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PREFACE

This edition, like its predecessors, is written from the viewpoint of the applied mathe-
matician, whose interest in differential equations may sometimes be quite theoretical,
sometimes intensely practical, and often somewhere in between. We have sought to
combine a sound and accurate (but not abstract) exposition of the elementary theory
of differential equations with considerable material on methods of solution, analysis,
and approximation that have proved useful in a wide variety of applications.

The book is written primarily for undergraduate students of mathematics, science,
or engineering, who typically take a course on differential equations during their first
or second year of study. The main prerequisite for reading the book is a working
knowledge of calculus, gained from a normal two- or three-semester course sequence
or its equivalent. Some familiarity with matrices will also be helpful in the chapters
on systems of differential equations.

To be widely useful a textbook must be adaptable to a variety of instructional
strategies. This implies at least two things. First, instructors should have maximum
flexibility to choose both the particular topics that they wish to cover and also the
order in which they want to cover them. Second, the book should be useful to students
having access to a wide range of technological capability.

With respect to content, we provide this flexibility by making sure that, so far as
possible, individual chapters are independent of each other. Thus, after the basic
parts of the first three chapters are completed (roughly Sections 1.1 through 1.3,
2.1 through 2.5, and 3.1 through 3.5), the selection of additional topics, and the order
and depth in which they are covered, is at the discretion of the instructor. Chapters
4 through 11 are essentially independent of each other, except that Chapter 7 should
precede Chapter 9 and that Chapter 10 should precede Chapter 11. This means that
there are multiple pathways through the book and many different combinations have
been used effectively with earlier editions.
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With respect to technology, we note repeatedly in the text that computers are
extremely useful for investigating differential equations and their solutions,and many
of the problems are best approached with computational assistance. Nevertheless,
the book is adaptable to courses having various levels of computer involvement,
ranging from little or none to intensive. The text is independent of any particular
hardware platform or software package.

Many problems are marked with the symbol ¢/, to indicate that we consider them
to be technologically intensive. Computers have at least three important uses in a dif-
ferential equations course. The first is simply to crunch numbers, thereby generating
accurate numerical approximations to solutions. The second is to carry out symbolic
manipulations that would be tedious and time-consuming to do by hand. Finally,
and perhaps most important of all, is the ability to translate the results of numerical
or symbolic computations into graphical form, so that the behavior of solutions can
be easily visualized. The marked problems typically involve one or more of these
features. Naturally, the designation of a problem as technologically intensive is a
somewhat subjective judgment, and the ¢ is intended only as a guide. Many of the
marked problems can be solved, at least in part, without computational help, and a
computer can also be used effectively on many of the unmarked problems.

From a student’s point of view, the problems that are assigned as homework and
that appear on examinations drive the course. We believe that the most outstanding
feature of this book is the number, and above all the variety and range, of the problems
that it contains. Many problems are entirely straightforward, but many others are
more challenging, and some are fairly open-ended, and can serve as the basis for
independent student projects. There are far more problems than any instructor can
use in any given course, and this provides instructors with a multitude of choices in
tailoring their course to meet their own goals and the needs of their students.

The motivation for solving many differential equations is the desire to learn some-
thing about an underlying physical process that the equation is believed to model.
It is basic to the importance of differential equations that even the simplest equa-
tions correspond to useful physical models, such as exponential growth and decay,
spring-mass systems, or electrical circuits. Gaining an understanding of a complex
natural process is usually accomplished by combining or building upon simpler and
more basic models. Thus a thorough knowledge of these basic models, the equations
that describe them, and their solutions, is the first and indispensable step toward the
solution of more complex and realistic problems. We describe the modeling process
in detail in Sections 1.1, 1.2, and 2.3. Careful constructions of models appear also in
Sections 2.5, 3.7, and in the appendices to Chapter 10. Differential equations result-
ing from the modeling process appear frequently throughout the book, especially in
the problem sets.

The main reason for including fairly extensive material on applications and math-
ematical modeling in a book on differential equations is to persuade students that
mathematical modeling often leads to differential equations, and that differential
equations are part of an investigation of problems in a wide variety of other fields.
We also emphasize the transportability of mathematical knowledge: once you master
a particular solution method, you can use it in any field of application in which an
appropriate differential equation arises. Once these points are convincingly made,
we believe that it is unnecessary to provide specific applications of every method
of solution or type of equation that we consider. This helps to keep this book to
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a reasonable size, and in any case, there is only a limited time in most differential
equations courses to discuss modeling and applications.

Nonroutine problems often require the use of a variety of tools, both analytical
and numerical. Paper and pencil methods must often be combined with effective
use of a computer. Quantitative results and graphs, often produced by a computer,
serve to illustrate and clarify conclusions that may be obscured by complicated ana-
lytical expressions. On the other hand, the implementation of an efficient numerical
procedure typically rests on a good deal of preliminary analysis — to determine the
qualitative features of the solution as a guide to computation, to investigate limit-
ing or special cases, or to discover which ranges of the variables or parameters may
require or merit special attention. Thus, a student should come to realize that investi-
gating a difficult problem may well require both analysis and computation; that good
judgment may be required to determine which tool is best-suited for a particular task;
and that results can often be presented in a variety of forms.

We believe that it is important for students to understand that (except perhaps in
courses on differential equations) the goal of solving a differential equation is seldom
simply to obtain the solution. Rather, one is interested in the solution in order to
obtain insight into the behavior of the process that the equation purports to model.
In other words, the solution is not an end in itself. Thus, we have included a great
many problems, as well as some examples in the text, that call for conclusions to be
drawn about the solution. Sometimes this takes the form of asking for the value of the
independent variable at which the solution has a certain property, or to determine the
long term behavior of the solution. Other problems ask for the effect of variations in
a parameter, or for the determination of a critical value of a parameter at which the
solution experiences a substantial change. Such problems are typical of those that
arise in the applications of differential equations, and, depending on the goals of the
course, an instructor has the option of assigning few or many of these problems.

Readers familiar with the preceding edition will observe that the general structure
of the book is unchanged. The revisions that we have made in this edition have several
goals: to streamline the presentation in a few places, to make the presentation more
visual by adding some new figures, and to improve the exposition by including several
new or improved examples. More specifically, the most important changes are the
following:

1. We have removed the discussion of linear dependence and independence from Chapter 3
(Second Order Linear Equations), where it is difficult to explain their importance, and
introduced these concepts later in Chapter 4 (Higher Order Linear Equations) and in
Chapter 7 (Linear Systems), where they appear more naturally. This results in a smaller
block of theoretical material at the beginning of Chapter 3. Since not all courses cover
Chapter 4, we also avoid using the words “linear dependence” and “linear independence”
in Chapters 5 (Power Series Solutions) and 6 (Laplace Transforms).

2. Sections 5.4 (Regular Singular Points) and 5.5 (Euler Equations) from the eighth edition
have now been combined into a single section, with Euler equations appearing first. They
are then used as the prototype of equations having regular singular points, resulting in a
somewhat briefer and more compact presentation.

3. Chapter 9 (Nonlinear Autonomous Systems) has several modifications. The concept of
basins of attraction now appears earlier (in Section 9.2). This section also includes two
new examples and three new figures with the goal of providing visual evidence that near
a critical point nonlinear systems (usually) behave very much like linear systems. Such
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systems are now referred to as “locally linear.” In the following sections the Jacobian
matrix is used more systematically to construct these linear approximations. There are
also about 25 new problems in this chapter.

4. In response to suggestions from several users, we have begun the discussion of forced
linear oscillators in Section 3.8 with an example, rather than a general presentation.

5. There are eight new problems on Euler equations (making a total of fifteen) in Sections
3.3 and 3.4. This will enable instructors to cover this topic, if they wish, even if Chapter 5
is not to be used. Euler equations appear in the text in Section 5.4.

6. There are several revisions in Chapter 6 clarifying the integration of piecewise continuous
functions, the essential uniqueness of the Laplace transform, and the use of the delta
function. In addition, there is a new example, a new figure, and six new problems on the
use of the unit step function to represent more complicated step functions.

7. Thelist of 32 miscellaneous problems at the end of Chapter 2 has been substantially revised
and includes nine new problems. This list now better reflects the contents of Chapter 2.

The authors have found differential equations to be a never ending source of
interesting, and sometimes surprising, results and phenomena. We hope that users
of this book, both students and instructors, will share our enthusiasm for the subject.

William E. Boyce
Grafton, New York
June 26, 2008
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Supplemental Resources for Instructors and Students

A passcode for access to ODE Architect is included with every copy of the text.
ODE Architect is a prize-winning NSF-sponsored learning software package, which
is Windows-compatible. A solver tool enables the user to build models with ordinary
differential equations and study them in an interactive point-and-click environment.
The Architect includes an interactive library of more than one hundred model differ-
ential equation systems with graphs of solutions. Additionally, fourteen interactive
multimedia modules provide a range of models and phenomena, from a golf game
to chaos.

An Instructor’s Solutions Manual, ISBN 978-0-470-42473-5, includes solutions for
all problems not contained in the Student Solutions Manual.

A Student Solutions Manual, ISBN 978-0-470-38335-3, includes solutions for se-
lected problems in the text.

A Book Companion Site, www.wiley.com/college/boyce, provides a wealth of re-
sources for students and instructors, including:

e PowerPoint slides of important definitions, examples, and theorems from the
book, as well as graphics for presentation in lectures or for study and note taking.

e Chapter Review Sheets enable students to test their knowledge of key concepts.
For further review, diagnostic feedback is provided that refers to pertinent sec-
tions in the text.

® ODE Architect: Getting Started. This guide introduces students and professors
to ODE Architect’s simulations and multimedia.

e Additional problems for use with Mathematica, Maple, and MATLAB, providing
opportunities for further exploration of important concepts using these com-
puter algebra and numerical analysis packages.

A series of supplemental guidebooks, also published by John Wiley & Sons, can be
used with Boyce/DiPrima in order to incorporate computing technologies into the
course. These books emphasize numerical methods and graphical analysis, showing
how these methods enable us to interpret solutions of ODE:s in the real world. Sep-
arate guidebooks cover each of the three major mathematical software formats, but
the ODE subject matter is the same in each.

® Hunt, Lipsman, Osborn, Rosenberg, Differential Equations with MATLAB, 2nd
ed., © 2005, ISBN 978-0-471-71812-3

e Hunt, Lardy, Lipsman, Osborn, Rosenberg, Differential Equations with Maple,
3rd ed., © 2009, ISBN 978-0-471-77317-7

e Hunt, Outing, Lipsman, Osborn, Rosenberg, Differential Equations with Math-
ematica, 3rd ed., © 2009, ISBN 978-0-471-77316-0

WileyPLUS
WileyPLUS, Wiley’s digital-learning environment, is loaded with all of the supple-

ments above, and also features:

e the E-book, which is an exact version of the print text, but also features hyper-
links to questions, definitions, and supplements for quicker and easier support.
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e Guided Online (GO) Exercises, which prompt students to build solutions step-
by-step. Rather than simply grading an exercise answer as wrong, GO problems
show students precisely where they are making a mistake.

® homework management tools, which easily enable instructors to assign and grade
questions, as well as gauge student comprehension.

® QuickStart pre-designed reading and homework assignments. Use them as-is
or customize them to fit the needs of your classroom.
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CHAPTER

1

Introduction

In this chapter we give perspective to your study of differential equations in several
different ways. First, we use two problems to illustrate some of the basic ideas that
we will return to, and elaborate upon, frequently throughout the remainder of the
book. Later, to provide organizational structure for the book, we indicate several
ways of classifying differential equations. Finally, we outline some of the major trends
in the historical development of the subject and mention a few of the outstanding
mathematicians who have contributed to it. The study of differential equations has
attracted the attention of many of the world’s greatest mathematicians during the
past three centuries. Nevertheless, it remains a dynamic field of inquiry today, with
many interesting open questions.

1.1 Some Basic Mathematical Models; Direction Fields

Before embarking on a serious study of differential equations (for example, by read-
ing this book or major portions of it), you should have some idea of the possible
benefits to be gained by doing so. For some students the intrinsic interest of the
subject itself is enough motivation, but for most it is the likelihood of important
applications to other fields that makes the undertaking worthwhile.

Many of the principles, or laws, underlying the behavior of the natural world are
statements or relations involving rates at which things happen. When expressed
in mathematical terms, the relations are equations and the rates are derivatives.
Equations containing derivatives are differential equations. Therefore, to understand
and to investigate problems involving the motion of fluids, the flow of current in
electric circuits, the dissipation of heat in solid objects, the propagation and detection

1



Chapter 1. Introduction

EXAMPLE

1

A Falling
Object

of seismic waves, or the increase or decrease of populations, among many others, it
is necessary to know something about differential equations.

A differential equation that describes some physical process is often called a math-
ematical model of the process, and many such models are discussed throughout this
book. In this section we begin with two models leading to equations that are easy to
solve. It is noteworthy that even the simplest differential equations provide useful
models of important physical processes.

Suppose that an object is falling in the atmosphere near sea level. Formulate a differential
equation that describes the motion.

We begin by introducing letters to represent various quantities that may be of interest in this
problem. The motion takes place during a certain time interval, so let us use ¢ to denote time.
Also, let us use v to represent the velocity of the falling object. The velocity will presumably
change with time, so we think of v as a function of ¢; in other words, ¢ is the independent
variable and v is the dependent variable. The choice of units of measurement is somewhat
arbitrary, and there is nothing in the statement of the problem to suggest appropriate units,
so we are free to make any choice that seems reasonable. To be specific, let us measure time
t in seconds and velocity v in meters/second. Further, we will assume that v is positive in the
downward direction—that is, when the object is falling.

The physical law that governs the motion of objects is Newton’s second law, which states
that the mass of the object times its acceleration is equal to the net force on the object. In
mathematical terms this law is expressed by the equation

F = ma, 1

where m is the mass of the object, a is its acceleration, and F is the net force exerted on the
object. To keep our units consistent, we will measure m in kilograms, a in meters/second?, and
F in newtons. Of course, a is related to v by a = dv/dt, so we can rewrite Eq. (1) in the form

F = m(dv/dp). (2

Next, consider the forces that act on the object as it falls. Gravity exerts a force equal to the
weight of the object, or mg, where g is the acceleration due to gravity. In the units we have
chosen, g has been determined experimentally to be approximately equal to 9.8 m/s? near
the earth’s surface. There is also a force due to air resistance, or drag, that is more difficult
to model. This is not the place for an extended discussion of the drag force; suffice it to say
that it is often assumed that the drag is proportional to the velocity, and we will make that
assumption here. Thus the drag force has the magnitude y v, where y is a constant called the
drag coefficient. The numerical value of the drag coefficient varies widely from one object
to another; smooth streamlined objects have much smaller drag coefficients than rough blunt
ones. The physical units for y are mass/time, or kg/s for this problem; if these units seem
peculiar, remember that yv must have the units of force, namely, kg-m/s?.

In writing an expression for the net force F, we need to remember that gravity always acts
in the downward (positive) direction, whereas drag acts in the upward (negative) direction, as
shown in Figure 1.1.1. Thus

F=mg—yv 3)
and Eq. (2) then becomes
d
md;; =mg—yv. 4)

Equation (4) is a mathematical model of an object falling in the atmosphere near sea level.
Note that the model contains the three constants m, g, and y. The constants m and y depend
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EXAMPLE

2

A Falling
Object
(continued)

very much on the particular object that is falling, and they are usually different for different
objects. It is common to refer to them as parameters, since they may take on a range of values
during the course of an experiment. On the other hand, g is a physical constant, whose value
is the same for all objects.

YV
Om

mg

FIGURE 1.1.1 Free-body diagram of the forces on a falling object.

To solve Eq. (4), we need to find a function v = v(f) that satisfies the equation. It
is not hard to do this, and we will show you how in the next section. For the present,
however, let us see what we can learn about solutions without actually finding any
of them. Our task is simplified slightly if we assign numerical values to m and y, but
the procedure is the same regardless of which values we choose. So, let us suppose
that m = 10 kg and y = 2 kg/s. Then Eq. (4) can be rewritten as

dv v
— =98——. 5
dt 5 )

Investigate the behavior of solutions of Eq. (5) without solving the differential equation.

We will proceed by looking at Eq. (5) from a geometrical viewpoint. Suppose that the
velocity v has a certain given value. Then, by evaluating the right side of Eq. (5), we can find
the corresponding value of dv/dt. For instance, if v = 40, then dv/dt = 1.8. This means that
the slope of a solution v = v(t) has the value 1.8 at any point where v = 40. We can display this
information graphically in the fv-plane by drawing short line segments with slope 1.8 at several
points on the line v = 40. Similarly, if v = 50, then dv/dt = —0.2, so we draw line segments
with slope —0.2 at several points on the line v = 50. We obtain Figure 1.1.2 by proceeding in
the same way with other values of v. Figure 1.1.2 is an example of what is called a direction
field or sometimes a slope field.

Remember that a solution of Eq. (5) is a function v = v(f) whose graph is a curve in the
tv-plane. The importance of Figure 1.1.2 is that each line segment is a tangent line to one of
these solution curves. Thus, even though we have not found any solutions, and no graphs of
solutions appear in the figure, we can nonetheless draw some qualitative conclusions about
the behavior of solutions. For instance, if v is less than a certain critical value, then all the line
segments have positive slopes, and the speed of the falling object increases as it falls. On the
other hand, if v is greater than the critical value, then the line segments have negative slopes,
and the falling object slows down as it falls. What s this critical value of v that separates objects
whose speed is increasing from those whose speed is decreasing? Referring again to Eq. (5),
we ask what value of v will cause dv/dt to be zero. The answer is v = (5)(9.8) = 49 m/s.

