long-term precision might be due to inaccuracies in the
model. It is also possible that the model is accurate but that some property of the equa-
tions makes prediction difficult. Consequently it is important to study these models
theoretically as well as numerically.

Since the weather is so complicated, it is necessary to start the theoretical study
by looking at simplifications. After simplifying, meteorologist Ed Lorenz arrived at the

system
d—x—( X)
at — oY
%:px—y—xz
dz _ Bz +X
dt Y,

where X, y, and z are dependent variables and o, p, and B are parameters.* This sys-
tem is so much simpler than the one used for modeling the weather that it has nothing
to tell us about tomorrow’s temperature. However, by studying this system, Lorenz
helped start a scientific revolution by making scientists and engineers aware of the field
of mathematics now called Chaos Theory.®

*Lorenz’s original paper is “Deterministic nonperiodic flow,” Journal of Atmospheric Science, Vol. 20,
1963, pp. 130-141.

©Chaos: Making a New Science by James Gleick (Viking, 1987) is a popular account of the development
of Chaos Theory. lan Stewart’s Does God Play Dice? (Wiley-Blackwell, 2nd ed, 2002) is a nice introduction
to the mathematics that underlies this theory.
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The Vector Field

Lorenz chose to study the system with the parameter values o = 10, 8 = 8/3, and

o = 28. That is,
dx
—Z —10(y —
it y—x)
dy
2 928X —Vy —
it X —Yy —XZ
dt 3 Y-

The right-hand sides of these equations define a vector field in three-dimensional space
F(X.y.2) = (10(y — X), 28X — y — Xz, =32+ xy).

It assigns a three-component vector to each point (x, y, z). Just as in two dimensions,
the equilibrium points are the points (x, y, z) where the vector field vanishes, that is, the
points (X, y, z) where F(x, y, z) = (0, 0, 0). We can compute directly that the equilib-
rium points are (0, 0, 0), (6+/2,6+/2,27), and (—6+/2, —6+/2, 27) (see Exercise 1).

An initial condition for a solution consists of values for the three coordinates x,
y, and z, and consequently, we think of it as a point in the phase space of the system.
With the exception of the equilibrium points and solutions with initial conditions on
the z-axis, there is little hope of finding formulas for solutions (see Exercise 3). Hence
we turn to numerical methods. Euler’s method for three-dimensional systems works
as it does in two dimensions. The approximate solution is constructed by following
the vector field for short time steps. Lorenz began his study of this system by finding
numerical approximations of solutions, and we follow in his footsteps.

Numerical Approximation of Solutions

We begin by looking at a numerical approximation of the solution with initial condition
(0,1, 0) (that is, x(0) = 0, y(0) = 1, z(0) = 0—see Figure 2.64). Clearly something
interesting is happening. The solution does not seem to have any particular pattern. For
example, the x-coordinate jumps from positive to negative values in an unpredictable
way.

Although this seemingly random behavior is somewhat unnerving, we see some-
thing even more interesting if we compare the behaviors of the solution with initial con-
dition (0, 1, 0) and the solution with initial condition (0, 1.001, 0). The second solution
starts very close to the first, with x, y, and z oscillating unpredictably. However, we
see that eventually they oscillate in quite different ways (see Figure 2.65). A very small
change in the initial condition leads to a big change in the behavior of the solution.

In fact, this strange behavior occurs for almost every solution curve. The func-
tions x (t), y(t), and z(t) oscillate in an unpredictable and unique way, but the solution
curve in three dimensions generates a figure that is roughly the same for every initial
condition (compare Figures 2.64 and 2.66).
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2.8 The Lorenz Equations 221

Figure 2.64
The left-hand figure is the solution curve in xyz-space for the initial condition (0, 1, 0) and
the right-hand figure is the corresponding x (t)-graph.

The solution curves seem to loop around the equilibrium points above the plane
z = 0 inincreasing spirals. Once the radius gets too large, the solution passes close to
(0,0, 0) and then is reinjected toward one of the two equilibria. (It is very instructive
to watch an animation of a solution moving in real time through the phase space. In ad-
dition, DETool's contains the tools LorenzEquations and ButterflyEffect
that illustrate the complicated nature of the solutions.) In Chapters 3 and 5, we develop
the tools to study the behavior of these solutions near the equilibrium points.

N
o
|
T

_20+

Figure 2.65
The solution curves and x (t)-graphs for two solutions with nearby initial conditions.
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Figure 2.66

Solution curve for the solution of the Lorenz system with
the initial condition (10, —1, 14). There is no special
significance to this choice of initial condition. Essentially
all initial conditions generate the same figure.

Chaos

The qualitative analysis of this system is a difficult undertaking that must wait until
Chapters 5 and 8. However, there is a moral to what we have seen so far that is having
an important effect on many different branches of science. The Lorenz system has two
important properties. The first is that a small change in initial conditions leads fairly
quickly to large differences in the corresponding solutions. If a system as simple as
the Lorenz equations can have this property, it is entirely reasonable to think that much
more complicated systems (such as the weather) might have it as well. Any small error
in the initial conditions leads quickly to a big error in prediction of the solution. This
might be why physical systems like the weather are so hard to predict.

The second property of the Lorenz system is that although the details of indi-
vidual solutions are quite different, the pictures of the solution curves in the three-
dimensional phase space look remarkably alike. Many solutions seem to be sweeping
out the same “surface” in three dimensions. So the solutions of the Lorenz system still
have structure that we can study. We don’t have to give up studying the solutions of the
Lorenz equations. We just have to ask the right questions.

EXERCISES FOR SECTION 2.8

In Exercises 1-3, we consider the Lorenz system

X oy —x
at oY

dy
Ty oxe
dz

a =

where X, y, and z are dependent variables and o, p, and j are parameters.

1. Leto = 10, 8 = 8/3, and p = 28 in the Lorenz system.
(a) Verify that (0, 0, 0), (6+/2, 6+/2, 27), and (—6+/2, —6+/2, 27) are equilibrium
points.
(b) Verify that these three points are the only equilibrium points.

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2.8 The Lorenz Equations 223

2. Suppose we fix o = 10 and 8 = 8/3 in the Lorenz system but leave p as a parame-
ter.
(a) Show that there is only one equilibrium point for the system if p < 1.

(b) Assume that p > 1 and show that there are three equilibrium points. Express
them in terms of p.

(c) What do you conclude about the value p = 1?

3. For the Lorenz system with o = 10, p = 28, and 8 = 8/3,
(a) verify that if (x(t), y(t), z(t)) is a solution with x(0) = y(0) = 0, then x(t) =
y(t) =0 forallt;
(b) find the solution with initial condition (0, 0, 1); and

(c) find the solution with initial condition (0, 0, zg), where zg is any constant, and
sketch its solution curve in xyz-phase space.

4. Using ButterflyEffect, choose several different pairs of nearby initial condi-
tions. Comment on how long it takes the corresponding solutions to separate.

5. Close to the origin, where x, y, and z are very small, the quadratic terms —xz and
+xy will be very, very small. So, near (x, Y, z) = (0, 0, 0), we can approximate the
Lorenz system with the system

dx

~—1 _
i 0y —x)
dy

—2 —28x —
at 8X —y
dz_ 8

dt 37

(This is called linearization at the origin and will be studied in detail in Chapter 5.)
Notice that z does not appear in the equations for dx/dt and dy/dt, and the equa-
tion for dz/dt does not contain x or y. That is, the system decouples into a two-
dimensional system and a one-dimensional equation.

(a) Using HPGSystemSolver, sketch the direction field and the phase plane for
the planar system
dx
dt
dy
— =28x — .
at ~ Y
(b) Sketch the phase line for the equation
dz 8
dt 37
(c) Sketch solutions in the three-dimensional phase space for the system above.
(This picture gives the behavior of the Lorenz system near (0, 0, 0).)

=10(y — x)
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REVIEW EXERCISES FOR CHAPTER 2

Short answer exercises: Exercises 1-14 focus on the basic ideas, definitions, and vo-
cabulary of this chapter. Their answers are short (a single sentence or drawing), and
you should be able to do them with little or no computation. However, they vary in
difficulty, so think carefully before you answer.

. Find one solution of the system dx/dt = |x|siny and dy/dt = |y|cos X.

. Find all equilibrium points of the system dx/dt = y and dy/dt = e¥ + x2.

. Convert the second-order differential equation d?y/dt? = 1 to a first-order system.

1

2

3

4. Find the general solution of the system of equations in Exercise 3.

5. Find all equilibrium points of the system dx/dt = y and dy/dt = sin(xy).
6

. How many equilibrium solutions does the system of differential equations
dx/dt = x(x — y) and dy/dt = (x2 — 4)(y? — 9) have? What are they?

7. Is the function (x(t), y(t)) = (e~5t, 2e=3t) a solution to the system of differential
equations dx/dt = 2x — 2y? and dy/dt = —3y? Why?

8. Write the second-order equation and the corresponding first-order system for the
mass-spring system with spring constant «, mass 8, and damping coefficient y .

9. Find the general solution of the system dx/dt = 2x and dy/dt = —3y.

10. Sketch the x(t)- and y(t)-graphs corresponding to the solution of the initial-value
problem dx/dt = y2 — 4, dy/dt = x% — 2x, and (x(0), y(0)) = (0, 2).

11. Give an example of a first-order system of differential equations with exactly ten
equilibrium points.

12. Suppose that F(2,1) = (3,2). What is the result of one step of Euler’s method
applied to the initial-value problem dY/dt = F(Y), Y(0) = (2, 1), with At = 0.5?

13. Sketch the solution curve for the initial-value problem dx /dt = —x, dy/dt = —y,
and (x(0), y(0)) = (1, 1).

14. Suppose that all solutions of the system dx/dt = f(x, y) and dy/dt = g(x, y) tend
to an equilibrium point at the origin as t increases. What can you say about solutions
of the system dx/dt = — f (x, y) and dy/dt = —g(x, y)?

True-false: For Exercises 15-21, determine if the statement is true or false. If it is true,
explain why. If it is false, provide a counterexample or an explanation.

15. The function (x(t), y(t)) = (e~5, 2e=3%) is a solution to the system of differential
equations dx /dt = 2x — 2y? and dy/dt = —3y.

16. The function x (t) = 2 for all t is an equilibrium solution of the system of differential
equations dx/dt = x — 2 and dy/dt = —v.
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17. Two different first-order autonomous systems can have the same vector field.
18. Two different first-order autonomous systems can have the same direction field.

19. The function (x(t), y(t)) = (sint, sint) is a solution of some first-order autonomous
system of differential equations.

20. If the function (x1(t), y1(t)) = (cost,sint) is a solution to an autonomous first-
order system, then the function (x2(t), y2(t)) = (cos(t — 1), sin(t — 1)) is also a
solution.

21. If the function (x1(t), y1(t)) = (cost, sint) is a solution of a first-order autonomous
system, then the function (x2(t), y2(t)) = (—sint, cost) is also a solution of the
same system.

22. MacQuarie Island is a small island about half-way between Antarctica and New
Zealand. As was mentioned in Exercise 11 of Section 1.1, its rabbit population un-
derwent an explosion during the six-year period between 2000 and 2006. Before the
year 2000, it was home to approximately 4,000 rabbits. It was also home to 160 feral
cats and was an important nesting site for seabirds* The cats, being cats, attacked the
nests of the seabirds. To protect the endangered birds, the cats were “eliminated” in
2000. However, the cats ate rabbits as well as seabirds. By 2006, the number of
rabbits had grown to about 130,000.

Let R(t) be the rabbit population and C (t) be the cat population where time t
is measured in years. Suppose the cat population is well approximated by a logistic
model, while the rabbit population is modeled by a modified logistic model. We use

dc C

@ ¢ (1‘ m)

dR R

@ R <1_ 130,000) —aRC,

where the —aRC term measures the negative effects on the rabbits during their in-
teractions with the cats.

(a) What value of « gives an equilibrium point at C = 160 and R = 40007?

(b) Using the value of « from part (a), calculate the contribution that the term
—aRC makes to dR/dt when C = 160 and R = 4000. Assuming that this
value represents the decrease in the rabbit population per year caused by the
cats, approximately how many rabbits did each cat eliminate per year (when
C =160 and R = 4000)?

(c) A plan is being developed to “remove” the rabbits and other rodents. Could the
rabbit population be controlled by instituting a constant harvesting parameter?
If so, how many rabbits would have to be harvested per year?

*See “Rampant rabbits trash World Heritage island” by Rachel Nowak New Scientist, January 14, 2009.
Available at www . newscientist.com

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.


http://www.newscientist.com

226 CHAPTER 2 First-Order Systems

True-false: Solution curves for several solutions of the system

dx _
at Y

dy 2
— =2x-3

at X X

are shown in the figure below. For Exercises 23-28, determine if the statement is true
or false for this system. Justify your answer.

y

23. The solution curve corresponding to the initial condition (1, 0) includes the point
(0, 0).

24. The x(t)- and y(t)-graphs of the solution with (x(0), y(0)) = (1/2, 0) tend to infin-
ity as t increases.

25. The solution with initial condition (x(0), y(0)) = (0, 1) is the same as the solution
with initial condition (x(0), y(0)) = (0, —1).

26. The function y(t) for the solution with initial condition (x(0), y(0)) = (—1,2) is
positive for all t > 0.

27. The functions x(t) and y(t) for the solution with initial condition (x(0), y(0)) =
(—1, 0) decrease monotonically for all t.

28. The x(t)- and y(t)-graphs of the solution with initial condition (x (0), y(0)) = (0, 1)
each have exactly one critical point.

29. Consider the system

dx
a:cosZy
dy
2 _oy—
TR

(a) Find its equilibrium points.
(b) Use HPGSystemSolver to plot its direction field and phase portrait.
(c) Briefly describe the behavior of typical solutions.
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30. Consider a decoupled system of the form

dx
T
dy
at =g(y).

What special features does the phase portrait of this system have?

In Exercises 31-34, a solution curve in the xy-plane and an initial condition on that
curve are specified. Sketch the x(t)- and y(t)-graphs for the solution.