In fact, the constant function v(f) = 49 is a solution of Eq. (5). To verify this statement,
substitute v(f) = 49 into Eq. (5) and observe that each side of the equation is zero. Because
it does not change with time, the solution v(¢) = 49 is called an equilibrium solution. It is the
solution that corresponds to a perfect balance between gravity and drag. In Figure 1.1.3 we
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show the equilibrium solution v(¢) = 49 superimposed on the direction field. From this figure
we can draw another conclusion, namely, that all other solutions seem to be converging to the
equilibrium solution as ¢ increases.
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FIGURE 1.1.2 A direction field for Eq. (5).
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FIGURE 1.1.3 Direction field and equilibrium solution for Eq. (5).

The approach illustrated in Example 2 can be applied equally well to the more
general Eq. (4), where the parameters m and y are unspecified positive numbers. The
results are essentially identical to those of Example 2. The equilibrium solution of
Eq. (4) is v(t) = mg/y. Solutions below the equilibrium solution increase with time,
those above it decrease with time, and all other solutions approach the equilibrium
solution as ¢ becomes large.



1.1 Some Basic Mathematical Models; Direction Fields 5

Direction Fields. Direction fields are valuable tools in studying the solutions of differ-
ential equations of the form

dy
E _f(tsy)’ (6)

where f is a given function of the two variables ¢ and y, sometimes referred to as the
rate function. A direction field for equations of the form (6) can be constructed by
evaluating f at each point of a rectangular grid. At each point of the grid, a short line
segment is drawn whose slope is the value of f at that point. Thus each line segment
is tangent to the graph of the solution passing through that point. A direction field
drawn on a fairly fine grid gives a good picture of the overall behavior of solutions of
a differential equation. Usually a grid consisting of a few hundred points is sufficient.
The construction of a direction field is often a useful first step in the investigation of
a differential equation.

Two observations are worth particular mention. First, in constructing a direction
field, we do not have to solve Eq. (6), but merely to evaluate the given function f (¢, y)
many times. Thus direction fields can be readily constructed even for equations that
may be quite difficult to solve. Second, repeated evaluation of a given function is a
task for which a computer is well suited, and you should usually use a computer to
draw a direction field. All the direction fields shown in this book, such as the one in
Figure 1.1.2, were computer-generated.

Field Mice and Owls. Now let us look at another, quite different example. Consider a
population of field mice who inhabit a certain rural area. In the absence of preda-
tors we assume that the mouse population increases at a rate proportional to the
current population. This assumption is not a well-established physical law (as New-
ton’s law of motion is in Example 1), but it is a common initial hypothesis! in a
study of population growth. If we denote time by ¢ and the mouse population by
p(t), then the assumption about population growth can be expressed by the equa-
tion p

P

=P 7
where the proportionality factor r is called the rate constant or growth rate. To be
specific, suppose that time is measured in months and that the rate constant r has the
value 0.5/month. Then each term in Eq. (7) has the units of mice/month.

Now let us add to the problem by supposing that several owls live in the same
neighborhood and that they kill 15 field mice per day. To incorporate this information
into the model, we must add another term to the differential equation (7), so that it
becomes J

/4
i 0.5p — 450. 8
Observe that the predation term is —450 rather than —15 because time is measured
in months and the monthly predation rate is needed.

1A better model of population growth is discussed in Section 2.5.
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EXAMPLE

3

Investigate the solutions of Eq. (8) graphically.

A direction field for Eq. (8) is shown in Figure 1.1.4. For sufficiently large values of p it can
be seen from the figure, or directly from Eq. (8) itself, that dp/dt is positive, so that solutions
increase. On the other hand, if p is small, than dp/dt is negative and solutions decrease. Again,
the critical value of p that separates solutions that increase from those that decrease is the
value of p for which dp/dt is zero. By setting dp/dt equal to zero in Eq. (8) and then solving
for p, we find the equilibrium solution p(¢) = 900 for which the growth term and the predation
term in Eq. (8) are exactly balanced. The equilibrium solution is also shown in Figure 1.1.4.
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FIGURE 1.14 Direction field and equilibrium solution for Eq. (8).

Comparing Examples 2 and 3, we note that in both cases the equilibrium solution
separates increasing from decreasing solutions. In Example 2 other solutions con-
verge to, or are attracted by, the equilibrium solution, so that after the object falls far
enough, an observer will see it moving at very nearly the equilibrium velocity. On
the other hand, in Example 3 other solutions diverge from, or are repelled by, the
equilibrium solution. Solutions behave very differently depending on whether they
start above or below the equilibrium solution. As time passes, an observer might see
populations either much larger or much smaller than the equilibrium population, but
the equilibrium solution itself will not, in practice, be observed. In both problems,
however, the equilibrium solution is very important in understanding how solutions
of the given differential equation behave.

A more general version of Eq. (8) is

dp
=Pk €
where the growth rate r and the predation rate k are unspecified. Solutions of this
more general equation are very similar to those of Eq. (8). The equilibrium solution
of Eq. (9) is p(¢) = k/r. Solutions above the equilibrium solution increase, while
those below it decrease.

You should keep in mind that both of the models discussed in this section have
their limitations. The model (5) of the falling object is valid only as long as the
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object is falling freely, without encountering any obstacles. The population model
(8) eventually predicts negative numbers of mice (if p < 900) or enormously large
numbers (if p > 900). Both these predictions are unrealistic, so this model becomes
unacceptable after a fairly short time interval.

Constructing Mathematical Models. In applying differential equations to any of the nu-
merous fields in which they are useful, it is necessary first to formulate the appropriate
differential equation that describes, or models, the problem being investigated. In
this section we have looked at two examples of this modeling process, one drawn
from physics and the other from ecology. In constructing future mathematical mod-
els yourself, you should recognize that each problem is different, and that successful
modeling is not a skill that can be reduced to the observance of a set of prescribed
rules. Indeed, constructing a satisfactory model is sometimes the most difficult part
of the problem. Nevertheless, it may be helpful to list some steps that are often part
of the process:

1. Identify the independent and dependent variables and assign letters to represent them.
Often the independent variable is time.

2. Choose the units of measurement for each variable. In a sense the choice of units is
arbitrary, but some choices may be much more convenient than others. For example, we
chose to measure time in seconds for the falling-object problem and in months for the
population problem.

3. Articulate the basic principle that underlies or governs the problem you are investigating.
This may be a widely recognized physical law, such as Newton’s law of motion, or it may be
amore speculative assumption that may be based on your own experience or observations.
In any case, this step is likely not to be a purely mathematical one, but will require you to
be familiar with the field in which the problem originates.

4. Express the principle or law in step 3 in terms of the variables you chose in step 1. This
may be easier said than done. It may require the introduction of physical constants or
parameters (such as the drag coefficient in Example 1) and the determination of appro-
priate values for them. Or it may involve the use of auxiliary or intermediate variables
that must then be related to the primary variables.

5. Make sure that each term in your equation has the same physical units. If this is not the
case, then your equation is wrong and you should seek to repair it. If the units agree, then
your equation at least is dimensionally consistent, although it may have other shortcomings
that this test does not reveal.

6. Inthe problems considered here, the result of step 4 is a single differential equation, which
constitutes the desired mathematical model. Keep in mind, though, that in more complex
problems the resulting mathematical model may be much more complicated, perhaps
involving a system of several differential equations, for example.

PROBLEMS

In each of Problems 1 through 6 draw a direction field for the given differential equation.
Based on the direction field, determine the behavior of y as t — oo. If this behavior depends
on the initial value of y at t = 0, describe the dependency.

"?, 1.y =3-2y ‘Q/ 2.y =2y-3
¢ 3.y =3+2 § 4 y=-1-2

‘Q 5.y =1+2y ‘Q, 6.y =y+2
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%
-

In each of Problems 7 through 10 write down a differential equation of the form dy/dt = ay + b
whose solutions have the required behavior as t — oo.

7. All solutions approach y = 3. 8. All solutions approach y = 2/3.
9. All other solutions diverge from y =2.  10. All other solutions diverge from y = 1/3.

In each of Problems 11 through 14 draw a direction field for the given differential equation.
Based on the direction field, determine the behavior of y as t — oo. If this behavior depends
on the initial value of y at ¢ = 0, describe this dependency. Note that in these problems the
equations are not of the form y’ = ay + b, and the behavior of their solutions is somewhat
more complicated than for the equations in the text.

11 y =y —y) ¢ 12 y=—y5-y)
13. y' =y? ."?/ 14. y = y(y — 2)?

Consider the following list of differential equations, some of which produced the direction
fields shown in Figures 1.1.5 through 1.1.10. In each of Problems 15 through 20 identify the
differential equation that corresponds to the given direction field.

(@) y=2y-1 (b) y=2+y
(© y=y-2 (d) y=yp+3)
(e) y=yp-3) ® y=1+2
(g y=-2-y (h) y=y3-y
i y=1-2 (G) y=2-y

15. The direction field of Figure 1.1.5.
16. The direction field of Figure 1.1.6.
17. The direction field of Figure 1.1.7.
18. The direction field of Figure 1.1.8.
19. The direction field of Figure 1.1.9.
20. The direction field of Figure 1.1.10.

21. A pond initially contains 1,000,000 gal of water and an unknown amount of an undesirable
chemical. Water containing 0.01 g of this chemical per gallon flows into the pond at a rate
of 300 gal/h. The mixture flows out at the same rate, so the amount of water in the pond
remains constant. Assume that the chemical is uniformly distributed throughout the pond.

(a) Write a differential equation for the amount of chemical in the pond at any time.

(b) How much of the chemical will be in the pond after a very long time? Does this
limiting amount depend on the amount that was present initially?

22. A spherical raindrop evaporates at a rate proportional to its surface area. Write a differ-
ential equation for the volume of the raindrop as a function of time.

23. Newton’s law of cooling states that the temperature of an object changes at a rate propor-
tional to the difference between the temperature of the object itself and the temperature
of its surroundings (the ambient air temperature in most cases). Suppose that the ambient
temperature is 70°F and that the rate constant is 0.05 (min)~!. Write a differential equa-
tion for the temperature of the object at any time. Note that the differential equation is the
same whether the temperature of the object is above or below the ambient temperature.

24. A certain drug is being administered intravenously to a hospital patient. Fluid containing
5 mg/cm?® of the drug enters the patient’s bloodstream at a rate of 100 cm®/h. The drug
is absorbed by body tissues or otherwise leaves the bloodstream at a rate proportional to
the amount present, with a rate constant of 0.4 (h)~!.

(a) Assuming that the drug is always uniformly distributed throughout the bloodstream,
write a differential equation for the amount of the drug that is present in the bloodstream
at any time.

(b) How much of the drug is present in the bloodstream after a long time?
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FIGURE 1.1.10 Direction field for

Problem 20.

(a) Write a differential equation for the velocity of a falling object of mass m if the drag

force is proportional to the square of the velocity.

proportional to the velocity is a good one. For larger, more rapidly falling objects, it is
(b) Determine the limiting velocity after a long time.

more accurate to assume that the drag force is proportional to the square of the velocity.?
2See Lyle N. Long and Howard Weiss, “The Velocity Dependence of Aerodynamic Drag: A Primer for

Mathematicians,” American Mathematical Monthly 106 (1999), 2, pp. 127-135.

FIGURE 1.1.9 Direction field for

Problem 19.
‘Q 25. For small, slowly falling objects, the assumption made in the text that the drag force is
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(c) If m =10 kg, find the drag coefficient so that the limiting velocity is 49 m/s.
(d) Using the data in part (c), draw a direction field and compare it with Figure 1.1.3.

In each of Problems 26 through 33 draw a direction field for the given differential equation.
Based on the direction field, determine the behavior of y as t — oco. If this behavior depends
on the initial value of y at r = 0, describe this dependency. Note that the right sides of these
equations depend on ¢ as well as y; therefore their solutions can exhibit more complicated
behavior than those in the text.

¢ 26 y=-2+t-y ¢ 21y =te¥ —2y
‘Q, 28. y=e'+y ‘Q 29. y =t+2y

¢ 30y =3sint+1+y ¢ 3L y=2-1-y
6 32y =—Qt+y)/2y ¢ B y=LY-y-1ir

1.2 Solutions of Some Differential Equations

EXAMPLE

1

Field Mice
and Owls
(continued)

In the preceding section we derived the differential equations

d

md—l: =mg —yv 1)
and p
P

— =rp—k. 2

=P @)

Equation (1) models a falling object and Eq. (2) a population of field mice preyed
on by owls. Both these equations are of the general form
dy
— =ay-b, 3
i ®)
where a and b are given constants. We were able to draw some important qualitative
conclusions about the behavior of solutions of Egs. (1) and (2) by considering the

associated direction fields. To answer questions of a quantitative nature, however,
we need to find the solutions themselves, and we now investigate how to do that.

Consider the equation

dp

— = 0.5p — 450, 4
o p 4)
which describes the interaction of certain populations of field mice and owls [see Eq. (8) of
Section 1.1]. Find solutions of this equation.

To solve Eq. (4), we need to find functions p(f) that, when substituted into the equation,

reduce it to an obvious identity. Here is one way to proceed. First, rewrite Eq. (4) in the form

dp p—900
L= )
or,if p # 900,
dp/dr 1

p—900 2 ©)
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By the chain rule the left side of Eq. (6) is the derivative of In |[p — 900| with respect to ¢, so we
have

d 1
Znip —900| = ~. 7
- 1P —900] = 5 (7)

Then, by integrating both sides of Eq. (7), we obtain
t
Inlp —900| = 5 +C, (8)

where C is an arbitrary constant of integration. Therefore, by taking the exponential of both
sides of Eq. (8), we find that

|p — 900 = e/P+C€ = ¢Ce!/2, 9)
or
p — 900 = £eCe'/?, (10)
and finally
p =900 4 ce'?, (11)

where ¢ = +¢€ isalso an arbitrary (nonzero) constant. Note that the constant function p = 900
is also a solution of Eq. (5) and that it is contained in the expression (11) if we allow c to take
the value zero. Graphs of Eq. (11) for several values of ¢ are shown in Figure 1.2.1.
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FIGURE 1.2.1 Graphs of Eq. (11) for several values of c.

Note that they have the character inferred from the direction field in Figure 1.1.4. For
instance, solutions lying on either side of the equilibrium solution p = 900 tend to diverge
from that solution.

In Example 1 we found infinitely many solutions of the differential equation (4),
corresponding to the infinitely many values that the arbitrary constant ¢ in Eq. (11)
might have. This is typical of what happens when you solve a differential equa-
tion. The solution process involves an integration, which brings with it an arbitrary
constant, whose possible values generate an infinite family of solutions.
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Frequently, we want to focus our attention on a single member of the infinite family
of solutions by specifying the value of the arbitrary constant. Most often, we do this
indirectly by specifying instead a point that must lie on the graph of the solution. For
example, to determine the constant ¢ in Eq. (11), we could require that the population
have a given value at a certain time, such as the value 850 at time ¢ = 0. In other
words, the graph of the solution must pass through the point (0, 850). Symbolically,
we can express this condition as

p(0) = 850. (12)
Then, substituting ¢ = 0 and p = 850 into Eq. (11), we obtain
850 =900 + c.
Hence ¢ = —50, and by inserting this value in Eq. (11), we obtain the desired solution,
namely,
p =900 — 50e'2. (13)

The additional condition (12) that we used to determine c is an example of an initial
condition. The differential equation (4) together with the initial condition (12) form
an initial value problem.

Now consider the more general problem consisting of the differential equation (3)
dy
Z—av—b

ar — Y

and the initial condition
y(0) = yo, (14)

where y is an arbitrary initial value. We can solve this problem by the same method
as in Example 1. If a # 0 and y # b/a, then we can rewrite Eq. (3) as

dy/dt
T —a 15
y—(b/a) ()
By integrating both sides, we find that
In|ly — (b/a)| = at + C, (16)

where C is arbitrary. Then, taking the exponential of both sides of Eq. (16) and
solving for y, we obtain
y = (b/a) + ce”, 17)

where ¢ = +¢€ is also arbitrary. Observe that ¢ = 0 corresponds to the equilibrium
solution y = b/a. Finally, the initial condition (14) requires that ¢ = yy — (b/a), so
the solution of the initial value problem (3), (14) is

y = (b/a) +[yo — (b/a)le”. (18)

For a # 0 the expression (17) contains all possible solutions of Eq. (3) and is called
the general solution.> The geometrical representation of the general solution (17) is
an infinite family of curves called integral curves. Each integral curve is associated
with a particular value of ¢ and is the graph of the solution corresponding to that

3If a = 0, then the solution of Eq. (3) is not given by Eq. (17). We leave it to you to find the general
solution in this case.
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EXAMPLE

2

A Falling
Object
(continued)

value of c. Satisfying an initial condition amounts to identifying the integral curve
that passes through the given initial point.

To relate the solution (18) to Eq. (2), which models the field mouse population,
we need only replace a by the growth rate r and b by the predation rate k. Then the
solution (18) becomes

p = (k/r) +Ipo — (k/n)le", (19)

where py is the initial population of field mice. The solution (19) confirms the con-
clusions reached on the basis of the direction field and Example 1. If pg = k/r, then
from Eq. (19) it follows that p = k/r for all ¢; this is the constant, or equilibrium,
solution. If py # k/r, then the behavior of the solution depends on the sign of the
coefficient pg — (k/r) of the exponential term in Eq. (19). If pg > k/r, then p grows
exponentially with time #;if py < k/r, then p decreases and eventually becomes zero,
corresponding to extinction of the field mouse population. Negative values of p,
while possible for the expression (19), make no sense in the context of this particular
problem.