31. y 32. y
3+ 1
2Ak
1A
X
4 = X
_1Ak l
33. y 34. y
1*:\ 2
4N 1
-1 1 2

35. Consider the partially decoupled system

dx
C—x42y+1
it X+ 2y +
dy

-2 _3y.

at =Y

(a) Derive the general solution.
(b) Find the equilibrium points of the system.
(c) Find the solution that satisfies the initial condition (xg, yo) = (-1, 3).

(d) Use HPGSystemSolver to plot the phase portrait for this system. Iden-
tify the solution curve that corresponds to the solution with initial condition
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36. Consider the partially decoupled system

dx_

a Y
dy
a—y‘f'l.

(a) Derive the general solution.
(b) Find the equilibrium points of the system.
(c) Find the solution that satisfies the initial condition (xg, yo) = (1, 0).

(d) Use HPGSystemSolver to plot the phase portrait for this system. Iden-
tify the solution curve that corresponds to the solution with initial condition
(X0, Yo) = (1, 0).

37. A simple model of a glider flying along up and down but not left or right (“planar”
motion) is given by

do  s?—cos6

dt S
ds _ —sin® — Ds?,
dt

where 6 represents the angle of the nose of the glider with the horizon, s > 0 rep-
resents its speed, and D > 0 is a parameter that represents drag (see the DETool's
program HMSGI ider).

(a) Calculate the equilibrium points for this system.

(b) Give a physical description of the motion of the glider that corresponds to these
points.
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LAB 2.1 Two Magnets and a Spring

In this lab we consider the motion of a mass that can slide freely along the x-axis. The
mass is attached to a spring that has its other end attached to the point (0, 2) on the
y-axis. In addition, the mass is made of iron and is attracted to two magnets of equal
strength—one located at the point (—1, —a) and the other at (1, —a) (see Figure 2.67).

We assume that the spring obeys Hooke’s Law, and the magnets attract the mass
with a force proportional to the inverse of the square of the distance of the mass to the
magnet (the inverse square law). If we choose the spring constant, mass, strength of the
magnets, and units of distance and time appropriately, then we can model the motion of
the mass along the x-axis with the equation

d?x 5 x —1 X +1
dt2 = (x —1)2+a2)3/2  ((x+1)2+a?)3/2"

(A good exercise for engineering and physics students: Derive this equation and de-
termine the units and choices of spring constant, rest length of the spring, mass, and
strength of the magnets involved.)

The goal of this lab is to study this system numerically. Use technology to find
equilibria and study the behavior of solutions. Be careful to consider the correct regions
of the phase plane at the correct scale so that you can find the important aspects of the
system.

In your report, you should address the following items:

1. Consider the system with the parameter value a = 2.0. Discuss the behavior of
solutions in the phase plane. Relate the phase portrait to the possible motions of the

mass along the x-axis.
g} 2
[

+1

1

m (-

Figure 2.67
Schematic of a mass sliding on the x-axis
attached to a spring and attracted by two magnets.
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2. Consider the system with the parameter value a = 0.5. Discuss the behavior of
solutions in the phase plane. Relate the phase portrait to the possible motions of the
mass along the x-axis. Be particularly careful to describe the solutions that separate
different types of qualitative behavior.

3. Describe how the system changes as a varies froma = 0.5to a = 2.0. That is,
describe the bifurcation that occurs.

4. Finally, repeat the analysis in Parts 1-3 with the magnets located at (+2, —a). In
other words, use the equation
d?x 0.3 X—2 X +2
dtz =~ (x —2)2+a2)3/2  ((x+2)2+a?)%2

Note the differences between this system and the previous one and interpret these
differences in terms of the possible motions of the mass as it slides along the x-axis.

Your report: Address each of the items above. Pay particular attention to the physical
interpretation of the solutions in terms of the possible motions of the mass as it slides
along the x-axis. You may include graphs and phase portraits to illustrate your discus-
sion, but pictures alone are not sufficient.

LAB 2.2 Cooperative and Competitive Species

In this chapter we have focused on first-order autonomous systems of differential equa-
tions, such as the predator-prey systems described in Section 2.1. In particular, we have
seen how such systems can be studied using vector fields and phase plane analysis and
how solution curves in the phase plane relate to the x(t)- and y(t)-graphs of the solu-
tions. In this lab project you will use these concepts and related numerical computations
to study the behavior of the solutions to two different systems.

We have discussed predator-prey systems at length. These are systems in which
one species benefits while the other species is harmed by the interaction of the two
species. In this lab you will study two other types of systems—competitive and co-
operative systems. A competitive system is one in which both species are harmed by
interaction, for example, cars and pedestrians. A cooperative system is one in which
both species benefit from interaction, for example, bees and flowers. Your overall goal
is to understand what happens in both systems for all possible nonnegative initial condi-
tions. Several pairs of cooperative and competitive systems are given at the end of this
lab. (Your instructor will tell you which pair(s) of systems you should study.) The an-
alytic techniques that are appropriate to analyze these systems have not been discussed
so far, so you will employ mostly geometric/qualitative and numeric techniques to es-
tablish your conclusions. Since these are population models, you need consider only x
and y in the first quadrant (x > 0 and y > 0).
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Your report should include:

1. A brief discussion of all terms in each system. For example, what does the coeffi-
cient to the x term in equation for dx/dt represent? Which system is cooperative
and which is competitive?

2. For each system, determine all relevant equilibrium points and analyze the behavior
of solutions whose initial conditions satisfy either xo = 0 or yp = 0. Determine the
curves in the phase plane along which the vector field is either horizontal or vertical.
Which way does the vector field point along these curves?

3. For each system, describe all possible population evolution scenarios using the phase
portrait as well as x (t)- and y(t)-graphs. Give special attention to the interpretation
of the computer output in terms of the long-term behavior of the populations.

Your report: The text of your report should address the three items above, one at a
time, in the form of a short essay. You should include a description of all “hand” com-
putations that you did. You may include a limited number of pictures and graphs. (You
should spend some time organizing the qualitative and numerical information since a
few well-organized figures are much more useful than a long catalog.)

Systems:
Pair (1): g ’
X__ L
A 0= 5X + 2Xxy B. m = 6X — X° — 4xy
dy dy 9
a_—4y+3xy E_Sy—2xy—2y
Pair (2): g ]
X__ EE
A Frl 3X + 2xy B. 9t 5X — x© — 3xy
dy dy 2
E_—5y+3xy E_Sy—3xy—3y
Pair (3):
A ax _ 4x + 3x B dx = 5x — 2x2 — 4x
Tdt J Tdt J
dy dy
-~ =-3y+2 —~ =7y — 4xy — 3y?
at y + Xy T y — axy — oy
Pair (4):
Ad—X——5x+3x Bd—X—9x—2x2—4x
Tdt . Tdt |
dy dy 2
— =-3y+2 — =8y —bxy —3
at y + Xy at y — oXy — 9y
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LAB 2.3 The Harmonic Oscillator with Modified Damping

232

Autonomous second-order differential equations are studied numerically by reducing
them to first-order systems with two dependent variables. In this lab you will use the
computer to analyze three somewhat related second-order equations. In particular, you
will analyze phase planes and y(t)- and v(t)-graphs to describe the long-term behavior
of the solutions.

In Sections 2.1 and 2.3, we discuss the most classic of all second-order equations,
the harmonic oscillator. The harmonic oscillator is

d?y dy

mdt2 +bdt + ky = 0.

It is an example of a second-order, homogeneous, linear equation with constant coeffi-
cients. In the text we explain how this equation is used to model the motion of a spring.
The force due to the spring is assumed to obey Hooke’s law (the force is proportional
to the amount the spring is compressed or stretched). The force due to damping is as-
sumed to be proportional to the velocity. In your report you should describe the motion
of the spring assuming certain values of m, b, and k. (A table of values of the parame-
ters is given below. Your instructor will tell you what values of m, b, and k to consider.)
Your report should discuss the following:

1. (Undamped harmonic oscillator) The first equation that you should study is the har-
monic oscillator with no damping; that is, b = 0 and with k # 0. Examine solutions
using both their graphs and the phase plane. Are the solutions periodic? If so, what
does the period seem to be? Describe the behavior of three different solutions that
have especially different initial conditions and be specific about the physical inter-
pretation of the different initial conditions. (Analytic methods to answer these ques-
tions are discussed in Chapter 3. For now, work numerically.)

2. (Harmonic oscillator with damping) Repeat Part 1 using the equation

4% dy
— b ky = 0.
d 2 I +ky =
3. (Harmonic oscillator with nonlinear damplng) Repeat Part 1 using the equation
dy dy
— +b =0
dt2 7 + ‘

in place of the usual harmonic oscillator equation. (Note that even with the same
value of the parameter b, the drag forces in this equation and the equation in Part 2
have the same magnitude only for velocity 1. Also, note that the sign of the term

dy| dy
dt | dt

is the same as the sign of dy/dt, hence this damping force is always directed oppo-
site the direction of motion. The difference between this equation and that in Part 2
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is the size of the damping for small and large velocities. One of the many examples
of situations for which this is a better model than linear damping is the drag on air-
plane tires from wet snow or slush. Drag from only four inches of slush was enough
to cause the 1958 crash during take-off of the plane carrying the Manchester United
soccer team. Currently, large airplanes are allowed to take off and land in no more
than one-half inch of wet snow or slush.*

4. (Nonlinear second-order equation) Finally, consider a somewhat related second-order
equation where the damping coefficient b is replaced by the factor (y? — «); that is,
d?y

m— + (y2 — o)

dy
dt? dt

+ky =0.

Is it reasonable to interpret this factor as some type of damping? Provide a complete
description of the long-term behavior of the solutions. Are the solutions periodic? If
s0, what does the period seem to be? Explain why this equation is not a good model
for something like a mass-spring system. Give an example of some other type of
physical or biological phenomenon that could be modeled by this equation.

Your report: Address the questions in each item above in the form of a short essay. Be
particularly sure to describe the behavior of the solution and the corresponding behavior
of the mass-spring system. You may use the phase planes and graphs of y(t) to illustrate
the points you make in your essay. (However, please remember that, although one good
illustration may be worth 1000 words, 1000 illustrations are usually worth nothing.)

Table 2.4
Possible choices for the parameters.
Choice m k b o
1 2 5 2 3
2 3 5 3 3
3 5 5 4 3
4 2 6 3 5
5 3 6 3 5
6 5 6 3 5
7 5 4 4 2
8 5 5 4 2
9 5 6 4 2
10 5 4 4 2

*See Stanley Stewart, Air Disasters, Barnes & Noble, 1986.
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LAB 2.4 A Mass-Spring System with a Rubber Band

In an idealized mass-spring system, the spring provides a restoring force proportional
to its displacement from its rest position (Hooke’s Law). This ideal spring is never
overstretched or completely compressed. These sorts of assumptions (hopefully) yield
models that are simple enough to be tractable but accurate enough to be useful. But we
should always be mindful of the underlying assumptions.

For example, we frequently think of a rubber band as a kind of spring. When
stretched, it provides a restoring force toward its rest length. However, there are limi-
tations. We cannot stretch the rubber band too far or it will break. More importantly, a
compressed rubber band provides no force. We expect the behavior of a system with a
spring and a rubber band to be different from one with a spring alone.

In this lab we compare models for a mass-spring system and a mass-spring sys-
tem with the addition of a rubber band (see Figure 2.68). The rubber band adds extra
restoring force when the displacement is positive but adds no force when the displace-
ment is negative.

The mass-spring system depicted in Figure 2.68 is modeled by

dy  dy
mW + ba + kly = 10m,

where y measures the vertical displacement (with down as positive) in meters. The
parameters are the mass m, the damping coefficient b, and the spring constant k;. The
constant 10m on the right-hand side of the equation is a rough approximation of the
force due to gravity.

To include the rubber band, we add an extra term to the equation above. We as-
sume that the rubber band obeys Hooke’s Law when it is stretched but that it exerts no

Figure 2.68

A mass-spring system and a
mass-spring system with a rubber
band.
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force when it is compressed. Let h(y) be the function that is y if y is positive and zero
if y is negative, that is,
y, ify>0;
h(y) =
0, ify<0ao.
Then the term koh(y) models the restoring force of a rubber band with a “spring con-
stant” ko when it is stretched and no effect when it is compressed. We obtain

d2y
dt2

where the parameters m, b, and k; are as above. We choose m = 1 for simplicity.
Consider the following cases:

dy

b +k1y+k2h(y) = 10m,

1. (Ideal mass-spring system with no rubber band) Choose a value of k; such that
12 < k1 < 13 and study solutions of the equation

d?y

dt?
Examine solutions using both their graphs and the phase portrait. Are solutions pe-

riodic? If so, approximate the period of the solutions. Be specific about the physical
interpretation of the solutions for different initial conditions.

+ky =

2. (Mass-spring system with damping but no rubber band) In Part 1, b = 0. Now repeat
your analysis for

d?y dy

FTe) +bdt +kiy =10
using the same value of k; as in Part 1 and various values of b. In particular, try
b =1.0and b = 10.0. Describe how solutions change as b is adjusted. In fact, there
is a particularly important b-value between b = 1.0 and b = 10.0 that separates
the b = 1.0 behavior from the b = 10.0 behavior. This “bifurcation” value of b is

difficult to locate numerically, but try your best.

3. (Mass-spring system with rubber band but no damping) Once again let b = 0, but
now add the rubber band to the system. That is, consider the equation

d2y

at2
Use the same value for ki as you used in Part 1 and choose a value of ky such that
4.5 < ko < 5.0. Repeat the analysis described in Part 1 for this equation.

+ k1y + koh(y) = 10.

4. (Damped mass-spring system with rubber band) We now add damping into the sys-
tem in Part 3 and obtain

d2y  dy
— +b—
dt? + dt

Repeat the analysis described in Part 2 for this equation.

+ k1y + kah(y) = 10.
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Your report: Address each of the previous items. You may provide illustrations from
the computer, but remember that although a good illustration is worth 1000 words, 1000
illustrations are worth nothing. Make sure you use your conclusions about the solutions
of these equations to describe how the mass oscillates.