To put the falling-object equation (1) in the form (3), we must identify a with —y /m
and b with —g. Making these substitutions in the solution (18), we obtain

v = (mg/y) + [vo — (mg/y)le "™, (20)

where vy is the initial velocity. Again, this solution confirms the conclusions reached
in Section 1.1 on the basis of a direction field. There is an equilibrium, or constant,
solution v = mg/y,and all other solutions tend to approach this equilibrium solution.
The speed of convergence to the equilibrium solution is determined by the exponent
—y /m. Thus, for a given mass m, the velocity approaches the equilibrium value more
rapidly as the drag coefficient y increases.

Suppose that, as in Example 2 of Section 1.1, we consider a falling object of mass m = 10 kg
and drag coefficient y = 2 kg/s. Then the equation of motion (1) becomes

=98 - (21)

Suppose this object is dropped from a height of 300 m. Find its velocity at any time ¢. How
long will it take to fall to the ground, and how fast will it be moving at the time of impact?
The first step is to state an appropriate initial condition for Eq. (21). The word “dropped”in
the statement of the problem suggests that the initial velocity is zero, so we will use the initial
condition
v(0) =0. (22)

The solution of Eq. (21) can be found by substituting the values of the coefficients into the
solution (20), but we will proceed instead to solve Eq. (21) directly. First, rewrite the equation
as

dv/dt 1
=—_. 2
v—49 5 23)
By integrating both sides, we obtain
t
Infv—49) = -2 +C, (24)

and then the general solution of Eq. (21) is
v =49 +ce™, (25)
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where c is arbitrary. To determine c, we substitute t = 0 and v = 0 from the initial condition
(22) into Eq. (25), with the result that ¢ = —49. Then the solution of the initial value problem
(21),(22) is
v =491 —e"P). (26)
Equation (26) gives the velocity of the falling object at any positive time (before it hits the
ground, of course).
Graphs of the solution (25) for several values of ¢ are shown in Figure 1.2.2, with the solution
(26) shown by the heavy curve. It is evident that all solutions tend to approach the equilibrium

solution v = 49. This confirms the conclusions we reached in Section 1.1 on the basis of the
direction fields in Figures 1.1.2 and 1.1.3.

100 =

60 \
40— (1051, 43.01)

\ \ \ \ \ \
2 4 6 8 10 12 ¢

FIGURE 1.2.2 Graphs of the solution (25) for several values of c.

To find the velocity of the object when it hits the ground, we need to know the time at
which impact occurs. In other words, we need to determine how long it takes the object to fall
300 m. To do this, we note that the distance x the object has fallen is related to its velocity v
by the equation v = dx/dt, or

dx

- _ /5
=490 -, (27)

Consequently, by integrating both sides of Eq. (27), we have
x = 49t +245¢7"° + ¢, (28)

where c is an arbitrary constant of integration. The object starts to fall when ¢t = 0, so we know
that x = 0 when r = 0. From Eq. (28) it follows that ¢ = —245, so the distance the object has
fallen at time ¢ is given by

x = 49¢ +245¢7° — 245, (29)

Let T be the time at which the object hits the ground; thenx = 300 whent = 7. By substituting
these values in Eq. (29), we obtain the equation

49T +245¢ T — 545 = 0. (30)
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The value of T satisfying Eq. (30) can be approximated by a numerical process* using a scientific
calculator or computer, with the result that 7 = 10.51 s. At this time, the corresponding
velocity vr is found from Eq. (26) to be vy = 43.01 m/s. The point (10.51,43.01) is also shown
in Figure 1.2.2.

Further Remarks on Mathematical Modeling. Up to this point we have related our discus-
sion of differential equations to mathematical models of a falling object and of a
hypothetical relation between field mice and owls. The derivation of these models
may have been plausible, and possibly even convincing, but you should remember
that the ultimate test of any mathematical model is whether its predictions agree
with observations or experimental results. We have no actual observations or exper-
imental results to use for comparison purposes here, but there are several sources of
possible discrepancies.

In the case of the falling object, the underlying physical principle (Newton’s law of
motion) is well established and widely applicable. However, the assumption that the
drag force is proportional to the velocity is less certain. Even if this assumption is
correct, the determination of the drag coefficient y by direct measurement presents
difficulties. Indeed, sometimes one finds the drag coefficient indirectly—for example,
by measuring the time of fall from a given height and then calculating the value of y
that predicts this observed time.

The model of the field mouse population is subject to various uncertainties. The
determination of the growth rate r and the predation rate k depends on observa-
tions of actual populations, which may be subject to considerable variation. The
assumption that r and k are constants may also be questionable. For example, a
constant predation rate becomes harder to sustain as the field mouse population be-
comes smaller. Further, the model predicts that a population above the equilibrium
value will grow exponentially larger and larger. This seems at variance with the be-
havior of actual populations; see the further discussion of population dynamics in
Section 2.5.

If the differences between actual observations and a mathematical model’s pre-
dictions are too great, then you need to consider refining the model, making more
careful observations, or perhaps both. There is almost always a tradeoff between ac-
curacy and simplicity. Both are desirable, but a gain in one usually involves a loss in
the other. However, even if a mathematical model is incomplete or somewhat inac-
curate, it may nevertheless be useful in explaining qualitative features of the problem
under investigation. It may also give satisfactory results under some circumstances
but not others. Thus you should always use good judgment and common sense in
constructing mathematical models and in using their predictions.

PROBLEMS .'Q, 1. Solve each of the following initial value problems and plot the solutions for several values
_— of yo. Then describe in a few words how the solutions resemble, and differ from, each
other.

(a) dy/dt=—-y+5,  y0)=yo

4A computer algebra system provides this capability; many calculators also have built-in routines for
solving such equations.
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(b) dy/dt =-2y+5,  y(0) =y,
(c) dy/dt = -2y +10,  y(©0) =y

. Follow the instructions for Problem 1 for the following initial value problems:

(a) dy/dt=y—5,  y0)=yo
(b) dy/dt =2y -5,  y(0)=y,
(c) dy/dt=2y—-10,  y(0) =y

. Consider the differential equation

dy/dt = —ay + b,

where both a and b are positive numbers.
(a) Solve the differential equation.
(b) Sketch the solution for several different initial conditions.
(c) Describe how the solutions change under each of the following conditions:
i. aincreases.
ii. b increases.
iii. Both a and b increase, but the ratio b/a remains the same.

. Consider the differential equation dy/dt = ay — b.

(a) Find the equilibrium solution y,.

(b) Let Y(t) =y — y.; thus Y () is the deviation from the equilibrium solution. Find the
differential equation satisfied by Y (¢).

. Undetermined Coefficients. Here is an alternative way to solve the equation

dy/dt = ay — b. 6))

(a) Solve the simpler equation
dy/dt = ay. (ii)

Call the solution y (t).

(b) Observe that the only difference between Egs. (i) and (ii) is the constant —b in Eq. (i).
Therefore it may seem reasonable to assume that the solutions of these two equations
also differ only by a constant. Test this assumption by trying to find a constant k such that
y = y1(¢) + k is a solution of Eq. (i).

(c) Compare your solution from part (b) with the solution given in the text in Eq. (17).
Note: This method can also be used in some cases in which the constant b is replaced by a
function g(f). It depends on whether you can guess the general form that the solution is
likely to take. This method is described in detail in Section 3.5 in connection with second
order equations.

. Use the method of Problem 5 to solve the equation

dy/dt = —ay +D.

. The field mouse population in Example 1 satisfies the differential equation

dp/dt = 0.5p — 450.

(a) Find the time at which the population becomes extinct if p(0) = 850.
(b) Find the time of extinction if p(0) = py, where 0 < py < 900.
(c) Find the initial population p if the population is to become extinct in 1 year.
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8.

10.

¢ 11
12.
13.
14.
15.

Consider a population p of field mice that grows at a rate proportional to the current
population, so that dp/dt = rp.

(a) Find the rate constant r if the population doubles in 30 days.

(b) Find r if the population doubles in N days.

. The falling object in Example 2 satisfies the initial value problem

dv/dt =9.8 — (v/5), v(0) =0.

(a) Find the time that must elapse for the object to reach 98% of its limiting velocity.
(b) How far does the object fall in the time found in part (a)?

Modify Example 2 so that the falling object experiences no air resistance.

(a) Write down the modified initial value problem.

(b) Determine how long it takes the object to reach the ground.

(c) Determine its velocity at the time of impact.

Consider the falling object of mass 10 kg in Example 2, but assume now that the drag force
is proportional to the square of the velocity.

(a) If the limiting velocity is 49 m/s (the same as in Example 2), show that the equation
of motion can be written as

dv/dt = [(49)> — v?]/245.

Also see Problem 25 of Section 1.1.
(b) If v(0) = 0, find an expression for v(¢) at any time.

(c) Plot your solution from part (b) and the solution (26) from Example 2 on the same
axes.

(d) Based on your plots in part (c), compare the effect of a quadratic drag force with that
of a linear drag force.

(e) Find the distance x(¢) that the object falls in time .
(f) Find the time 7 it takes the object to fall 300 m.
A radioactive material,such as the isotope thorium-234, disintegrates at arate proportional

to the amount currently present. If Q(¢) is the amount presentat time ¢,thendQ/dt = —rQ,
where r > 0 is the decay rate.

(a) If 100 mg of thorium-234 decays to 82.04 mg in 1 week, determine the decay rate r.
(b) Find an expression for the amount of thorium-234 present at any time ¢.

(c) Find the time required for the thorium-234 to decay to one-half its original amount.
The half-life of a radioactive material is the time required for an amount of this material
to decay to one-half its original value. Show that for any radioactive material that decays

according to the equation Q' = —r(Q, the half-life r and the decay rate r satisfy the equation
rt =1n2.

Radium-226 has a half-life of 1620 years. Find the time period during which a given
amount of this material is reduced by one-quarter.

According to Newton’s law of cooling (see Problem 23 of Section 1.1), the temperature
u(t) of an object satisfies the differential equation

du/dt = —k(u—-T),

where T is the constant ambient temperature and k is a positive constant. Suppose that
the initial temperature of the object is u(0) = uy.

(a) Find the temperature of the object at any time.
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16.

17.

& 18

19.

(b) Let 7 be the time at which the initial temperature difference uy — T has been reduced
by half. Find the relation between k and <.
Suppose that a building loses heat in accordance with Newton’s law of cooling (see Prob-
lem 15) and that the rate constant k has the value 0.15 h™!. Assume that the interior
temperature is 70°F when the heating system fails. If the external temperature is 10°F,
how long will it take for the interior temperature to fall to 32°F?
Consider an electric circuit containing a capacitor, resistor, and battery; see Figure 1.2.3.
The charge Q(¢) on the capacitor satisfies the equation®

Y

R=4+2=vV
dt+C ’

where R is the resistance, C is the capacitance, and V is the constant voltage supplied by
the battery.

(a) If Q(0) =0, find Q(¢) at any time ¢, and sketch the graph of Q versus ¢.

(b) Find the limiting value O, that Q(¢) approaches after a long time.

(c) Suppose that Q(f;) = Q; and that at time ¢t = f; the battery is removed and the circuit
closed again. Find Q(¢) for ¢ > t; and sketch its graph.

R
M\

-~

O

FIGURE 1.2.3 The electric circuit of Problem 17.

A pond containing 1,000,000 gal of water is initially free of a certain undesirable chemical
(see Problem 21 of Section 1.1). Water containing 0.01 g/gal of the chemical flows into the
pond at a rate of 300 gal/h, and water also flows out of the pond at the same rate. Assume
that the chemical is uniformly distributed throughout the pond.

(a) Let Q(¢) be the amount of the chemical in the pond at time ¢. Write down an initial
value problem for Q(t).

(b) Solve the problem in part (a) for Q(¢). How much chemical is in the pond after 1
year?

(c) At the end of 1 year the source of the chemical in the pond is removed; thereafter
pure water flows into the pond, and the mixture flows out at the same rate as before. Write
down the initial value problem that describes this new situation.

(d) Solve the initial value problem in part (c). How much chemical remains in the pond
after 1 additional year (2 years from the beginning of the problem)?

(e) How long does it take for Q(¢) to be reduced to 10 g?

(f) Plot Q(¢) versus ¢ for 3 years.

Your swimming pool containing 60,000 gal of water has been contaminated by 5 kg of
a nontoxic dye that leaves a swimmer’s skin an unattractive green. The pool’s filtering
system can take water from the pool, remove the dye, and return the water to the pool at
a flow rate of 200 gal/min.

3This equation results from Kirchhoff’s laws, which are discussed in Section 3.7.
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(a) Write down the initial value problem for the filtering process; let g(¢) be the amount
of dye in the pool at any time ¢.

(b) Solve the problem in part (a).

(¢) Youhave invited several dozen friends to a pool party that is scheduled to begin in 4 h.
You have also determined that the effect of the dye is imperceptible if its concentration
is less than 0.02 g/gal. Is your filtering system capable of reducing the dye concentration
to this level within 4 h?

(d) Find the time T at which the concentration of dye first reaches the value 0.02 g/gal.
(e) Find the flow rate that is sufficient to achieve the concentration 0.02 g/gal within 4 h.

1.3 Classification of Differential Equations

The main purpose of this book is to discuss some of the properties of solutions of
differential equations, and to present some of the methods that have proved effective
in finding solutions or, in some cases, approximating them. To provide a framework
for our presentation, we describe here several useful ways of classifying differential
equations.

Ordinary and Partial Differential Equations. One important classification is based on
whether the unknown function depends on a single independent variable or on sev-
eral independent variables. In the first case, only ordinary derivatives appear in the
differential equation, and it is said to be an ordinary differential equation. In the
second case, the derivatives are partial derivatives, and the equation is called a partial
differential equation.

All the differential equations discussed in the preceding two sections are ordinary
differential equations. Another example of an ordinary differential equation is

?0@m | ,dowm 1 _
L—5=+R— =+ 500 = EW), ey

for the charge Q(¢) on a capacitor in a circuit with capacitance C, resistance R, and
inductance L; this equation is derived in Section 3.7. Typical examples of partial
differential equations are the heat conduction equation

2 0%u(x,t)  dulx,1)
o =
ax2 ot

2

and the wave equation
2 %u(x, 1) _ 9%u(x, 1) . 3)
0x2 a2

Here, «? and a? are certain physical constants. Note that in both Egs. (2) and (3) the
dependent variable u depends on the two independent variables x and ¢. The heat
conduction equation describes the conduction of heat in a solid body, and the wave
equation arises in a variety of problems involving wave motion in solids or fluids.

Systems of Differential Equations. Another classification of differential equations de-
pends on the number of unknown functions that are involved. If there is a single
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function to be determined, then one equation is sufficient. However, if there are two
or more unknown functions, then a system of equations is required. For example, the
Lotka—Volterra, or predator—prey, equations are important in ecological modeling.
They have the form

dx/dt = ax — axy

_ 4)
dy/dt = —cy + yxy,

where x(¢) and y(¢) are the respective populations of the prey and predator species.
The constants a, «, ¢, and y are based on empirical observations and depend on the
particular species being studied. Systems of equations are discussed in Chapters 7
and 9; in particular, the Lotka—Volterra equations are examined in Section 9.5. In
some areas of application it is not unusual to encounter very large systems containing
hundreds, or even many thousands, of equations.

Order. The order of a differential equation is the order of the highest derivative that
appears in the equation. The equations in the preceding sections are all first order
equations, whereas Eq. (1) is a second order equation. Equations (2) and (3) are
second order partial differential equations. More generally, the equation

Flt,u(t),u'(),...,u”®)]=0 (5)

is an ordinary differential equation of the nth order. Equation (5) expresses a re-
lation between the independent variable ¢ and the values of the function u and its

first n derivatives u/,u”, ..., u™. Itis convenient and customary in differential equa-
tions to write y for u(t), with y',y”, ..., y" standing for u/(¢),u” (), ..,u"™(t). Thus
Eq. (5) is written as

F(t,y,y,...,y™) =0. (6)
For example,

y/// + zety// + yy/ — l4 (7)

is a third order differential equation for y = u(¢). Occasionally, other letters will be
used instead of ¢ and y for the independent and dependent variables; the meaning
should be clear from the context.

We assume that it is always possible to solve a given ordinary differential equation
for the highest derivative, obtaining

y(n) =f(t9y9y/9y”='"’y(n_l))‘ (8)

We study only equations of the form (8). This is mainly to avoid the ambiguity
that may arise because a single equation of the form (6) may correspond to several
equations of the form (8). For example, the equation

O’ +1y +4y =0 )
leads to the two equations

y,:—t+ 2 — 16y or y,:—z— 2 — 16y

. (10)
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Linear and Nonlinear Equations. A crucial classification of differential equations is
whether they are linear or nonlinear. The ordinary differential equation

F(t,y,y,....,y") =0

is said to be linear if F is a linear function of the variables y,y’,...,y"™; a similar
definition applies to partial differential equations. Thus the general linear ordinary
differential equation of order 7 is

ap®)y™ + a1y + - + a, )y = g(0). (11)

Most of the equations you have seen thus far in this book are linear; examples are
the equations in Sections 1.1 and 1.2 describing the falling object and the field mouse
population. Similarly, in this section, Eq. (1) is a linear ordinary differential equation
and Egs. (2) and (3) are linear partial differential equations. An equation that is not
of the form (11) is a nonlinear equation. Equation (7) is nonlinear because of the
term yy'. Similarly, each equation in the system (4) is nonlinear because of the terms
that involve the product xy.