LAB 2.5 Active Shock Absorbers

Recent advances in materials science have created reliable, long-lasting fluids, MR flu-
ids, which change their properties when subjected to a magnetic field. If an MR fluid
is placed in a shock absorber, a change in an applied magnetic field can alter the damp-
ing capabilities of the fluid, so the damping coefficient can be adjusted dynamically.
These “active” shock absorber systems have found application in such diverse objects
as washing machines, prosthetic limbs, and car suspensions.*

One of the first applications of this technology is called the Motion Master Ride
Management System, an active shock absorber system for truck and school bus seats.
Schematically, we can think of a truck seat as being attached to the rest of the truck by
a spring and a dashpot (see Figure 2.69). For the perfect ride, we would want the spring
to have spring constant k = 0 and the dashpot to have damping coefficient b = 0. In
this case, the seat would float above the truck. For obvious reasons, the seat does have
to be connected to the truck, so at least one of the two constants must be nonzero. The
springs are chosen so that k is large enough to hold the seat firmly to the truck, and the
damping coefficient b is chosen with the comfort of the driver in mind.

If b is very large, the seat is rigidly attached to the truck, which makes the ride
very uncomfortable. On the other hand, if b is too small, the seat may “bottom out”
when the truck hits a large bump. That is, the spring compresses so much that the seat

N

|\ 4

Figure 2.69
Schematic of truck and truck seat.

*See Scientific American, May 2001, p. 28 and http://www. lord.com/mr. For a commercial see
http://www.cadil lac.com. Look for models with “Magnetic ride control,” for example, the STS and
SRX models.
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violently strikes the base. This response is both dangerous and uncomfortable. In prac-
tice, designers compromise between having b small (a smooth ride that has danger from
large bumps) and b large (protection from large bumps but a rough ride). Another con-
stant, the mass of a typical driver, must also be considered as a factor in the choice of b.

Active damping allows adjustment of the damping coefficient according to the
state of the system. That is, the damping coefficient b can be replaced by a function
of y and v = dy/dt. As a first step in studying the possibilities in such a system, we
consider a modification of the harmonic oscillator of the form

dzy
dirre
where m is the mass of the driver. In this case, the damping coefficient b(v) is assumed

to be a function of the velocity v. For this lab, we assume that the units of mass and
distance are chosen so that k = m = 1, and we study the equation

+b )—+ky_0

d2y
dt2

When the vertical velocity of the seat is near zero, we want small damping so that
small bumps are not transmitted to the seat. When the vertical velocity of the seat is
large, we want b(v) to be large to protect from “bottoming out” (and “topping out”).
These criteria leave considerable freedom in the choice of the function b(v).

In this lab, we consider the behavior of a truck seat for three possible choices of
the damping function b(v):

+ b(v)— +y=0.

1. Investigate solutions of the equation

d2y

for b(v) = v*. Describe solutions with a variety of different initial conditions.
2. Repeat Part 1 for b(v) = 1 — 10",
3. Repeat Part 1 for b(v) = arctan v.

4. Suppose you are choosing from among the three possible functions b(v) above for a
truck that drives on relatively smooth roads with an occasional large pothole. In this
case, y and v are usually small, but occasionally v suddenly becomes large when the
truck hits a pothole. Which of the functions b(v) above would you choose to control
the damping coefficient? Justify your answer in a paragraph.

Your report: Address all of the items above. Be sure to keep the application in mind
when describing the behavior of solutions. Phase portraits and y(t)-graphs are useful,
but illustrations alone are not enough. In Part 4, address your analysis to an audience
having your mathematical background but who have not considered this problem.
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R
SYSTEMS

In Chapter 2 we focused on qualitative and numerical techniques for studying
systems of differential equations. We did so because we can rarely find explicit
formulas for solutions of a system with two or more dependent variables. The
only exception to this basic truth is the linear system.

In this chapter we show how to use the algebraic and geometric forms of
the vector field to produce the general solution of an autonomous linear system.
Along the way, we find that understanding the qualitative behavior of alinear
system is much easier than finding its general solution. The description of the
qualitative behavior of linear systems leads to a classification scheme for these
systems, which is particularly useful in applications. We also continue our
study of models that yield linear systems, especially the damped harmonic
oscillator.

239

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



240 CHAPTER 3 Linear Systems

3.1 PROPERTIES OF LINEAR SYSTEMS AND THE LINEARITY PRINCIPLE

In this chapter we investigate the behavior of the simplest types of systems of differen-
tial equations—autonomous linear systems. These systems are important both in their
own right and as a tool in the study of nonlinear systems. We are able to classify the
linear systems by their qualitative behavior and even give formulas for solutions.

Throughout this chapter we use two models repeatedly to illustrate the techniques
we develop. One is the harmonic oscillator, the most important of all second-order
equations. We derived thismodel in Sections 2.1 and 2.3. Now, using the techniques of
this chapter, we can give a complete description of its solutions for all possible values
of the parameters. The other model is an artificial one, which we present to illustrate all
possibilitiesthat can arise for planar linear systems. Study our analysis, but don't invest
any money based on it.

The Harmonic Oscillator

The harmonic oscillator is a model for (among other things) the motion of a mass at-
tached to a spring. The spring provides a restoring force that obeys Hooke's law, and
the only other force considered is that due to damping. Let y(t) be the position of the
mass at time t, with y = 0 corresponding to the rest position of the spring. Newton's
law of motion,

force = mass x acceleration,

when applied to a mass-spring system, yields the second-order differential equation

dy d?
kv —b—2 =m—2
y-b at a2

wherem isthe mass, k isthe spring constant, and b isthe damping coefficient. The —ky
term on the left-hand side comes from Hooke's law, and the —b(dy/dt) term is the
force from damping (see Section 2.3, page 184). This second-order equation is more
commonly written as

d%y  dy

— +b—+ky=0.

Mgz TPar 7Y

Aswedid in Sections 2.1 and 2.3, we can convert this equation into alinear system by
letting v = dy/dt bethe velocity at timet. We obtain

dy _
dt
dv k b

=——y——v

dt mym

v

Note that the derivativesdy/dt and dv/dt depend linearly on y and v. Aswe will see,
the behavior of the solutions depends on the values of the parametersm, k, and b.
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3.1 Properties of Linear Systems and the Linearity Principle 241

Two Cafés

Harmonic oscillators do not display al of the possible behaviors we will encounter in
this chapter, so we present the following apocryphal model from microeconomics.

After retiring from writing differential eguations textbooks, Paul and Bob both
decideto open small cafés near campus. “Paul’s High Test Coffee” and “Bob’s Gourmet
Tea’ open on the same block, and Paul and Bob soon become concerned about the ef-
fect each café has on the other. Having two beverage shops so close might make their
block a more popular destination for students. On the other hand, the cafés might com-
pete for alimited supply of thirsty customers. Paul and Bob argue about this until they
are so sick of arguing that they hire their former colleague and famous mathematician
Glen to settle the matter. Glen decides to make a differential equations model for the
relationship between the profits of the two cafés. Remembering al that he learned from
Paul and Bob, Glen startswith as simple amodel as possible and suggests the following
system.

Let

X (t) = daily profit of Paul’scafé at timet; and

y(t) = daily profit of Bob's café at timet.
That is, if x(t) > 0, then Paul’s café is making money, but if x(t) < 0, then Paul’s
café is losing money. Since there is no hard information yet about how the profits of

each café affect the change in profits of the other, Glen formul ates the simplest possible
model that allows each café to affect the other—alinear model. The systemis

dx
a:ax+by
dy
a_cx+dy,

where a, b, ¢, and d are parameters. The rate of change of Paul’s profits depends lin-
early on both Paul’s profits and Bob's profits (and nothing else). The same assumptions
apply to Bob's profits. In Chapter 5 we will see that using a model of this form is usu-
aly justified as long as both cafés are operating near the break-even point.

We cannot yet use this model to predict future profits because we do not know the
values of the parametersa, b, ¢, and d. However, we can develop abasic understanding
of the significance of the signs and magnitudes of the parameters. Consider, for exam-
ple, the parameter a. It measures the effect of Paul’s profits on the rate of change dx /dt
of that profit. Suppose, for instance, that a is positive. If Paul is making money, then
X > 0andsoax > 0. Theax term contributes positively to dx /dt, and so Paul makes
more money in that case. In other words, Paul hopesthat a > 0if x > 0. On the
other hand, being profitable (x > 0) could conceivably have a negative effect on Paul’'s
profits. (For example, the café might be crowded, and customers might go elsewhere.)
In this case profits would decrease, and under this assumption the parameter a should
be negative in our model.

The parameter b measures the effect of Bob’s profits on the rate of change of
Paul’s profits. If b > 0 and Bob makes money (y > 0), then Paul’s profits also benefit
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242 CHAPTER 3 Linear Systems

because the by term contributes positively to dx /dt. On the other hand, if b < 0 then,
when Bob makes money (y > 0), Paul’s profits suffer. Conceivably we could interpret
b < 0 asameasure of Bob's stealing customers from Paul.

Similarly, both Paul’s profits and Bob's profits affect the rate of change of Bob's
profits, and the parameters ¢ and d have similar interpretations relative to dy/dt. This
model assumes that only the profit of the two cafés influences the change in those prof-
its. These assumptions are clearly vast oversimplifications. However, this model does
give us a simple situation for which we can interpret the solutions of various linear
systems.

In Figure 3.1 we plot the phase portrait for the system

dx _ ax +b

dt y

dy

—— =cx +dy,

gt =~y
assumingthata =d = 0, b = 1, and ¢ = —1, and we get circular solution curves. In
Figure 3.2 we consider the casewherea = —1,b = 4,¢ = —3,andd = —1. Inthis

case the solution curves spiral toward the origin.
In terms of the model, Figure 3.1 implies that both Paul’s and Bob's profits peri-
odically oscillate between making money and losing money. The solution curvein Fig-

y

Figure 3.1 Figure 3.2
The direction field and three solution curves  The direction field and a solution curve for
for the system the system

dx dx

— = —~ = 4

at =Y TR

dy dy

=" Fri —3x —y.

Note that all three curves are circles

This solution curve spirals toward the

centered at the origin. origin ast increases.
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3.1 Properties of Linear Systems and the Linearity Principle 243

ure 3.2 suggests that the profits oscillate while tending toward the point (0, 0), which is
the break-even point for both cafés. The corresponding x (t)- and y (t)-graphs illustrate
these behaviors (see Figures 3.3 and 3.4). Aswe will see, there are a number of other
possible phase portraits for this model, depending on the values of the parametersa, b,
¢, and d. In this chapter we develop techniquesto handle all possibilities.

Y xw y(®) -y o

2+ AN ~ 2 X
e

ANV A =

\\/ é\\/ i 2 3

AN

-2 -2 y(

Figure 3.3 Figure 3.4

The x(t)- and y(t)-graphs correspondingto  The x(t)- and y(t)-graphs corresponding to
the solution curvein Figure 3.1, withinitial  the solution curve in Figure 3.2 with initial
condition (X, Yo) = (2, 0). condition (Xg, Yo) = (2, 0).

Linear Systems and Matrix Notation

In this chapter we mainly consider systems of differential equations of the form

d—X—aerb
dt y
dy

— =cx +dy,
it X +dy

wherea, b, ¢, and d are constants (which may be 0). Such asystemissaidto bealinear
system with constant coefficients. The constants a, b, ¢, and d are the coefficients.
Both the harmonic oscillator model and the model of the cafés are, up to changesin the
names of the dependent variables and the coefficients, systems of thisform.

The most important adjective—linear—refers to the fact that the equations for
dx/dt and for dy/dt involve only first powers of the dependent variables. In other
words they are linear functions of x and y. Since the coefficients a, b, ¢, and d are
constants, this type of system is also autonomous, and therefore we know that distinct
solution curves in the phase plane do not touch. These systems have two dependent
variables, so we say that they are planar or two-dimensional. Since “two-dimensional,
linear system with constant coefficients’ is quite a mouthful, we usually just call these
systems planar linear systems or even just linear systems. Note that these systems are
two-variable generalizations of the homogeneous, constant-coefficient, first-order lin-
ear equation dx /dt = ax, which we discussed in Chapter 1 (see pages 6 and 112).

We can use vector and matrix notation to write this system much more efficiently.
Let A bethe“2-by-2" square matrix (the 2 x 2 matrix)

A:<a b)’
c d
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244 CHAPTER 3 Linear Systems

and let

()

denote the column vector of dependent variables. Then the product of a2 x 2 matrix
A and a column vector Y is the column vector AY given by

AY:(a b><x>:<ax+by).
c d y cx +dy
52\(3\ ( 53+2-4)\ (23
-13)\a) \ —1.343.4) \ 9
2—-a) =« y [ @—a)y+27v
ey v/ ey + 2yv '

Asin Chapter 2, if x and y are dependent variables, then we write

For example,

dx

X(t) dy at

v (ym) T
dt

Using this matrix notation, we can write the two-dimensional linear system

dx
E:ax+by
dy
a_cx~|—dy
as
dx
dt | _(ax+by )\ [(a b X
dy | \ex+dy /) \c d y |’
dt
or more compactly as
dy
E:AY,

where

(1) = (5]

The matrix A of coefficients of the system is called the coefficient matrix.
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3.1 Properties of Linear Systems and the Linearity Principle 245

One advantage of the matrix notation is that it helps us see the similarities be-
tween first-order linear systems and first-order linear equations. Working with matrices
also gives us some very useful algebraic tools, which we will exploit throughout this
chapter.

Vector notation can be extended to include systems with any number n of depen-
dent variables yi, Y2, ..., Yn. The (constant coefficient) linear system with n dependent

variablesis
dy1
at =anyir+awy2+---+ainyn
dy,
T az1yi1+axyz2+---+axnyn
dyn
ot =an1y1 + an2y2 + - -+ annyn-
In this case the coefficients of this system areass, aio, ..., ann. Let
dys
y1 dt
y2 dy dy2
Y = , SO — = dt
: dt .
¥ dyn
dt
The coefficient matrix isthen x n matrix
ailz  ar ain
a1 ax azn
A=
dn1 an2 dnn
and we have
a1z ai ain Y1
dY a1 ax azn Y2
— =AY =
dt
an1  an2 dnn Yn

aj1y1 +apy2+...+amyn
az1y1 +azy2+...+axyn

an1y1 + an2y2 + ...+ annyn
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246 CHAPTER 3 Linear Systems

The number of dependent variables is called the dimension of the system, so this sys-
temisn-dimensional. For example, the three-dimensional system

dx
R 2
i V2x +y
dy
a_z
dz
oy 2
it X—Yy+2z
can be written as e
— =AY
dt ’
where
X V2 1 0
Y=|vy and A= 0 0 1
z -1 -1 2

In this text we work primarily with planar, or two-dimensional, systems. However,
readers familiar with linear algebra will recognize that many of the concepts we dis-
cuss carry over to higher dimensional systems with little or no modification.