A simple physical problem that leads to a nonlinear differential equation is the
oscillating pendulum. The angle 6 that an oscillating pendulum of length L makes
with the vertical direction (see Figure 1.3.1) satisfies the equation

2
dd—g + % sinf =0, (12)
whose derivation is outlined in Problems 29 through 31. The presence of the term
involving sin # makes Eq. (12) nonlinear.

|
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mg
FIGURE 1.3.1 An oscillating pendulum.

The mathematical theory and methods for solving linear equations are highly de-
veloped. In contrast, for nonlinear equations the theory is more complicated, and
methods of solution are less satisfactory. In view of this, it is fortunate that many
significant problems lead to linear ordinary differential equations or can be approx-
imated by linear equations. For example, for the pendulum, if the angle 6 is small,
then sin 6 = 6 and Eq. (12) can be approximated by the linear equation

—+26=0. (13)
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This process of approximating a nonlinear equation by a linear one is called lineariza-
tion; it is an extremely valuable way to deal with nonlinear equations. Nevertheless,
there are many physical phenomena that simply cannot be represented adequately
by linear equations. To study these phenomena, it is essential to deal with nonlinear
equations.

In an elementary text it is natural to emphasize the simpler and more straight-
forward parts of the subject. Therefore the greater part of this book is devoted to
linear equations and various methods for solving them. However, Chapters 8 and 9,
as well as parts of Chapter 2, are concerned with nonlinear equations. Whenever it
is appropriate, we point out why nonlinear equations are, in general, more difficult
and why many of the techniques that are useful in solving linear equations cannot
be applied to nonlinear equations.

Solutions. A solution of the ordinary differential equation (8) on the interval
o <t < Bis a function ¢ such that ¢/, ¢”,...,$"™ exist and satisfy

o™ (t) = flt, (1), (1), ..., V()] (14)

for every t in o« <t < B. Unless stated otherwise, we assume that the function f
of Eq. (8) is a real-valued function, and we are interested in obtaining real-valued
solutions y = ¢ (t).

Recall that in Section 1.2 we found solutions of certain equations by a process of
direct integration. For instance, we found that the equation

dp

— =0.5p — 450 15

0 1% (15)
has the solution

p =900 + ce'’?, (16)

where c is an arbitrary constant. It is often not so easy to find solutions of differential
equations. However, if you find a function that you think may be a solution of a given
equation, it is usually relatively easy to determine whether the function is actually a
solution simply by substituting the function into the equation. For example, in this
way it is easy to show that the function y; (t) = cost is a solution of

Y'+y=0 17)

for allz. To confirm this, observe that y/ (f) = —sint and y{ (f) = — cos ¢; then it follows
that y{(t) + y1(t) = 0. In the same way you can easily show that y,(¢f) = sin¢ is also
a solution of Eq. (17). Of course, this does not constitute a satisfactory way to solve
most differential equations, because there are far too many possible functions for you
to have a good chance of finding the correct one by a random choice. Nevertheless,
you should realize that you can verify whether any proposed solution is correct by
substituting it into the differential equation. This can be a very useful check; it is one
that you should make a habit of considering.

Some Important Questions. Although for the equations (15) and (17) we are able to
verify that certain simple functions are solutions, in general we do not have such
solutions readily available. Thus a fundamental question is the following: Does an
equation of the form (8) always have a solution? The answer is “No.” Merely writing
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down an equation of the form (8) does not necessarily mean that there is a function
y = ¢(¢) that satisfies it. So, how can we tell whether some particular equation has a
solution? This is the question of existence of a solution, and itis answered by theorems
stating that under certain restrictions on the function f in Eq. (8), the equation always
has solutions. This is not a purely mathematical concern for at least two reasons. If
a problem has no solution, we would prefer to know that fact before investing time
and effort in a vain attempt to solve the problem. Further, if a sensible physical
problem is modeled mathematically as a differential equation, then the equation
should have a solution. If it does not, then presumably there is something wrong
with the formulation. In this sense an engineer or scientist has some check on the
validity of the mathematical model.

If we assume that a given differential equation has at least one solution, the ques-
tion arises as to how many solutions it has, and what additional conditions must be
specified to single out a particular solution. This is the question of uniqueness. In
general, solutions of differential equations contain one or more arbitrary constants
of integration, as does the solution (16) of Eq. (15). Equation (16) represents an in-
finity of functions corresponding to the infinity of possible choices of the constant c.
As we saw in Section 1.2, if p is specified at some time ¢, this condition will determine
a value for c; even so, we have not yet ruled out the possibility that there may be
other solutions of Eq. (15) that also have the prescribed value of p at the prescribed
time ¢. The issue of uniqueness also has practical implications. If we are fortunate
enough to find a solution of a given problem, and if we know that the problem has a
unique solution, then we can be sure that we have completely solved the problem. If
there may be other solutions, then perhaps we should continue to search for them.

A third important question is: Given a differential equation of the form (8), can
we actually determine a solution, and if so, how? Note that if we find a solution of the
given equation, we have at the same time answered the question of the existence of
a solution. However, without knowledge of existence theory we might, for example,
use a computer to find a numerical approximation to a “solution” that does not exist.
On the other hand, even though we may know that a solution exists, it may be that the
solution is not expressible in terms of the usual elementary functions—polynomial,
trigonometric, exponential, logarithmic, and hyperbolic functions. Unfortunately,
this is the situation for most differential equations. Thus, we discuss both elemen-
tary methods that can be used to obtain exact solutions of certain relatively simple
problems, and also methods of a more general nature that can be used to find ap-
proximations to solutions of more difficult problems.

Computer Use in Differential Equations. A computer can be an extremely valuable tool
in the study of differential equations. For many years computers have been used
to execute numerical algorithms, such as those described in Chapter 8, to construct
numerical approximations to solutions of differential equations. These algorithms
have been refined to an extremely high level of generality and efficiency. A few lines
of computer code, written in a high-level programming language and executed (often
within a few seconds) on a relatively inexpensive computer, suffice to approximate to
ahigh degree of accuracy the solutions of a wide range of differential equations. More
sophisticated routines are also readily available. These routines combine the ability
to handle very large and complicated systems with numerous diagnostic features that
alert the user to possible problems as they are encountered.
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The usual output from a numerical algorithm is a table of numbers, listing selected
values of the independent variable and the corresponding values of the dependent
variable. With appropriate software it is easy to display the solution of a differential
equation graphically, whether the solution has been obtained numerically or as the
result of an analytical procedure of some kind. Such a graphical display is often
much more illuminating and helpful in understanding and interpreting the solution
of a differential equation than a table of numbers or a complicated analytical for-
mula. There are on the market several well-crafted and relatively inexpensive special-
purpose software packages for the graphical investigation of differential equations.
The widespread availability of personal computers has brought powerful computa-
tional and graphical capability within the reach of individual students. You should
consider, in the light of your own circumstances, how best to take advantage of the
available computing resources. You will surely find it enlightening to do so.

Another aspect of computer use that is very relevant to the study of differential
equations is the availability of extremely powerful and general software packages
that can perform a wide variety of mathematical operations. Among these are Maple,
Mathematica,and MATLAB, each of which can be used on various kinds of personal
computers or workstations. All three of these packages can execute extensive nu-
merical computations and have versatile graphical facilities. Maple and Mathematica
also have very extensive analytical capabilities. For example, they can perform the
analytical steps involved in solving many differential equations, often in response to
a single command. Anyone who expects to deal with differential equations in more
than a superficial way should become familiar with at least one of these products and
explore the ways in which it can be used.

For you, the student, these computing resources have an effect on how you should
study differential equations. To become confident in using differential equations, it
is essential to understand how the solution methods work, and this understanding is
achieved, in part, by working out a sufficient number of examples in detail. However,
eventually you should plan to delegate as many as possible of the routine (often
repetitive) details to a computer, while you focus on the proper formulation of the
problem and on the interpretation of the solution. Our viewpoint is that you should
always try to use the best methods and tools available for each task. In particular,
you should strive to combine numerical, graphical, and analytical methods so as to
attain maximum understanding of the behavior of the solution and of the underlying
process that the problem models. You should also remember that some tasks can
best be done with pencil and paper, while others require a calculator or computer.
Good judgment is often needed in selecting a judicious combination.

PROBLEMS

In each of Problems 1 through 6 determine the order of the given differential equation; also
state whether the equation is linear or nonlinear.

d’y dy d’y dy
1. A—= 4+ t—= +2y =sint 2. I+y))—= +t— =e
dt2+ dt+y s ( +y)dt2+ dt+y ¢
dy &y d’y  dy dy
3. = = =+ — 4y=1 4 = 412 =0
a Ta T T a Y ar Y
&Py . d’y  dy 2 3
5. ﬁ—f—sm(t—i—y):smt 6. E—}—ta—i—(cos Ny=t
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In each of Problems 7 through 14 verify that each given function is a solution of the differ-
ential equation.

7.y =y=0; yi®) =e', ya(t) =cosht

8.y +2y =3y=0; yi)=e, nn=¢

9.ty —y=1% y =3t +
10. y" +4y” +3y =1, i) =t/3, y(t)=e'+1/3
11. 222" +3ty —y =0, t>0; yi@t) =12, y(t) =t}
12. 2y" 4+ 5ty +4y =0, > 0; yit) =t72, y(t) =t2Int
13. y"+y=sect, 0<t<um/2 y = (cost)Incost + tsint

t
14 y’—2ty= 1, y:eZZ/ efsz ds+et2
0

In each of Problems 15 through 18 determine the values of r for which the given differential
equation has solutions of the form y = e".

15.y+2y=0 16. y"—y =0

17. y"+y —6y =0 18. y" =3y"+2y' =0

In each of Problems 19 and 20 determine the values of r for which the given differential
equation has solutions of the form y = ¢" for ¢ > 0.

19. 2y" + 41y +2y =0 20. 2y — 4ty +4y =0

In each of Problems 21 through 24 determine the order of the given partial differential equa-
tion; also state whether the equation is linear or nonlinear. Partial derivatives are denoted by

subscripts.
21, g +uyy U, =0 22, Uyy + Uy + vty +uty +u =0
23, Uyprx + 2Uiryy + Uyyyy =0 24, u, +uu, =1 4+ uyy

In each of Problems 25 through 28 verify that each given function is a solution of the given
partial differential equation.

25. Uye + Uy, = 0; u(x,y) = cosxcoshy, u(x,y) =In@?+y?)

2 . 242 .
26. oluy = uy; u(x,t) = e “'sinx, up(x,t) =e **'sinix, X arealconstant
27. APl = Uy u (x,t) =sinAxsinAat, ux(x,t) =sin(x — at), A areal constant
28. iy = uy; u=(m/2e 1 15

29. Follow the steps indicated here to derive the equation of motion of a pendulum, Eq. (12)
in the text. Assume that the rod is rigid and weightless, that the mass is a point mass, and
that there is no friction or drag anywhere in the system.

(a) Assume that the mass is in an arbitrary displaced position, indicated by the angle 6.
Draw a free-body diagram showing the forces acting on the mass.

(b) Apply Newton’s law of motion in the direction tangential to the circular arc on which
the mass moves. Then the tensile force in the rod does not enter the equation. Observe
that you need to find the component of the gravitational force in the tangential direc-
tion. Observe also that the linear acceleration, as opposed to the angular acceleration, is
Ld?0/dt?, where L is the length of the rod.

(c) Simplify the result from part (b) to obtain Eq. (12) in the text.

30. Another way to derive the pendulum equation (12) is based on the principle of conserva-
tion of energy.

(a) Show that the kinetic energy 7T of the pendulum in motion is

2

1 do
T=-mL*|—].
2" (m)
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(b) Show that the potential energy V of the pendulum, relative to its rest position, is
V =mgL(1 — cos6).

(c) By the principle of conservation of energy, the total energy E = T + V is constant.
Calculate dE/dt, set it equal to zero, and show that the resulting equation reduces to
Eq. (12).

31. A third derivation of the pendulum equation depends on the principle of angular momen-
tum: the rate of change of angular momentum about any point is equal to the net external
moment about the same point.

(a) Show that the angular momentum M, or moment of momentum, about the point of
support is given by M = mL>d6 /dt.

(b) SetdM /dt equal to the moment of the gravitational force, and show that the resulting
equation reduces to Eq. (12). Note that positive moments are counterclockwise.

1.4 Historical Remarks

Without knowing something about differential equations and methods of solving
them, it is difficult to appreciate the history of this important branch of mathematics.
Further, the development of differential equations is intimately interwoven with the
general development of mathematics and cannot be separated from it. Nevertheless,
to provide some historical perspective, we indicate here some of the major trends in
the history of the subject and identify the most prominent early contributors. Other
historical information is contained in footnotes scattered throughout the book and
in the references listed at the end of the chapter.

The subject of differential equations originated in the study of calculus by Isaac
Newton (1642-1727) and Gottfried Wilhelm Leibniz (1646-1716) in the seventeenth
century. Newton grew up in the English countryside, was educated at Trinity Col-
lege, Cambridge, and became Lucasian Professor of Mathematics there in 1669. His
epochal discoveries of calculus and of the fundamental laws of mechanics date from
1665. They were circulated privately among his friends, but Newton was extremely
sensitive to criticism and did not begin to publish his results until 1687 with the ap-
pearance of his most famous book, Philosophiae Naturalis Principia Mathematica.
Although Newton did relatively little work in differential equations as such, his devel-
opment of the calculus and elucidation of the basic principles of mechanics provided
a basis for their applications in the eighteenth century, most notably by Euler. New-
ton classified first order differential equations according to the forms dy/dx = f(x),
dy/dx = f(y), and dy/dx = f(x,y). For the latter equation he developed a method
of solution using infinite series when f(x,y) is a polynomial in x and y. Newton’s
active research in mathematics ended in the early 1690s, except for the solution of
occasional “challenge problems” and the revision and publication of results obtained
much earlier. He was appointed Warden of the British Mint in 1696 and resigned his
professorship a few years later. He was knighted in 1705 and, upon his death, was
buried in Westminster Abbey.

Leibniz was born in Leipzig and completed his doctorate in philosophy at the
age of 20 at the University of Altdorf. Throughout his life he engaged in scholarly
work in several different fields. He was mainly self-taught in mathematics, since
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his interest in this subject developed when he was in his twenties. Leibniz arrived
at the fundamental results of calculus independently, although a little later than
Newton, but was the first to publish them, in 1684. Leibniz was very conscious
of the power of good mathematical notation, and was responsible for the notation
dy/dx for the derivative and for the integral sign. He discovered the method of
separation of variables (Section 2.2) in 1691, the reduction of homogeneous equations
to separable ones (Section 2.2, Problem 30) in 1691, and the procedure for solving
first order linear equations (Section 2.1) in 1694. He spent his life as ambassador
and adviser to several German royal families, which permitted him to travel widely
and to carry on an extensive correspondence with other mathematicians, especially
the Bernoulli brothers. In the course of this correspondence many problems in
differential equations were solved during the latter part of the seventeenth century.

The brothers Jakob (1654-1705) and Johann (1667-1748) Bernoulli of Basel did
much to develop methods of solving differential equations and to extend the range
of their applications. Jakob became professor of mathematics at Basel in 1687, and
Johann was appointed to the same position upon his brother’s death in 1705. Both
men were quarrelsome, jealous, and frequently embroiled in disputes, especially with
each other. Nevertheless, both also made significant contributions to several areas of
mathematics. With the aid of calculus, they solved a number of problems in mechanics
by formulating them as differential equations. For example, Jakob Bernoulli solved
the differential equation y' = [a’/(b*y — a*)]"/? in 1690 and in the same paper first
used the term “integral” in the modern sense. In 1694 Johann Bernoulli was able
to solve the equation dy/dx = y/ax. One problem which both brothers solved, and
which led to much friction between them, was the brachistochrone problem (see
Problem 32 of Section 2.3). The brachistochrone problem was also solved by Leibniz,
Newton,and the Marquis de L’Hospital. Itissaid, perhaps apocryphally, that Newton
learned of the problem late in the afternoon of a tiring day at the Mint and solved it
that evening after dinner. He published the solution anonymously, but upon seeing
it, Johann Bernoulli exclaimed, “Ah, I know the lion by his paw.”

Daniel Bernoulli (1700-1782), son of Johann, migrated to St. Petersburg as a young
man to join the newly established St. Petersburg Academy but returned to Basel in
1733 as professor of botany and, later, of physics. His interests were primarily in
partial differential equations and their applications. For instance, it is his name that
is associated with the Bernoulli equation in fluid mechanics. He was also the first
to encounter the functions that a century later became known as Bessel functions
(Section 5.7).