Linear systems are like other systems of differential equations, only simpler. All
of the methods of Chapter 2 apply, and we use these methods to understand the associ-
ated vector fields, direction fields, and graphs of solutions. In addition, because linear
systems are relatively simple algebraically, it is reasonable to hope that we can “read
off” the behavior of solutions just from the coefficients. That is, if we are given the

planar linear system
4 _ av, whereA:(a b)
dt c d

is the coefficient matrix, then we would like to understand the system completely if we
know the four numbers a, b, ¢, and d. In fact we might even hope to come up with
an explicit formulafor the general solution. From the four numbersa, b, ¢, and d, we
are able to give ageometric description of the behavior of the solutionsin the xy-plane,
describe the x (t)- and y (t)-graphs of solutions, and even give aformulafor the general
solution. Hence we are able to produce explicit formulas that solve any initial-value
problem.

Equilibrium Points of Linear Systems and the Determinant

We start by looking for the simplest solutions—the equilibrium solutions. Recall that a
point Yo = (Xo, Yo) isan equilibrium point of a system if and only if the vector field at
Yo isthe zero vector. Since the vector field of a system at the point Y is given by the
right-hand side of the differential equation evaluated at that point and since

dy

— =AY
dt
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for alinear system, we know that the vector field F(Yq) at Yq for alinear system is
given by
F(Yo) = AYp.

In other words the vector at Yq is computed by taking the product of the matrix A with
the vector Y. Consequently, the equilibrium points are the points Y such that

o- ()
(25)(2)=(z)-(2),

Written in scalar form, this vector equation is a pair of simultaneous linear equations

That is,

axp+byo=0
cXo +dyp=0.

Clearly (xo, Yo) = (0, 0) is a solution to these equations. Therefore the point Yo =
(0, 0) isan equilibrium point, and the constant function

Y(t)= (0,0 foralt

isasolution to the linear system. This solution is often called the trivial solution of the
system. (Note that this computation does not depend on the values of the coefficientsa,
b, ¢, and d. In other words every linear system has an equilibrium point at the origin.)
Any other equilibrium points (xg, yo) must also satisfy
axo+byo=0

cXg+dyp=0.

To find them, assume for the moment that a # 0. Using the first equation, we get

b

Xo = ——VYo.
ay

The second equation then yields

b
c <—5> yo+dyo =0,
which can be rewritten as
(ad — bc)yp = 0.

Hence either yg = O orad — bc = 0. If yg = 0, then xo = 0, and once again we have
the trivial solution. Therefore alinear system has nontrivia equilibrium points only if
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ad —bc = 0. Thisquantity, ad — bc, isaparticularly important number associated with
the 2 x 2 matrix A.

DEFINITION Thedeterminant of a2 x 2 matrix

A ( a b )
c d
isthe number ad — bc. It isdenoted det A. n

With this definition, we are able to summarize the results of the above computa-
tion for equilibrium points of linear systems.

THEOREM If A isamatrix with det A # O, then the only equilibrium point for the
linear systemdY /dt = AY istheorigin. =

The argument above proves this theorem, provided the upper left-hand corner en-
try, a, of A isnonzero, but thereis nothing specia about this entry. By similar steps we
can obtain the same result as long as at |east one of the entries of A is nonzero (see Ex-
ercise 14). If al theentries of A are zero, then every point in the planeisan equilibrium

point.
2 1
A= .
( -4 0.3 )

Asan example, suppose
ThendetA = (2)(0.3) — (1)(—4) = 4.6. Sincedet A # 0, the only equilibrium point
for linear systemdY/dt = AY istheorigin, (0, 0).

An Important Property of the Determinant

The determinant is a quantity that pops up repeatedly throughout this chapter. For us
its significance usually is whether or not it is zero. If we pick four numbersa, b, ¢, and
d at random, then it is unlikely that the number ad — bc is exactly zero. Thus matrices
whose determinant is zero are often called singular or degenerate.

From the theorem we just discussed, we know that, if alinear systemdY/dt =
AY isnondegenerate (det A # 0), then it has exactly one equilibrium point, which is
(0, 0). In other words an initial condition of (0, 0) corresponds to a solution curve that
sitsat (0, 0) for al time. Any other initial condition yields a solution that changes with
time.

In Section 3.2 we need to use the determinant again, so it is important to un-
derstand exactly what we verified when we justified this theorem. For linear systems,
equilibria correspond to points Yg for which

- (2)

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3.1 Properties of Linear Systems and the Linearity Principle 249

Written in terms of scalars, this vector equation isidentical to the the simultaneous sys-
tem of linear equations

axo+byp=0
cXg+dyo=0.

What we actually verified is that this system of equations has nontrivial solutions—
solutions other than (0, 0)—if and only if det A = 0.

The Linearity Principle

The solutions of linear systems have specia properties that solutions of arbitrary sys-
tems do not have. These properties are so useful that we take advantage of them repeat-
edly. In fact they are exactly the reason that we will be so successful in our analysis of
linear systems.

However, a note of caution isin order: It isimportant to make sure that the sys-
tem under consideration actually is alinear system before you use any of these special
properties. Thisis the equivalent of making sure that the car isin reverse before trying
to back out of the garage. If the car isin drive instead of reverse when you start backing
out of the garage, there can be dire consequences.

The most important property of linear systemsisthe Linearity Principle.

LINEARITY PRINCIPLE  SupposedY/dt = AY isalinear system of differential equa-
tions.

1. If Y(t) isasolution of this system and k isany constant, thenkY (t) isalso asolution.
2. 1f Y1(t) and Y(t) are two solutions of this system, then Y1(t) + Ya(t) isaso a
solution. m

Using the Linearity Principle (also called the Principle of Superposition), we
can manufacture infinitely many new solutions from any given solution or pair of solu-
tions. Taken together, the two parts of the Linearity Principle imply that, if Y1(t) and
Y2(t) are solutions of the system and if k1 and ko are any constants, then

kiY1(t) +kaYo(t)

isalso asolution. A solution of theformk1Y1(t) +koY2(t) iscalled alinear combina-
tion of the solutions Y1(t) and Y2(t). Given two solutions, we can produce infinitely
many solutions by forming linear combinations of the original two.

For example, consider the partially decoupled linear system

dy 2 3

- = Y

dt ( 0 -4 )
In Section 2.4 we found that

ezt _e—4t
Yl(t)=< 0 ) and Y2(t)=< 2p—4t )
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are solutions to this system (see page 193). We can double-check this by directly calcu-
lating both sides, dY/dt and AY, of the differential equation. For example, with Y (t)

we have
dy; 26t 2 3 et 2et
at (0 and AYi={ 4 _4){o 0/

so Y1(t) isasolution. (You should double-check that Y2 (t) isasolution. The verifica-
tion is good practice with matrix arithmetic.)