The greatest mathematician of the eighteenth century, Leonhard Euler (1707-
1783), grew up near Basel and was a student of Johann Bernoulli. He followed his
friend Daniel Bernoulli to St. Petersburg in 1727. For the remainder of his life he
was associated with the St. Petersburg Academy (1727-1741 and 1766-1783) and
the Berlin Academy (1741-1766). Euler was the most prolific mathematician of
all time; his collected works fill more than 70 large volumes. His interests ranged
over all areas of mathematics and many fields of application. Even though he was
blind during the last 17 years of his life, his work continued undiminished until the
very day of his death. Of particular interest here is his formulation of problems
in mechanics in mathematical language and his development of methods of solving
these mathematical problems. Lagrange said of Euler’s work in mechanics, “The first
great work in which analysis is applied to the science of movement.” Among other
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things, Euler identified the condition for exactness of first order differential equations
(Section 2.6) in 1734-35, developed the theory of integrating factors (Section 2.6) in
the same paper, and gave the general solution of homogeneous linear equations with
constant coefficients (Sections 3.1,3.3,3.4, and 4.2) in 1743. He extended the latter
results to nonhomogeneous equations in 1750-51. Beginning about 1750, Euler made
frequent use of power series (Chapter 5) in solving differential equations. He also
proposed a numerical procedure (Sections 2.7 and 8.1) in 1768-69, made important
contributions in partial differential equations, and gave the first systematic treatment
of the calculus of variations.

Joseph-Louis Lagrange (1736-1813) became professor of mathematics in his na-
tive Turin at the age of 19. He succeeded Euler in the chair of mathematics at the
Berlin Academy in 1766 and moved on to the Paris Academy in 1787. He is most fa-
mous for his monumental work Mécanique analytique, published in 1788, an elegant
and comprehensive treatise of Newtonian mechanics. With respect to elementary
differential equations, Lagrange showed in 1762-65 that the general solution of an
nth order linear homogeneous differential equation is a linear combination of 7 in-
dependent solutions (Sections 3.2 and 4.1). Later, in 1774-75, he gave a complete
development of the method of variation of parameters (Sections 3.6 and 4.4). La-
grange is also known for fundamental work in partial differential equations and the
calculus of variations.

Pierre-Simon de Laplace (1749-1827) lived in Normandy as a boy but came to
Paris in 1768 and quickly made his mark in scientific circles, winning election to the
Académie des Sciences in 1773. He was preeminent in the field of celestial mechanics;
his greatest work, Traité de mécanique céleste, was published in five volumes between
1799 and 1825. Laplace’s equation is fundamental in many branches of mathematical
physics,and Laplace studied it extensively in connection with gravitational attraction.
The Laplace transform (Chapter 6) is also named for him, although its usefulness in
solving differential equations was not recognized until much later.

By the end of the eighteenth century many elementary methods of solving ordinary
differential equations had been discovered. In the nineteenth century interest turned
more toward the investigation of theoretical questions of existence and uniqueness
and to the development of less elementary methods such as those based on power
series expansions (see Chapter 5). These methods find their natural setting in the
complex plane. Consequently, they benefitted from, and to some extent stimulated,
the more or less simultaneous development of the theory of complex analytic func-
tions. Partial differential equations also began to be studied intensively, as their
crucial role in mathematical physics became clear. In this connection a number of
functions, arising as solutions of certain ordinary differential equations, occurred re-
peatedly and were studied exhaustively. Known collectively as higher transcendental
functions, many of them are associated with the names of mathematicians, including
Bessel, Legendre, Hermite, Chebyshev, and Hankel, among others.

The numerous differential equations that resisted solution by analytical means led
to the investigation of methods of numerical approximation (see Chapter 8). By
1900 fairly effective numerical integration methods had been devised, but their im-
plementation was severely restricted by the need to execute the computations by
hand or with very primitive computing equipment. In the last 60 years the devel-
opment of increasingly powerful and versatile computers has vastly enlarged the
range of problems that can be investigated effectively by numerical methods. Ex-
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REFERENCES

tremely refined and robust numerical integrators were developed during the same
period and are readily available. Versions appropriate for personal computers have
brought the ability to solve a great many significant problems within the reach of
individual students.

Another characteristic of differential equations in the twentieth century was the
creation of geometrical or topological methods, especially for nonlinear equations.
The goal is to understand at least the qualitative behavior of solutions from a geo-
metrical, as well as from an analytical, point of view. If more detailed information is
needed, it can usually be obtained by using numerical approximations. An introduc-
tion to geometrical methods appears in Chapter 9.

Within the past few years these two trends have come together. Computers, and
especially computer graphics, have given anew impetus to the study of systems of non-
linear differential equations. Unexpected phenomena (Section 9.8), such as strange
attractors, chaos, and fractals, have been discovered, are being intensively studied,
and are leading to important new insights in a variety of applications. Although it is
an old subject about which much is known, differential equations in the twenty-first
century remains a fertile source of fascinating and important unsolved problems.

Computer software for differential equations changes too fast for particulars to be given in a book such
as this. A Google search for Maple, Mathematica, or MATLAB is a good way to begin if you need
information about one of these computer algebra systems.

For further reading in the history of mathematics, see books such as those listed below:
Boyer, C. B., and Merzbach, U. C., A History of Mathematics (2nd ed.) (New York: Wiley, 1989).
Kline, M., Mathematical Thought from Ancient to Modern Times (New York: Oxford University Press,
1972).
A useful historical appendix on the early development of differential equations appears in
Ince, E. L., Ordinary Differential Equations (London: Longmans, Green, 1927; New York: Dover, 1956).
An encyclopedic source of information about the lives and achievements of mathematicians of the
past is
Gillespie, C. C., ed., Dictionary of Scientific Biography (15 vols.) (New York: Scribner’s, 1971).

Much historical information can be found on the Internet. One excellent site is
www-history.mcs.st-and.ac.uk/BiogIndex.html

created by John J. O’Connor and Edmund E. Robertson, Department of Mathematics and Statistics,
University of St. Andrews, Scotland.






CHAPTER

2

First Order
Differential E.quations

This chapter deals with differential equations of first order

dy
E —f(fa)’)’ (1)

where f is a given function of two variables. Any differentiable function y = ¢ ()
that satisfies this equation for all ¢ in some interval is called a solution, and our
object is to determine whether such functions exist and, if so, to develop methods
for finding them. Unfortunately, for an arbitrary function f, there is no general
method for solving the equation in terms of elementary functions. Instead, we will
describe several methods, each of which is applicable to a certain subclass of first
order equations. The most important of these are linear equations (Section 2.1),
separable equations (Section 2.2), and exact equations (Section 2.6). Other sections
of this chapter describe some of the important applications of first order differential
equations, introduce the idea of approximating a solution by numerical computation,
and discuss some theoretical questions related to the existence and uniqueness of
solutions. The final section includes an example of chaotic solutions in the context of
first order difference equations, which have some important points of similarity with
differential equations and are simpler to investigate.

2.1 Linear Equations; Method of Integrating Factors

If the function f in Eq. (1) depends linearly on the dependent variable y, then Eq. (1)
is called a first order linear equation. In Sections 1.1 and 1.2 we discussed a re-
stricted type of first order linear equation in which the coefficients are constants.

31
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EXAMPLE

1

A typical example is

dy

priainlod +0b, 2)
where a and b are given constants. Recall that an equation of this form describes the
motion of an object falling in the atmosphere. Now we want to consider the most
general first order linear equation, which is obtained by replacing the coefficients a
and b in Eq. (2) by arbitrary functions of r. We will usually write the general first
order linear equation in the standard form

d
d—y +p@)y =g, 3)
t
where p and g are given functions of the independent variable ¢.
Equation (2) can be solved by the straightforward integration method introduced
in Section 1.2. That is, provided that a # 0 and y # b/a, we rewrite the equation as

dy/dt _
y—(bjay " “

Then, by integration we obtain
In|y — (b/a)| = —at + C,
from which it follows that the general solution of Eq. (2) is
y=(b/a)+ce™™, 5)

where c is an arbitrary constant.

Unfortunately, this direct method of solution cannot be used to solve the general
equation (3), so we need to use a different method of solution for it. We owe this
method to Leibniz; it involves multiplying the differential equation (3) by a certain
function wu(t),chosen so that the resulting equation is readily integrable. The function
p(t) is called an integrating factor, and the main difficulty is to determine how to find
it. We will introduce this method in a simple example, later showing how to extend
it to other first order linear equations, including the general equation (3).

Solve the differential equation
dy
i ly=1es. (6)
Plot several solutions, and find the particular solution whose graph contains the point (0, 1).
The first step is to multiply Eq. (6) by a function wn(¢), as yet undetermined; thus

d
w2+ Luoy = tuwe”. (7)

The question now is whether we can choose w(t) so that the left side of Eq. (7) is recognizable
as the derivative of some particular expression. If so, then we can integrate Eq. (7), even
though we do not know the function y. To guide the choice of the integrating factor (), ask
yourself where in calculus you have seen an expression containing a term such as u(t)dy/dt.
You are on the right track if this reminds you of the product rule for differentiation. Thus, let
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us try to determine w(¢) so that the left side of Eq. (7) is the derivative of the expression w(f)y.
Comparing the left side of Eq. (7) with the differentiation formula

doo o dy | dp
POV = n@O— + — =, (8)

we observe that they are identical, provided we choose 1.(¢) to satisfy

du(t
% = L. ©)

Therefore our search for an integrating factor will be successful if we can find a solution of
Eq. (9). Perhaps you can readily identify a function that satisfies Eq. (9): what well-known
function from calculus has a derivative that is equal to one-half times the original function?
More systematically, rewrite Eq. (9) as

du@/dt |
=1 10
1 (0) : (10)
which is equivalent to
d
PICIES (11)
Then it follows that
In|u@®)| =i+ C, (12)
or
w(t) = ce'’?. (13)

The function u(¢) given by Eq. (13) is an integrating factor for Eq. (6). Since we do not need

the most general integrating factor, we will choose ¢ to be one in Eq. (13) and use () = /2.
Now we return to Eq. (6), multiply it by the integrating factor ¢'/?, and obtain
2 1o 1,51/6
et — 4 3el7y = 3et". (14)

dt 2

By the choice we have made of the integrating factor, the left side of Eq. (14) is the derivative
of ey, so that Eq. (14) becomes

d
4 gy = g, 13
By integrating both sides of Eq. (15), we obtain

e’y = %eS’m +c, (16)

where c is an arbitrary constant. Finally, on solving Eq. (16) for y, we have the general solution
of Eq. (6), namely,

y = %e‘ﬁ + ce 2, 17)

To find the solution passing through the point (0,1), we set t =0 and y =1 in Eq. (17),
obtaining 1 = (3/5) + c. Thus ¢ = 2/5, and the desired solution is

y= 2 4 20, (18)

Figure 2.1.1 includes the graphs of Eq. (17) for several values of ¢ with a direction field in
the background. The solution passing through (0, 1) is shown by the heavy curve.
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FIGURE 2.1.1 Integral curves of y' + 1y = 1e'/?

Let us now extend the method of integrating factors to equations of the form

dy

= tay=g(@), 19
o T =80 (19)
where a is a given constant and g(¢) is a given function. Proceeding as in Example 1,

we find that the integrating factor u(z) must satisfy

dp

o 20

i (20)
rather than Eq. (9). Thus the integrating factor is u(¢) = e*. Multiplying Eq. (19) by
wu(t), we obtain

e‘”% +ae”y = e"g(1),
or
d at ar
@M =¢"50. 21

By integrating both sides of Eq. (21), we find that

ey = / e"g(t) dr +c, (22)

where c is an arbitrary constant. For many simple functions g(¢) we can evaluate the
integral in Eq. (22) and express the solution y in terms of elementary functions, as
in Example 1. However, for more complicated functions g(¢), it is necessary to leave
the solution in integral form. In this case

t
y=e" f e®g(s)ds + ce™™. (23)

to
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EXAMPLE

2

Note that in Eq. (23) we have used s to denote the integration variable to distinguish
it from the independent variable ¢, and we have chosen some convenient value ¢y as
the lower limit of integration.

Solve the differential equation
dy
— —2y=4—1t 24
- (24)
and plot the graphs of several solutions. Discuss the behavior of solutions as ¢ — oo.
Equation (24) is of the form (19) with a = —2; therefore the integrating factor is u () = e~
Multiplying the differential equation (24) by u(t), we obtain

d
e _d)tl —2e My =4eH —te7¥, (25)
or
d —2t -2t -2t
E(e y) =4de 7 —te . (26)

Then, by integrating both sides of this equation, we have
e—Zzy — _26—2t + %te—Zt + %e—Zt +c,

where we have used integration by parts on the last term in Eq. (26). Thus the general solution
of Eq. (24) is
y=—I+1t4ce. 27

A direction field and graphs of the solution (27) for several values of ¢ are shown in Figure
2.1.2. The behavior of the solution for large values of ¢ is determined by the term ce?. If ¢ # 0,
then the solution grows exponentially large in magnitude, with the same sign as c itself. Thus
the solutions diverge as t becomes large. The boundary between solutions that ultimately grow
positively from those that ultimately grow negatively occurs when ¢ = 0. If we substitute c = 0
into Eq. (27) and then set ¢t = 0, we find that y = —7/4 is the separation point on the y-axis.
Note that, for this initial value, the solution is y = —7 + %t; it grows positively, but linearly
rather than exponentially.

|
Y 7L\ N




36

Chapter 2. First Order Differential Equations

Now we return to the general first order linear equation (3)

dy+ Ny = g(t)
a p@)y =g,

where p and g are given functions. To determine an appropriate integrating factor,
we multiply Eq. (3) by an as yet undetermined function w(¢), obtaining

d
u(z)d—f +pOp)y = pg(). (28)

Following the same line of development as in Example 1, we see that the left side
of Eq. (28) is the derivative of the product w(¢)y, provided that p(¢) satisfies the
equation

d
% = pOR®. (29)

If we assume temporarily that u(¢) is positive, then we have

du(t)/dt

) p@,

and consequently
Inpu(t) = /p(t) dt + k.

By choosing the arbitrary constant k£ to be zero, we obtain the simplest possible
function for p, namely,

u(t) = exp / p(ndt. (30)
Note that u(¢) is positive for all , as we assumed. Returning to Eq. (28), we have
d
pALIOMENIOHO G
Hence
n@)y = / (g dt +c, (32)

where c is an arbitrary constant. Sometimes the integral in Eq.(32) can be evaluated
in terms of elementary functions. However, in general this is not possible, so the
general solution of Eq. (3) is

1 t
y=—— [/ n(s$)g(s) ds + C] , (33)
M(t) I

where again f is some convenient lower limit of integration. Observe that Eq. (33)
involves two integrations, one to obtain . (¢) from Eq. (30) and the other to determine
y from Eq. (33).
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EXAMPLE

3

Solve the initial value problem
1y +2y =47, (34)
y(1) =2. (35)

In order to determine p(¢) and g(¢) correctly, we must first rewrite Eq. (34) in the standard
form (3). Thus we have

Y+ @/0y =41, (36)
so p(t) =2/t and g(t) = 4t. To solve Eq. (36), we first compute the integrating factor u(¢):

2
n() = exp/ - dt = 2nll — 2.

On multiplying Eq. (36) by u(f) = £*, we obtain
£y 42ty = (2y) = 47,
and therefore
y=t"+c,
where c is an arbitrary constant. It follows that

Cc
y=ﬂ+§ (37)

is the general solution of Eq. (34). Integral curves of Eq. (34) for several values of ¢ are shown
in Figure 2.1.3. To satisfy the initial condition (35), it is necessary to choose ¢ = 1; thus

1
y:lz+t—2, t>0 (38)

is the solution of the initial value problem (34), (35). This solution is shown by the heavy curve
in Figure 2.1.3. Note that it becomes unbounded and is asymptotic to the positive y-axis as
t — 0 from the right. This is the effect of the infinite discontinuity in the coefficient p(¢) at
the origin. The function y = ¢> + (1/¢%) for t < 0 is not part of the solution of this initial value
problem.

This is the first example in which the solution fails to exist for some values of ¢. Again, this
is due to the infinite discontinuity in p(¢) at ¢ = 0, which restricts the solution to the interval

0<t<oo.
\/ Y \/
3

(1,2)

-1

FIGURE 2.1.3 Integral curves of ty’ + 2y = 4¢°.
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EXAMPLE

4

Looking again at Figure 2.1.3, we see that some solutions (those for which ¢ > 0) are asymp-
totic to the positive y-axis as t — 0 from the right, while other solutions (for which ¢ < 0)
are asymptotic to the negative y-axis. The solution for which ¢ = 0, namely, y = 2, remains
bounded and differentiable even at ¢t = 0. If we generalize the initial condition (35) to

y(1) = yo, 39)
then ¢ = yy — 1 and the solution (38) becomes

yo—1 .
y:t2+7t2 . 1>0ify # 1. (40)
As in Example 2, this is another instance where there is a critical initial value, namely, y = 1,

that separates solutions that behave in one way from others that behave quite differently.

Solve the initial value problem

2y 1y =2, (41)
y(0) =1. (42)

To convert the differential equation (41) to the standard form (3), we must divide by two,
obtaining

Y+ /2y =1 (43)

Thus p(f) = t/2, and the integrating factor is u(f) = exp(t?/4). Then multiply Eq. (43) by w(z),
so that

ey + %e’zMy =, (44)

The left side of Eq. (44) is the derivative of e’/ 4y, so by integrating both sides of Eq. (44), we
obtain

ey = [ e dt + . (45)

The integral on the right side of Eq. (45) cannot be evaluated in terms of the usual elementary
functions, so we leave the integral unevaluated. However, by choosing the lower limit of
integration as the initial point ¢ = 0, we can replace Eq. (45) by

t

ey = / s +c, (46)
0

where c is an arbitrary constant. It then follows that the general solution y of Eq. (41) is given

by

t
y = e’t2/4/ e ds + ce 1 (47)
0

The initial condition (42) requires that ¢ = 1.

The main purpose of this example is to illustrate that sometimes the solution must be left in
terms of an integral. This is usually at most a slight inconvenience, rather than a serious obsta-
cle. For a given value of ¢ the integral in Eq. (47) is a definite integral and can be approximated
to any desired degree of accuracy by using readily available numerical integrators. By repeat-
ing this process for many values of ¢ and plotting the results, you can obtain a graph of a solu-
tion. Alternatively, you can use a numerical approximation method, such as those discussed
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in Chapter 8, that proceed directly from the differential equation and need no expression
for the solution. Software packages such as Maple and Mathematica readily execute such
procedures and produce graphs of solutions of differential equations.

FIGURE 2.1.4 Integral curves of 2y’ 4ty = 2.

Figure 2.1.4 displays graphs of the solution (47) for several values of c. From the figure it
may be plausible to conjecture that all solutions approach a limit as ¢t — co. The limit can be
found analytically (see Problem 32).

PROBLEMS In each of Problems 1 through 12:
—— (a) Draw adirection field for the given differential equation.
(b) Based on an inspection of the direction field, describe how solutions behave for large .

(c) Find the general solution of the given differential equation, and use it to determine how
solutions behave as t — oo.

¢ L y+3y=t+e® ¢ 2.y -2y=r

¢ 3 y+y=te'+1 ¢ 4 y+1/py=3cos2t, >0
¢ 5y -2y=3¢ ¢ 6.ty +2y=sint, >0

& Ty 2y =2 ¢ 8 A+ +4ty=(1+)2
¢ 9. 2y +y=3t ¢ 0.ty —y==ret, >0

¢ 11y +y=>5sin2t ¢ 12,2y +y =37

In each of Problems 13 through 20 find the solution of the given initial value problem.
13. y' — y = 2te*, y(0) =1

14. y +2y =te™?, y1) =0

15. ty 42y =12 —t +1, yh=4%, >0

16. y' + (2/t)y = (cost) /1%, y@)=0, t>0

17. y =2y = &%, y(©0) =2
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18. 1y’ 4+ 2y =ssint, y(x/2)=1, t>0
19. By + 42y = e, y(=1) =0, t<0
20ty +(t+Dy=t, yIn2)=1, >0

In each of Problems 21 through 23:

(a) Draw a direction field for the given differential equation. How do solutions appear to
behave as t becomes large? Does the behavior depend on the choice of the initial value a?
Let ay be the value of a for which the transition from one type of behavior to another occurs.
Estimate the value of ay.

(b) Solve the initial value problem and find the critical value a, exactly.

(c) Describe the behavior of the solution corresponding to the initial value ay.
.’Q, 21. y’—%y:Zcosz, y(0) =a
¢ 2.2y —y=eP,  y0)=a
¢ 23.3y —2y=e"? yO)=a

In each of Problems 24 through 26:

(a) Draw a direction field for the given differential equation. How do solutions appear to
behave as t — 0? Does the behavior depend on the choice of the initial value a? Let ay be
the value of a for which the transition from one type of behavior to another occurs. Estimate
the value of aj.

(b) Solve the initial value problem and find the critical value a, exactly.
(c) Describe the behavior of the solution corresponding to the initial value ay.

¢l 24 ty+@+y=2e", yl=a, >0

¢ 25ty +2y=Ginn/t,  y(-m/2)=a, t<0
‘Q, 26. (sint)y’ + (cost)y = ¢, y)=a, O<t<m
‘Q, 27. Consider the initial value problem

v+ %y =2cost, y(0) = —1.

Find the coordinates of the first local maximum point of the solution for ¢ > 0.
.'Q, 28. Consider the initial value problem

Y+iy=1-131,  y0) =y

Find the value of y, for which the solution touches, but does not cross, the ¢-axis.
‘Q, 29. Consider the initial value problem

y +1y=3+2cos2t, y(0) =0.

(a) Find the solution of this initial value problem and describe its behavior for large ¢.
(b) Determine the value of ¢ for which the solution first intersects the line y = 12.

30. Find the value of y, for which the solution of the initial value problem
y —y=1+3sint,  y(0) =yo

remains finite as t — oo.
31. Consider the initial value problem

'—3y=3t+2e, y(0) = yq.
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32.

33.

Find the value of y, that separates solutions that grow positively as t — oo from those
that grow negatively. How does the solution that corresponds to this critical value of y,
behave as t — 00?

Show that all solutions of 2y’ + ty = 2 [Eq. (41) of the text] approach a limit as t — oo,
and find the limiting value.
Hint: Consider the general solution, Eq. (47), and use L’Hospital’s rule on the first term.
Show that if ¢ and A are positive constants, and b is any real number, then every solution
of the equation

y +ay =be™
has the property that y — 0 as t — oo.
Hint: Consider the cases a = X and a # X separately.

In each of Problems 34 through 37 construct a first order linear differential equation whose
solutions have the required behavior as ¢t — co. Then solve your equation and confirm that
the solutions do indeed have the specified property.

34.
35.
36.
37.
38.

All solutions have the limit 3 as t — oo.

All solutions are asymptotic to the line y =3 — ¢t as t — oo.
All solutions are asymptotic to the line y =2t — 5 as t — oo.
All solutions approach the curve y =4 — 1> as t — oo.

Variation of Parameters. Consider the following method of solving the general linear
equation of first order:

Y +p@®y =g©. (i)
(a) If g(r) = 0 for all ¢, show that the solution is
y = Aexp [— /p(l) dt] , (ii)

where A is a constant.
(b) If g(¢) is not everywhere zero, assume that the solution of Eq. (i) is of the form

y = A(t) exp [— /p(t) dt] , (iii)

where A is now a function of ¢. By substituting for y in the given differential equation,
show that A(¢) must satisfy the condition

A = g0 exp [ [rw dt] . (iv)

(c) Find A(¢) from Eq. (iv). Then substitute for A(¢) in Eq. (iii) and determine y. Verify
that the solution obtained in this manner agrees with that of Eq. (33) in the text. This
technique is known as the method of variation of parameters; it is discussed in detail in
Section 3.6 in connection with second order linear equations.

In each of Problems 39 through 42 use the method of Problem 38 to solve the given differential

equation.
39. y — 2y = t2e¥ 40. y' + (1/0)y = 3 cos 2t, t>0
41. ty' + 2y =sint, t>0 42. 2y +y =31
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2.2 Separable Equations

EXAMPLE

1

In Sections 1.2 and 2.1 we used a process of direct integration to solve first order
linear equations of the form

dy

pria + 0, (1)
where a and b are constants. We will now show that this process is actually applicable
to a much larger class of equations.

We will use x, rather than ¢, to denote the independent variable in this section for
two reasons. In the first place, different letters are frequently used for the variables in
a differential equation, and you should not become too accustomed to using a single
pair. In particular, x often occurs as the independent variable. Further, we want to
reserve t for another purpose later in the section.

The general first order equation is

d
—dy =f(x,y). (2)
X

Linear equations were considered in the preceding section, but if Eq. (2) is nonlinear,

then there is no universally applicable method for solving the equation. Here, we

consider a subclass of first order equations that can be solved by direct integration.
To identify this class of equations, we first rewrite Eq. (2) in the form

d
M(x,y) + Nxy) 2 =0, 3)

Itis always possible to do this by setting M (x,y) = —f(x,y) and N (x,y) = 1, but there
may be other ways as well. If it happens that M is a function of x only and N is a
function of y only, then Eq. (3) becomes

d
M(x) + N(y)ﬁ —0. 4)

Such an equation is said to be separable, because if it is written in the differential
form

M@x)dx+ N@y)dy =0, (5)

then, if you wish, terms involving each variable may be placed on opposite sides of
the equation. The differential form (5) is also more symmetric and tends to suppress
the distinction between independent and dependent variables.

A separable equation can be solved by integrating the functions M and N. We
illustrate the process by an example and then discuss it in general for Eq. (4).

Show that the equation

dy x?

dx — 1—y?

(6)

is separable, and then find an equation for its integral curves.
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If we write Eq. (6) as
dy
) N
C+d-y) =0, @

then it has the form (4) and is therefore separable. Recall from calculus that if y is a function
of x, then by the chain rule

d _d dy , .dy
_dxf(y) = —dyf()’) T =f (y)_dx'
For example, if f(y) = y — y*/3, then
d 32y _ (1 _ 12 dy
dx(y_y /H=0A-y )_dx’

Thus the second term in Eq. (7) is the derivative with respect to x of y — y®/3, and the first
term is the derivative of —x*/3. Thus Eq. (7) can be written as

d x3 d y3
a(‘§)+a(Y‘§>—0’

d x3 y3
E(_?”_?)_O'

Therefore by integrating, we obtain

or

—x*4+3y—y* =g, 8)

where c is an arbitrary constant. Equation (8) is an equation for the integral curves of Eq. (6).
A direction field and several integral curves are shown in Figure 2.2.1. Any differentiable
function y = ¢ (x) that satisfies Eq. (8) is a solution of Eq. (6). An equation of the integral
curve passing through a particular point (xy, yp) can be found by substituting x, and y, for x
and y, respectively, in Eq. (8) and determining the corresponding value of c.
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FIGURE 2.2.1 Direction field and integral curves of y' = x?/(1 — y?).
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Essentially the same procedure can be followed for any separable equation. Re-
turning to Eq. (4), let H; and H, be any antiderivatives of M and N, respectively.
Thus

Hj(x)=M(x), Hy) =N®), )
and Eq. (4) becomes

dy
Hj H,(y)— = 0. 10
1(0) + 2()’)dx (10)
According to the chain rule,
dy d dy d
2 () dx =~ dy 2(y) = i 2(y) (1)
Consequently, we can write Eq. (10) as
d
d_[Hl (x) + H2(»)] = 0. (12)
X
By integrating Eq. (12), we obtain
Hy(x) + Hy(y) =, (13)

where c is an arbitrary constant. Any differentiable function y = ¢ (x) that satisfies

Eq. (13) is a solution of Eq. (4); in other words, Eq. (13) defines the solution implic-

itly rather than explicitly. In practice, Eq. (13) is usually obtained from Eq. (5) by

integrating the first term with respect to x and the second term with respect to y.
The differential equation (4), together with an initial condition

y(xo) = yo, (14)

form an initial value problem. To solve this initial value problem, we must determine
the appropriate value for the constant c in Eq. (13). We do this by setting x = xy and
y = yo in Eq. (13) with the result that

¢ = Hi(xo) + Ha(yo). (15)

Substituting this value of ¢ in Eq. (13) and noting that

X y
Hy) — Hy(xg) = / Ms)ds,  Hy(y) — Ha(yo) = / N(s)ds,

Yo

we obtain

/XM(s)ds—f-/yN(s)ds:O. (16)

Yo

Equation (16) is an implicit representation of the solution of the differential equation
(4) that also satisfies the initial condition (14). You should bear in mind that, to
determine an explicit formula for the solution, Eq. (16) must be solved for y as a
function of x. Unfortunately, it is often impossible to do this analytically; in such
cases you can resort to numerical methods to find approximate values of y for given
values of x.



2.2 Separable Equations 45

EXAMPLE

2

Solve the initial value problem
dy 3x*+4x+2
dx 20 -1 °

and determine the interval in which the solution exists.
The differential equation can be written as

2(y — Ddy = 3x? + 4x +2) dx.

Integrating the left side with respect to y and the right side with respect to x gives
Y =2y =x>+2x"+2x +c, (18)

where c is an arbitrary constant. To determine the solution satisfying the prescribed initial
condition, we substitute x = 0 and y = —1 in Eq. (18), obtaining ¢ = 3. Hence the solution of
the initial value problem is given implicitly by

¥y =2y =x>+2x +2x +3. (19)

To obtain the solution explicitly, we must solve Eq. (19) for y in terms of x. That is a simple
matter in this case, since Eq. (19) is quadratic in y, and we obtain

y=1%xVx3+2x2+2x+4. (20)

Equation (20) gives two solutions of the differential equation, only one of which, however,
satisfies the given initial condition. This is the solution corresponding to the minus sign in
Eq. (20), so we finally obtain

y=¢x)=1—-vVx3+2x24+2x+4 (21)

as the solution of the initial value problem (17). Note that if the plus sign is chosen by mistake
in Eq. (20), then we obtain the solution of the same differential equation that satisfies the
initial condition y(0) = 3. Finally, to determine the interval in which the solution (21) is valid,
we must find the interval in which the quantity under the radical is positive. The only real zero
of this expression is x = —2, so the desired interval is x > —2. The solution of the initial value
problem and some other integral curves of the differential equation are shown in Figure 2.2.2.

7(
A\

FIGURE 2.2.2 Integral curves of y = (3x* +4x +2)/2(y — 1).




46

Chapter 2. First Order Differential Equations

EXAMPLE

3

Observe that the boundary of the interval of validity of the solution (21) is determined by the
point (—2,1) at which the tangent line is vertical.

Solve the equation
dy 4x—x°

dx 443

22)

and draw graphs of several integral curves. Also find the solution passing through the point
(0,1) and determine its interval of validity.
Rewriting Eq. (22) as
@+y)dy = (4x — x*) dx,

integrating each side, multiplying by 4, and rearranging the terms, we obtain
y 416y +x* —8x% =¢, (23)

where c is an arbitrary constant. Any differentiable function y = ¢ (x) that satisfies Eq. (23)
is a solution of the differential equation (22). Graphs of Eq. (23) for several values of ¢ are
shown in Figure 2.2.3.

To find the particular solution passing through (0, 1), we setx = 0 and y = 1 in Eq. (23) with
the result that ¢ = 17. Thus the solution in question is given implicitly by

y* 4+ 16y +x* — 8x* = 17. 24
y

It is shown by the heavy curve in Figure 2.2.3. The interval of validity of this solution extends
on either side of the initial point as long as the function remains differentiable. From the figure

FIGURE 2.2.3 Integral curves of y' = (4x — x*) /(4 + y*). The solution passing through (0, 1)
is shown by the heavy curve.



2.2 Separable Equations 47

we see that the interval ends when we reach points where the tangent line is vertical. It follows
from the differential equation (22) that these are points where 44> =0, or
y = (=43 = —1.5874. From Eq. (24) the corresponding values of x are x = £3.3488. These
points are marked on the graph in Figure 2.2.3.

Note 1: Sometimes an equation of the form (2)

d
d—z =f(x,y)

has a constant solution y = yy. Such a solution is usually easy to find because if
f(x,y0) = 0 for some value yy and for all x, then the constant function y = yy is a
solution of the differential equation (2). For example, the equation

dy  (y—3)cosx
dx — 142y?

has the constant solution y = 3. Other solutions of this equation can be found by
separating the variables and integrating.

Note 2: The investigation of a first order nonlinear equation can sometimes be
facilitated by regarding both x and y as functions of a third variable ¢. Then

(25)

dy dy/dt

— = . 26

dx dx/dt (26)
If the differential equation is

dy _ F(x,y)

ac A , 27

dx  G(x,y) @7

then, by comparing numerators and denominators in Egs. (26) and (27), we obtain
the system

dx/dt = G(x,y), dy/dt = F(x,y). (28)

At first sight it may seem unlikely that a problem will be simplified by replacing a
single equation by a pair of equations, but, in fact, the system (28) may well be more
amenable to investigation than the single equation (27). Chapter 9 is devoted to
nonlinear systems of the form (28).

Note 3: In Example 2 it was not difficult to solve explicitly for y as a function
of x. However, this situation is exceptional, and often it will be better to leave the
solution in implicit form, as in Examples 1 and 3. Thus, in the problems below and
in other sections where nonlinear equations appear, the words “solve the following
differential equation” mean to find the solution explicitly if it is convenient to do so,
but otherwise to find an equation defining the solution implicitly.

PROBLEMS

In each of Problems 1 through 8 solve the given differential equation.
1.y =x%/y 2.y =x*/y(1 +x%)
3.y +y?sinx =0 4.y = @Bx* - 1)/3+2y)
5. ¥ = (cos? x)(cos’ 2y) 6. xy' = (1 —y»H/?
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dy x—e* g dy %
“dx T yder Tdx T 142

In each of Problems 9 through 20:

(a) Find the solution of the given initial value problem in explicit form.

(b) Plot the graph of the solution.

(c) Determine (at least approximately) the interval in which the solution is defined.
¢ 9 y=0a-200  yO=-1/6 2 10.y=01-20/y, yl=-2
."?, 11. xdx + ye™*dy = 0, y(0) =1 ."?, 12. dr/d6 =r?/6, r(l)y=2
6L 13y =2x/(y+x%),  yO)=-2 2 14y =x A+ y0) =1
¢ 15y =2x/1+2y), y2)=0 60 16,y =x(>+1)/4%,  y(0)=-1/v2
17 y=032-¢e)/2y-5, yO0)=1
¢ 18 Y =@ =e)/CG+4y, 0 =1
"?, 19. sin2x dx + cos3ydy = 0, y(w/2) =n/3
‘Q/ 20. y*(1 — x?)!/2dy = arcsin x dx, y(0) =1

Some of the results requested in Problems 21 through 28 can be obtained either by solving
the given equations analytically or by plotting numerically generated approximations to the
solutions. Try to form an opinion as to the advantages and disadvantages of each approach.

.‘Q, 21. Solve the initial value problem
Y =0+437%)/By* —6y),  y0) =1

and determine the interval in which the solution is valid.
Hint: To find the interval of definition, look for points where the integral curve has a
vertical tangent.

‘Q/ 22. Solve the initial value problem
Yy =3/By -4, y1)=0

and determine the interval in which the solution is valid.
Hint: To find the interval of definition, look for points where the integral curve has a
vertical tangent.