The solution curves for Y1 (t) and Y(t) are shown in Figure 3.5. Note that each
oneisaline segment in the xy-plane. The solution curve for Y1 (t) approaches the equi-
librium point at the originast — —oo, and the solution curve for Y2 (t) approachesthe
equilibrium point at the origin ast — oo. In the next section we exploit the geometry
of solutions such as these to find them using only algebraic techniques.

The Linearity Principle tell us that any function of the form kY1 (t) + koYa(t)
is also a solution to this system for any constants k; and ko. To illustrate this fact, we
check directly that Y3(t) = —2Y1(t) + 5Y2(t) isasolution. Note that

eZt _e—4t —262t _ 5e—4t
Y3(t) = —2Y1(t) + 5Y2(t) = -2 +5 = )
3(0) = —2Y1(1) + 5Y2(t) ( g ot Lo

and therefore

dt —40e—4

2 3 —2e% _pe A
AYs = e e
0 -4 10e~4

[ 2(—2e% —Be~4) 4+ 3(10e~4)
B —4(10e4)

[ 4?4+ 20e7H
- —40e~4 '
Since both computations yield the same function, this linear combination of the two
solutions Y1 (t) and Y2(t) isalso asolution. (In the future we will not bother to double-
check the consequences of the Linearity Principle.)
Again we emphasize that the solution curves for the solutions Y1 (t) and Y2(t)
possess a very special and useful geometric property. The fact that they form line seg-
ments is not typical of solution curvesin general. In fact the typical solution curve of

this system is not a straight line. For example, as we see in Figure 3.5, the solution
curve of the solution Y1(t) + Y2(t) isnot straight.

dYs (—4@2t + 20e—4t>

Also we compute
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y Figure 3.5
v v The Linearity Principle implies that the function
1O +Y20) v () 4 Y, (t) isasolution of the system

dy (2 3)

- — Y

dt 0 -4

| % = — x because it is the sum of the two solutions Y1 (t)

_3 \ 3 and Yy (t).
Ya(t)

Verification of the Linearity Principle
To show that the Linearity Principle holds in general, we first state the following two
algebraic properties of matrix multiplication:

1. If Aisamatrix and Y isavector, then
AKY) = kAY
for any constant k.
2. If Aisamatrix and Y1 and Y are vectors, then
A(Y1+Y2) = AY1 + AY>.

We can verify these two facts for 2 x 2 matrices and 2-dimensional vectors by direct
computation. For example, to verify property 2, let

o (22)

be an arbitrary 2 x 2 matrix and let

Y11= X and Yo = X2
Y1 y2

be arbitrary vectors. Then

a b X1+ X
A(Y1+ Y2) = L
c d Y1+ Y2

( a(x1 + x2) + b(y1 + y2) )

C(X1+ X2) +d(y1+y2)

[ ax1+axz+bys + by
cX1 + cxz +dy1 +dy2
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and

AvirAa= (2P () ® )
c d y1 c d y2

[ axa+byr N axo + by»

cx1 +dyp cxX2 + dy2

[ axa+axz+ by; + by2
cX1 +Cxo +dyr +dys /-

Thus property 2 holds. The verification of property 1 is left to the exercises (see Exer-
cise 30).

Given these algebraic properties of matrix multiplication, we can verify the Lin-
earity Principle using the standard rules of differentiation. Suppose Y1(t) and Y2(t) are
solutionstodY/dt = AY; that is, suppose

dyy dysz
— =AY d —=
dt ! dt

For any constant k we have

d(kYy) dyq
=k—— = kAY1 = AKY
it it 1 (KY1),

sokY(t) isasolution to the system. Also

dvatYs) _d¥1  d¥2 oy fAYs =AY+ Y2 fordlt.
dt dt dt
Asaresult, Y1(t) + Ya(t) isaso asolution and the Linearity Principleis verified. We
can see the advantage of the matrix and vector notation. To write out the above equa-
tions showing all the components would be a tedious exercise—in fact, it is a tedious
exercise in the exercise set at the end of this section (see Exercise 30).

=AY, foradlt.

Solving Initial-Value Problems

From the Linearity Principle we know that, given two solutions Y1(t) and Y2(t), we
can make many more solutions of the formk1Y1(t) + ko Y2(t) for any constants k1 and
ko. Thistype of expression is called atwo-parameter family of solutions, since we have
two constants, k1 and ko, that we can adjust to obtain various solutions. It is reasonable
to ask if these are all of the solutions or, put another way, if each solution is one of this
form.

To see how the Linearity Principle is used to solve initial-value problems, we re-
turn to the differential equation

dt 0 -4
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that was discussed earlier in this section. Suppose we want to find the solution Y (t) of
this system with initial value Y (0) = (2, —3). We aready know that

e2t _e—4'[
Yl(t)=< 0 ) and Y2(t):< o4t )

are solutions, and by direct evaluation we know that

Y1(0) = 1 and Y2(0) = -1
1 - 0 2 = 2 s

so neither Y1 (t) nor Y(t) isthe solution to the initial-value problem

av (2 3 2
W:<o —4>Y’ Y(O):<—3)'

But the Linearity Principle saysthat we can form any linear combination of Y1 (t)
and Y2(t) and still have a solution. Hence we seek k1 and k» so that

1 -1 2
k k = .
This vector equation is equivalent to the simultaneous equations

ki—ko= 2
2k = -3.

The second equation yields ko = —3/2, and consequently, the first equation yields
k1 = 1/2. This computation implies

1 3 2
§Y1(0) - EYz(O) = ( 3 ) )

so we consider the function

1 3
Y(t) = EYl(t) - EYz(t)

1( e% 3 —e™
2\ o ] 2\ 2

1 2t 3 —4t
—€ —€
_| 2% T3
—3e 4
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This function has the correct initial condition, and by the Linearity Principle we know
that it must be a solution to the system. The Uniqueness Theorem tells us that thisis
the only function that solves the initial-value problem (see Section 2.5).

In this example we found the solution to the initial-value problem using the two
solutions of the system that were already available plus alittle arithmetic (but no calcu-
lus). By taking the appropriate linear combination of the two known solutions, we were
able to find a solution with the desired initial conditions.

Maybe we were just lucky. Will we always be able to find the appropriate k1
and ko no matter what initial condition we have? To check, suppose we consider the
same differential equation with an arbitrary initial condition,

Y 2 3
A v, Yo =().
dt 0 -4 Yo
and the two solutions Y1 (t) and Y2(t) with which we started. To solve the initial-value

problem, we need to find k1 and k so that

K1Y1(0) + k2Y2(0) = Y(0) = < );O ) .
0

In other words, given arbitrary xo and yo, can we always find k1 and k» such that

1 -1
ki +ko —( %)
0 2 Yo
This vector equation is equivalent to the simultaneous system of equations
k1 — k2 = X0

k2 = Yo.

Since the second equation is so simple, we can aways find k1 and ko given xg and yo.
We use the second equation to find k> first, and then we find k1 using thisvalue of ky in
the first equation.