."?, 23. Solve the initial value problem
y=2"+x?%  y0)=1

and determine where the solution attains its minimum value.
"?, 24. Solve the initial value problem

Y=Q2-€e5/G+2y), y0)=0

and determine where the solution attains its maximum value.
‘Q/ 25. Solve the initial value problem

y =2cos2x/(3 +2y), y(0) = -1

and determine where the solution attains its maximum value.
.‘Q, 26. Solve the initial value problem

y=20+x)0+y), y0)=0

and determine where the solution attains its minimum value.
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&2 2.

&2 28

29.

¢ 30.

Consider the initial value problem

y=ty@d—-y/3,  y0) =yo.
(a) Determine how the behavior of the solution as ¢ increases depends on the initial
value yy.
(b) Suppose thaty, = 0.5. Find the time 7 at which the solution first reaches the value 3.98.

Consider the initial value problem
y=ty@d-y/d+0n,  y0) =y>0.

(a) Determine how the solution behaves as t — oo.
(b) If yo = 2, find the time T at which the solution first reaches the value 3.99.
(c) Findthe range of initial values for which the solution liesin the interval 3.99 < y < 4.01
by the time ¢ = 2.
Solve the equation
dy ay+b
drx cy+d’

where a, b, ¢, and d are constants.

Homogeneous Equations. If the right side of the equation dy/dx = f(x,y) can be ex-
pressed as a function of the ratio y/x only, then the equation is said to be homogeneous.!
Such equations can always be transformed into separable equations by a change of the
dependent variable. Problem 30 illustrates how to solve first order homogeneous equa-
tions.

Consider the equation

dy y—4x .
I x= v (@)
(a) Show that Eq. (i) can be rewritten as
—4
& = -1 ; (ii)
dx  1-(y/x)

thus Eq. (i) is homogeneous.

(b) Introduce a new dependent variable v so that v = y/x, or y = xv(x). Express dy/dx
in terms of x, v, and dv/dx.

(c) Replace y and dy/dx in Eq. (ii) by the expressions from part (b) that involve v and
dv/dx. Show that the resulting differential equation is

or

= . (i)

Observe that Eq. (iii) is separable.

The word “homogeneous” has different meanings in different mathematical contexts. The homogeneous
equations considered here have nothing to do with the homogeneous equations that will occur in Chapter 3
and elsewhere.
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¢ 3.

(d) Solve Eq. (iii), obtaining v implicitly in terms of x.

(e) Find the solution of Eq. (i) by replacing v by y/x in the solution in part (d).

(f) Draw a direction field and some integral curves for Eq. (i). Recall that the right side
of Eq. (i) actually depends only on the ratio y/x. This means that integral curves have the
same slope at all points on any given straight line through the origin, although the slope
changes from one line to another. Therefore the direction field and the integral curves are
symmetric with respect to the origin. Is this symmetry property evident from your plot?

The method outlined in Problem 30 can be used for any homogeneous equation. That is,
the substitution y = xv(x) transforms a homogeneous equation into a separable equation.
The latter equation can be solved by direct integration, and then replacing v by y/x gives
the solution to the original equation. In each of Problems 31 through 38:

(a) Show that the given equation is homogeneous.

(b) Solve the differential equation.

(c) Draw a direction field and some integral curves. Are they symmetric with respect to
the origin?

dy X’ +xy+y? dy  x* 4+ 3y?
0, 31, X _ T TTY 50, 32 D _ LTV
.?/ dx x2 .?/ dx 2xy
dy 4y —3x dy 4x +3y
50, 33 L= 50, 34. 2 -
.?/ dx 2x —y .?/ dx 2x +y
d 3
& 3. d—i:i’:yy &2 36 (2 +3xy+y)dx—xdy =0
dy x*—3y? . dy 3y* —x?
& _r oy 6, 38, XY — 1
dx 2xy .?/ dx 2xy

2.3 Modeling with First Order Equations

Differential equations are of interest to nonmathematicians primarily because of the
possibility of using them to investigate a wide variety of problems in the physical,
biological, and social sciences. One reason for this is that mathematical models and
their solutions lead to equations relating the variables and parameters in the prob-
lem. These equations often enable you to make predictions about how the natural
process will behave in various circumstances. It is often easy to vary parameters in
the mathematical model over wide ranges, whereas this may be very time-consuming
or expensive, if not impossible, in an experimental setting. Nevertheless, mathemat-
ical modeling and experiment or observation are both critically important and have
somewhat complementary roles in scientificinvestigations. Mathematical models are
validated by comparison of their predictions with experimental results. On the other
hand, mathematical analyses may suggest the most promising directions to explore
experimentally, and they may indicate fairly precisely what experimental data will
be most helpful.

In Sections 1.1 and 1.2 we formulated and investigated a few simple mathemati-
cal models. We begin by recapitulating and expanding on some of the conclusions
reached in those sections. Regardless of the specific field of application, there are
three identifiable steps that are always present in the process of mathematical mod-
eling.
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Construction of the Model. In this step you translate the physical situation into mathe-
matical terms, often using the steps listed at the end of Section 1.1. Perhaps most
critical at this stage is to state clearly the physical principle(s) that are believed to
govern the process. For example, it has been observed that in some circumstances
heat passes from a warmer to a cooler body at a rate proportional to the temperature
difference, that objects move about in accordance with Newton’s laws of motion, and
that isolated insect populations grow at a rate proportional to the current population.
Each of these statements involves a rate of change (derivative) and consequently,
when expressed mathematically, leads to a differential equation. The differential
equation is a mathematical model of the process.

It is important to realize that the mathematical equations are almost always only
an approximate description of the actual process. For example, bodies moving at
speeds comparable to the speed of light are not governed by Newton’s laws, insect
populations do not grow indefinitely as stated because of eventual lack of food or
space, and heat transfer is affected by factors other than the temperature difference.
Thus you should always be aware of the limitations of the model so that you will use it
only when it is reasonable to believe that it is accurate. Alternatively, you can adopt
the point of view that the mathematical equations exactly describe the operation of
a simplified physical model, which has been constructed (or conceived of) so as to
embody the most important features of the actual process. Sometimes, the process
of mathematical modeling involves the conceptual replacement of a discrete process
by a continuous one. For instance, the number of members in an insect population
changes by discrete amounts; however, if the population is large, it seems reasonable
to consider it as a continuous variable and even to speak of its derivative.

Analysis of the Model. Once the problem has been formulated mathematically, you are
often faced with the problem of solving one or more differential equations or, fail-
ing that, of finding out as much as possible about the properties of the solution. It
may happen that this mathematical problem is quite difficult, and if so, further ap-
proximations may be indicated at this stage to make the problem mathematically
tractable. For example, a nonlinear equation may be approximated by a linear one,
or a slowly varying coefficient may be replaced by a constant. Naturally, any such
approximations must also be examined from the physical point of view to make sure
that the simplified mathematical problem still reflects the essential features of the
physical process under investigation. At the same time, an intimate knowledge of the
physics of the problem may suggest reasonable mathematical approximations that
will make the mathematical problem more amenable to analysis. This interplay of
understanding of physical phenomena and knowledge of mathematical techniques
and their limitations is characteristic of applied mathematics at its best, and it is
indispensable in successfully constructing useful mathematical models of intricate
physical processes.

Comparison with Experiment or Observation. Finally, having obtained the solution (or at
least some information about it), you must interpret this information in the context
in which the problem arose. In particular, you should always check that the math-
ematical solution appears physically reasonable. If possible, calculate the values of
the solution at selected points and compare them with experimentally observed val-
ues. Or ask whether the behavior of the solution after a long time is consistent with
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EXAMPLE

1

Mixing

observations. Or examine the solutions corresponding to certain special values of pa-
rameters in the problem. Of course, the fact that the mathematical solution appears
to be reasonable does not guarantee that it is correct. However, if the predictions of
the mathematical model are seriously inconsistent with observations of the physical
system it purports to describe, this suggests that errors have been made in solving
the mathematical problem, that the mathematical model itself needs refinement, or
that observations must be made with greater care.

The examples in this section are typical of applications in which first order differ-
ential equations arise.

At time t = 0 a tank contains Qg lb of salt dissolved in 100 gal of water; see Figure 2.3.1.
Assume that water containing % Ib of salt/gal is entering the tank at a rate of r gal/min and
that the well-stirred mixture is draining from the tank at the same rate. Set up the initial
value problem that describes this flow process. Find the amount of salt Q(¢) in the tank at any
time, and also find the limiting amount Q, that is present after a very long time. If r = 3 and
Qo =20, find the time T after which the salt level is within 2% of Q;. Also find the flow
rate that is required if the value of 7 is not to exceed 45 min.

rgal/min,% Ib/gal

rgal/min

FIGURE 2.3.1 The water tank in Example 1.

We assume that salt is neither created nor destroyed in the tank. Therefore variations in
the amount of salt are due solely to the flows in and out of the tank. More precisely, the rate
of change of salt in the tank, dQ/dt, is equal to the rate at which salt is flowing in minus the
rate at which it is flowing out. In symbols,

d
—Q = rate in — rate out. (1)

dt

The rate at which salt enters the tank is the concentration % Ib/gal times the flow rate r gal/min,
or (r/4) Ib/min. To find the rate at which salt leaves the tank, we need to multiply the concen-
tration of salt in the tank by the rate of outflow, r gal/min. Since the rates of flow in and out
are equal, the volume of water in the tank remains constant at 100 gal, and since the mixture
is “well-stirred,” the concentration throughout the tank is the same, namely, [Q(¢)/100] 1b/gal.
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Therefore the rate at which salt leaves the tank is [rQ(¢)/100] Ib/min. Thus the differential
equation governing this process is

dg r rQ
@ T30 @
The initial condition is
0(0) = Q. ®)

Upon thinking about the problem physically, we might anticipate that eventually the mixture
originally in the tank will be essentially replaced by the mixture flowing in, whose concentration
is % Ib/gal. Consequently, we might expect that ultimately the amount of salt in the tank would
be very close to 25 1b. We can also find the limiting amount Q; = 25 by setting dQ/dt equal
to zero in Eq. (2) and solving the resulting algebraic equation for Q.

To solve the initial value problem (2), (3) analytically, note that Eq. (2) is both linear and
separable. Rewriting it in the standard form for a linear equation, we have

ag  rQ _r

it =T 4
dt + 100 4 @)

Thus the integrating factor is ¢”/1%° and the general solution is
Q) =25 4 ce 190, 5)

where cis an arbitrary constant. To satisfy the initial condition (3), we must choose ¢ = Qp — 25.
Therefore the solution of the initial value problem (2), (3) is

O(t) =25+ (Qy — 25)e "', (6)

O(t) = 25(1 — e~/10y L Qe /10 o

From Eq. (6) or (7), you can see that Q(¢) — 25 (Ib) as t — oo, so the limiting value Qy, is
25, confirming our physical intuition. Further, Q(¢) approaches the limit more rapidly as r
increases. In interpreting the solution (7), note that the second term on the right side is the
portion of the original salt that remains at time ¢, while the first term gives the amount of salt in
the tank due to the action of the flow processes. Plots of the solution for » = 3 and for several
values of Q are shown in Figure 2.3.2.

Now suppose that r = 3 and Qy = 20, = 50; then Eq. (6) becomes

O(t) = 25 + 25¢7 %%, 8)

Since 2% of 25 is 0.5, we wish to find the time 7" at which Q() has the value 25.5. Substituting
t =T and Q = 25.5 in Eq. (8) and solving for 7', we obtain

T = (In50)/0.03 = 130.4 (min). )

To determine r so that T = 45, return to Eq. (6),set t = 45, Qyp = 50, Q(t) = 25.5, and solve
for r. The result is
r = (100/45) In 50 = 8.69 gal/min. (10)

Since this example is hypothetical, the validity of the model is not in question. If the flow
rates are as stated, and if the concentration of salt in the tank is uniform, then the differential
equation (1) is an accurate description of the flow process. Although this particular example
has no special significance, models of this kind are often used in problems involving a pollutant
in a lake, or a drug in an organ of the body, for example, rather than a tank of salt water. In
such cases the flow rates may not be easy to determine or may vary with time. Similarly, the
concentration may be far from uniform in some cases. Finally, the rates of inflow and outflow
may be different, which means that the variation of the amount of liquid in the problem must
also be taken into account.
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FIGURE 2.3.2 Solutions of the initial value problem (2), (3) for r = 3 and several values
of Qo.

Suppose that a sum of money is deposited in a bank or money fund that pays interest at an
annual rate r. The value S(¢) of the investment at any time ¢ depends on the frequency with
which interest is compounded as well as on the interest rate. Financial institutions have various
policies concerning compounding: some compound monthly, some weekly, some even daily.
If we assume that compounding takes place continuously, then we can set up a simple initial
value problem that describes the growth of the investment.

The rate of change of the value of the investment is dS/dt, and this quantity is equal to
the rate at which interest accrues, which is the interest rate r times the current value of the
investment S(¢). Thus

ds/dt = rS (11)

is the differential equation that governs the process. Suppose that we also know the value of
the investment at some particular time, say,

S(0) = So. (12)

Then the solution of the initial value problem (11), (12) gives the balance S(¢) in the account
at any time ¢. This initial value problem is readily solved, since the differential equation (11)
is both linear and separable. Consequently, by solving Egs. (11) and (12), we find that

S() = Spe”. (13)

Thus a bank account with continuously compounding interest grows exponentially.

Let us now compare the results from this continuous model with the situation in which
compounding occurs at finite time intervals. If interest is compounded once a year, then after
t years

S@t) = So(1+r).
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If interest is compounded twice a year, then at the end of 6 months the value of the investment
is So[1 + (r/2)], and at the end of 1 year it is So[1 + (7/2)]>. Thus, after ¢ years we have

A2
S =5 (1+%)
In general, if interest is compounded m times per year, then
o\ mt
S =S, (1 + 7) . (14)
m
The relation between formulas (13) and (14) is clarified if we recall from calculus that

: ™ rt
Jlim S (14 2)7 = See.

The same model applies equally well to more general investments in which dividends and
perhaps capital gains can also accumulate, as well as interest. In recognition of this fact, we
will from now on refer to r as the rate of return.

Table 2.3.1 shows the effect of changing the frequency of compounding for a return rate
r of 8%. The second and third columns are calculated from Eq. (14) for quarterly and daily
compounding, respectively, and the fourth column is calculated from Eq. (13) for continuous
compounding. The results show that the frequency of compounding is not particularly im-
portant in most cases. For example, during a 10-year period the difference between quarterly
and continuous compounding is $17.50 per $1000 invested, or less than $2/year. The differ-
ence would be somewhat greater for higher rates of return and less for lower rates. From the
first row in the table, we see that for the return rate r = 8%, the annual yield for quarterly
compounding is 8.24% and for daily or continuous compounding it is 8.33%.

TABLE 2.3.1 Growth of Capital at a Return Rate r = 8%
for Several Modes of Compounding

S(t)/S(t) fromEq. (14)

S(0)/S(t0)
Years m=4 m = 365 from Eq. (13)
1 1.0824 1.0833 1.0833
2 1.1717 1.1735 1.1735
5 1.4859 1.4918 1.4918
10 2.2080 2.2253 2.2255
20 4.8754 4.9522 4.9530
30 10.7652 11.0203 11.0232
40 23.7699 24.5239 24.5325

Returning now to the case of continuous compounding, let us suppose that there may be
deposits or withdrawals in addition to the accrual of interest, dividends, or capital gains. If
we assume that the deposits or withdrawals take place at a constant rate k, then Eq. (11) is
replaced by

das/dt =rS +k,

or, in standard form,
dsy/dt —rS =k, (15)

where k is positive for deposits and negative for withdrawals.
Equation (15) is linear with the integrating factor e™", so its general solution is

S(t) =ce" — (k/r),
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where ¢ is an arbitrary constant. To satisfy the initial condition (12), we must choose
¢ = Sy + (k/r). Thus the solution of the initial value problem (15), (12) is

S(t) = Soe" + (k/r)(e" — D). (16)

The first term in expression (16) is the part of S(¢) that is due to the return accumulated on
the initial amount Sy, and the second term is the part that is due to the deposit or withdrawal
rate k.

The advantage of stating the problem in this general way without specific values for Sy, r, or
k lies in the generality of the resulting formula (16) for S(¢). With this formula we can readily
compare the results of different investment programs or different rates of return.

For instance, suppose that one opens an individual retirement account (IRA) at age 25 and
makes annual investments of $2000 thereafter in a continuous manner. Assuming a rate of
return of 8%, what will be the balance in the IRA at age 65? We have Sy =0, r = 0.08, and
k = $2000, and we wish to determine S(40). From Eq. (16) we have

S(40) = (25,000) (> — 1) = $588,313. (17)

It is interesting to note that the total amount invested is $80,000, so the remaining amount of
$508,313 results from the accumulated return on the investment. The balance after 40 years
is also fairly sensitive to the assumed rate. For instance, S(40) = $508,948 if r = 0.075 and
S(40) = $681,508 if r = 0.085.

Let us now examine the assumptions that have gone into the model. First, we have assumed
that the return is compounded continuously and that additional capital is invested continu-
ously. Neither of these is true in an actual financial situation. We have also assumed that the
return rate r is constant for the entire period involved, whereas in fact it is likely to fluctuate
considerably. Although we cannot reliably predict future rates, we can use expression (16) to
determine the approximate effect of different rate projections. It is also possible to consider r
and k in Eq. (15) to be functions of ¢ rather than constants; in that case, of course, the solution
may be much more complicated than Eq. (16).

The initial value problem (15), (12) and the solution (16) can also be used to analyze a
number of other financial situations, including annuities, mortgages, and automobile loans.

Consider a pond that initially contains 10 million gal of fresh water. Water containing an
undesirable chemical flows into the pond at the rate of 5 million gal/yr, and the mixture in the
pond flows out at the same rate. The concentration y (¢) of chemical in the incoming water
varies periodically with time according to the expression y (f) = 2 + sin2¢ g/gal. Construct a
mathematical model of this flow process and determine the amount of chemical in the pond
at any time. Plot the solution and describe in words the effect of the variation in the incoming
concentration.

Since the incoming and outgoing flows of water are the same, the amount of water in the
pond remains constant at 107 gal. Let us denote time by ¢, measured in years, and the chemical
by O(#), measured in grams. This example is similar to Example 1, and the same inflow/outflow
principle applies. Thus

dQ

— =rate in — rate out,
dt

where “rate in” and “rate out” refer to the rates at which the chemical flows into and out of
the pond, respectively. The rate at which the chemical flows in is given by

rate in = (5 x 10%) gal/yr (2 + sin 2¢) g/gal. (18)
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The concentration of chemical in the pond is Q(r)/107 g/gal, so the rate of flow out is
rate out = (5 x 10%) gal/yr [Q(r)/107] g/gal = Q(r)/2 glyr. (19)
Thus we obtain the differential equation

d t
9Q _ (5 109@ +sin2n - 20, (20)
dt 2

where each term has the units of g/yr.

To make the coefficients more manageable, it is convenient to introduce a new dependent
variable defined by q(r) = Q(t)/10° or Q(t) = 10° g(t). This means that g(¢) is measured in
millions of grams, or megagrams (metric tons). If we make this substitution in Eq. (20), then
each term contains the factor 10°, which can be canceled. If we also transpose the term
involving g(¢) to the left side of the equation, we finally have

dq

o +1g =10+ 5sin2z. (21)

Originally, there is no chemical in the pond, so the initial condition is
q(0) =0. (22)

Equation (21) is linear, and although the right side is a function of time, the coefficient of
q is a constant. Thus the integrating factor is e//?. Multiplying Eq. (21) by this factor and
integrating the resulting equation, we obtain the general solution

q(t) =20 — % cos 21 + 19 sin 21 + ce ™2, (23)

The initial condition (22) requires that c = —300/17, so the solution of the initial value problem
(21),(22) is

q(t) =20 — 2 cos 21 + 19 sin 2t — 3We ™2, (24)

A plot of the solution (24) is shown in Figure 2.3.3, along with the line ¢ = 20. The exponential
term in the solution is important for small ¢, but it diminishes rapidly as ¢ increases. Later, the
solution consists of an oscillation, due to the sin2¢ and cos 2t terms, about the constant level
g = 20. Note that if the sin2¢ term were not present in Eq. (21), then ¢ = 20 would be the
equilibrium solution of that equation.
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FIGURE 2.3.3 Solution of the initial value problem (21), (22).
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Let us now consider the adequacy of the mathematical model itself for this problem. The
model rests on several assumptions that have not yet been stated explicitly. In the first place,
the amount of water in the pond is controlled entirely by the rates of flow in and out—none
is lost by evaporation or by seepage into the ground, and none is gained by rainfall. The same
is true of the chemical; it flows into and out of the pond, but none is absorbed by fish or other
organisms living in the pond. In addition, we assume that the concentration of chemical in
the pond is uniform throughout the pond. Whether the results obtained from the model are
accurate depends strongly on the validity of these simplifying assumptions.

A body of constant mass m is projected away from the earth in a direction perpendicular to the
earth’s surface with an initial velocity vy. Assuming that there is no air resistance, but taking
into account the variation of the earth’s gravitational field with distance, find an expression for
the velocity during the ensuing motion. Also find the initial velocity that is required to lift the
body to a given maximum altitude & above the surface of the earth, and find the least initial
velocity for which the body will not return to the earth; the latter is the escape velocity.

Let the positive x-axis point away from the center of the earth along the line of motion with
x = 0 lying on the earth’s surface; see Figure 2.3.4. The figure is drawn horizontally to remind
you that gravity is directed toward the center of the earth, which is not necessarily downward
from a perspective away from the earth’s surface. The gravitational force acting on the body
(that is, its weight) is inversely proportional to the square of the distance from the center of
the earth and is given by w(x) = —k/(x + R)?, where k is a constant, R is the radius of the
earth, and the minus sign signifies that w(x) is directed in the negative x direction. We know
that on the earth’s surface w(0) is given by —mg, where g is the acceleration due to gravity at
sea level. Therefore k = mgR? and

mgR?
=—— 25
w(x) Rix? (25)
Since there are no other forces acting on the body, the equation of motion is
dv mgR?
= 26
n dt (R+x)? (26)
and the initial condition is
v(0) = vp. (27)

Unfortunately, Eq. (26) involves too many variables since it depends on ¢, x, and v. To
remedy this situation, we can eliminate ¢ from Eq. (26) by thinking of x, rather than ¢, as the
independent variable. Then we can express dv/dt in terms of dv/dx by using the chain rule;

hence
dv _ dv @ dv

dar " dxdi  Udx’

mgR?
(R +x)?
- Q ---- —;
m

FIGURE 2.34 A body in the earth’s gravitational field.
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and Eq. (26) is replaced by
dv gR?
— = 28
Yix T T R+x72 8
Equation (28) is separable but not linear, so by separating the variables and integrating, we

obtain
U2 _ gRZ
2 R+x
Since x = 0 when ¢ = 0, the initial condition (27) at# = 0 can be replaced by the condition that
v = vy when x = 0. Hence ¢ = (13/2) — gR and

/ 2%R?
ve+ vg—zgR+Rg+x. (30)

Note that Eq. (30) gives the velocity as a function of altitude rather than as a function of time.
The plus sign must be chosen if the body is rising, and the minus sign if it is falling back to
earth.

To determine the maximum altitude & that the body reaches, we set v =0 and x =& in
Eq. (30) and then solve for &, obtaining

+c. (29)

2
v R

S gR—u

(1)

Solving Eq. (31) for vy, we find the initial velocity required to lift the body to the altitude &,

namely,
£
= |2gR . 2
OV Ry G2

The escape velocity v, is then found by letting § — co. Consequently,

ve = v/2gR. (33)

The numerical value of v, is approximately 6.9 mi/s, or 11.1 km/s.

The preceding calculation of the escape velocity neglects the effect of air resistance, so the
actual escape velocity (including the effect of air resistance) is somewhat higher. On the other
hand, the effective escape velocity can be significantly reduced if the body is transported a
considerable distance above sea level before being launched. Both gravitational and frictional
forces are thereby reduced; air resistance, in particular, diminishes quite rapidly with increasing
altitude. You should keep in mind also that it may well be impractical to impart too large an
initial velocity instantaneously; space vehicles, for instance, receive their initial acceleration
during a period of a few minutes.

PROBLEMS

1. Consider a tank used in certain hydrodynamic experiments. After one experiment the
tank contains 200 L of a dye solution with a concentration of 1 g/L. To prepare for the
next experiment, the tank is to be rinsed with fresh water flowing in at a rate of 2 L/min,
the well-stirred solution flowing out at the same rate. Find the time that will elapse before
the concentration of dye in the tank reaches 1% of its original value.

2. A tank initially contains 120 L of pure water. A mixture containing a concentration of
y g/L of salt enters the tank at a rate of 2 L/min, and the well-stirred mixture leaves the
tank at the same rate. Find an expression in terms of y for the amount of salt in the tank
at any time ¢. Also find the limiting amount of salt in the tank as t — oo.
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3. A tank originally contains 100 gal of fresh water. Then water containing % Ib of salt per
gallon is poured into the tank at a rate of 2 gal/min, and the mixture is allowed to leave at
the same rate. After 10 min the process is stopped, and fresh water is poured into the tank
at a rate of 2 gal/min, with the mixture again leaving at the same rate. Find the amount of
salt in the tank at the end of an additional 10 min.

4. A tank with a capacity of 500 gal originally contains 200 gal of water with 100 1b of salt
in solution. Water containing 1 1b of salt per gallon is entering at a rate of 3 gal/min, and
the mixture is allowed to flow out of the tank at a rate of 2 gal/min. Find the amount
of salt in the tank at any time prior to the instant when the solution begins to overflow.
Find the concentration (in pounds per gallon) of salt in the tank when it is on the point
of overflowing. Compare this concentration with the theoretical limiting concentration if
the tank had infinite capacity.

.’Q, 5. A tank contains 100 gal of water and 50 oz of salt. Water containing a salt concentration
of %(1 + % sint) oz/gal flows into the tank at a rate of 2 gal/min, and the mixture in the
tank flows out at the same rate.

(a) Find the amount of salt in the tank at any time.

(b) Plot the solution for a time period long enough so that you see the ultimate behavior
of the graph.

(c) The long-time behavior of the solution is an oscillation about a certain constant level.
What is this level? What is the amplitude of the oscillation?

6. Suppose that a tank containing a certain liquid has an outlet near the bottom. Let 4(¢) be
the height of the liquid surface above the outlet at time ¢. Torricelli’s” principle states that
the outflow velocity v at the outlet is equal to the velocity of a particle falling freely (with
no drag) from the height A.

(a) Show that v = ,/2gh, where g is the acceleration due to gravity.

(b) By equating the rate of outflow to the rate of change of liquid in the tank, show that
h(¢) satisfies the equation

A(h)% = —aa+/2gh, (i)

where A(h) is the area of the cross section of the tank at height /# and a is the area of
the outlet. The constant « is a contraction coefficient that accounts for the observed fact
that the cross section of the (smooth) outflow stream is smaller than a. The value of o for
water is about 0.6.

(c) Consider a water tank in the form of a right circular cylinder that is 3 m high above
the outlet. The radius of the tank is 1 m and the radius of the circular outlet is 0.1 m. If
the tank is initially full of water, determine how long it takes to drain the tank down to
the level of the outlet.

7. Suppose that a sum S is invested at an annual rate of return r compounded continuously.
(a) Find the time T required for the original sum to double in value as a function of r.
(b) Determine T if r = 7%.

(c) Find the return rate that must be achieved if the initial investment is to double in
8 years.

*Evangelista Torricelli (1608-1647), successor to Galileo as court mathematician in Florence, published
thisresultin 1644. He is also known for constructing the first mercury barometer and for making important
contributions to geometry.
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8.

10.

¢ 11

12.

A young person with no initial capital invests k dollars per year at an annual rate of
return r. Assume that investments are made continuously and that the return is com-
pounded continuously.

(a) Determine the sum S(¢) accumulated at any time ¢.
(b) Ifr = 7.5%, determine k so that $1 million will be available for retirement in 40 years.

(¢) If k = $2000/year, determine the return rate r that must be obtained to have $1 million
available in 40 years.

. A certain college graduate borrows $8000 to buy a car. The lender charges interest at

an annual rate of 10%. Assuming that interest is compounded continuously and that
the borrower makes payments continuously at a constant annual rate k, determine the
payment rate k that is required to pay off the loan in 3 years. Also determine how much
interest is paid during the 3-year period.

A home buyer can afford to spend no more than $800/month on mortgage payments.
Suppose that the interest rate is 9% and that the term of the mortgage is 20 years. Assume
that interest is compounded continuously and that payments are also made continuously.
(a) Determine the maximum amount that this buyer can afford to borrow.

(b) Determine the total interest paid during the term of the mortgage.

A recent college graduate borrows $100,000 at an interest rate of 9% to purchase a con-
dominium. Anticipating steady salary increases, the buyer expects to make payments at a
monthly rate of 800(1 + ¢/120), where ¢ is the number of months since the loan was made.
(a) Assuming that this payment schedule can be maintained, when will the loan be fully
paid?

(b) Assuming the same payment schedule, how large a loan could be paid off in exactly
20 years?

Animportant tool in archeological research is radiocarbon dating, developed by the Amer-
ican chemist Willard F. Libby.? This is a means of determining the age of certain wood
and plant remains, hence of animal or human bones or artifacts found buried at the same
levels. Radiocarbon dating is based on the fact that some wood or plant remains contain
residual amounts of carbon-14, a radioactive isotope of carbon. This isotope is accumu-
lated during the lifetime of the plant and begins to decay at its death. Since the half-life of
carbon-14 is long (approximately 5730 years*), measurable amounts of carbon-14 remain
after many thousands of years. If even a tiny fraction of the original amount of carbon-14
is still present, then by appropriate laboratory measurements the proportion of the orig-
inal amount of carbon-14 that remains can be accurately determined. In other words, if
Q(¢) is the amount of carbon-14 at time ¢ and Q) is the original amount, then the ratio
Q(t)/Qp can be determined, as long as this quantity is not too small. Present measurement
techniques permit the use of this method for time periods of 50,000 years or more.

(a) Assuming that Q satisfies the differential equation Q' = —rQ, determine the decay
constant r for carbon-14.

(b) Find an expression for Q(¢) at any time ¢, if Q(0) = Q,.

3Willard F. Libby (1908-1980) was born in rural Colorado and received his education at the University of
California at Berkeley. He developed the method of radiocarbon dating beginning in 1947 while he was
at the University of Chicago. For this work he was awarded the Nobel Prize in chemistry in 1960.

4 McGraw-Hill Encyclopedia of Science and Technology (8th ed.) (New York: McGraw-Hill, 1997), Vol. 5,
p- 48.



62

Chapter 2. First Order Differential Equations

(c) Suppose that certain remains are discovered in which the current residual amount of
carbon-14 is 20% of the original amount. Determine the age of these remains.

13. The population of mosquitoes in a certain area increases at a rate proportional to the

¢ 14

¢ 1s.

16.

¢ 1.

current population, and in the absence of other factors, the population doubles each
week. There are 200,000 mosquitoes in the area initially, and predators (birds, bats, and
so forth) eat 20,000 mosquitoes/day. Determine the population of mosquitoes in the area
at any time.

Suppose that a certain population has a growth rate that varies with time and that this
population satisfies the differential equation

dy/dt = (0.5 +sint)y/S5.

(a) Ify(0) = 1,find (or estimate) the time t at which the population has doubled. Choose
other initial conditions and determine whether the doubling time t depends on the initial
population.

(b) Suppose that the growth rate is replaced by its average value 1/10. Determine the
doubling time 7 in this case.

(c) Suppose that the term sinz in the differential equation is replaced by sin 27 ¢; that is,
the variation in the growth rate has a substantially higher frequency. What effect does this
have on the doubling time t?

(d) Plot the solutions obtained in parts (a), (b), and (c) on a single set of axes.

Suppose that a certain population satisfies the initial value problem
dy/dt =r(t)yy —k,  y(0)=yo,

where the growth rate r(¢) is given by r(¢) = (1 +sint)/5, and k represents the rate of
predation.

(a) Suppose that k = 1/5. Plot y versus ¢ for several values of y, between 1/2 and 1.

(b) Estimate the critical initial population y, below which the population will become
extinct.

(c) Choose other values of k and find the corresponding y, for each one.

(d) Use the data you have found in parts (b) and (c) to plot y. versus k.

Newton’s law of cooling states that the temperature of an object changes at a rate pro-
portional to the difference between its temperature and that of its surroundings. Suppose
that the temperature of a cup of coffee obeys Newton’s law of cooling. If the coffee has a
temperature of 200°F when freshly poured, and 1 min later has cooled to 190°F in a room
at 70°F, determine when the coffee reaches a temperature of 150°F.

Heat transfer from a body to its surroundings by radiation, based on the Stefan-—
Boltzmann? law, is described by the differential equation

du 4 :
i aw' —TY), 6))

where u(¢) is the absolute temperature of the body at time ¢, 7" is the absolute temperature
of the surroundings, and « is a constant depending on the physical parameters of the body.

3Jozef Stefan (1835-1893), professor of physics at Vienna, stated the radiation law on empirical grounds
in 1879. His student Ludwig Boltzmann (1844-1906) derived it theoretically from the principles of ther-
modynamics in 1884. Boltzmann is best known for his pioneering work in statistical mechanics.
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However, if u is much larger than 7', then solutions of Eq. (i) are well approximated by
solutions of the simpler equation

E = —ou . (ll)
Suppose that a body with initial temperature 2000°K is surrounded by a medium with
temperature 300°K and that o = 2.0 x 10712 °K=3/s.

(a) Determine the temperature of the body at any time by solving Eq. (ii).
(b) Plot the graph of u versus ¢.

(c) Find the time t at which u(7) = 600, that is, twice the ambient temperature. Up to this
time the error in using Eq. (ii) to approximate the solutions of Eq. (i) is no more than 1%.

Consider an insulated box (a building, perhaps) with internal temperature u(¢). According
to Newton’s law of cooling, u satisfies the differential equation

W — kw7, ()
where T'(¢) is the ambient (external) temperature. Suppose that 7'(f) varies sinusoidally;
for example, assume that 7(¢) = Ty + T cos wt.

(a) Solve Eq. (i) and express u(¢) in terms of ¢, k, Ty, T1, and w. Observe that part of
your solution approaches zero as ¢t becomes large; this is called the transient part. The
remainder of the solution is called the steady state; denote it by S(¢).

(b) Suppose that ¢ is measured in hours and that w = /12, corresponding a period of 24 h
for 7(¢t). Further, let Ty = 60°F, T} = 15°F, and k = 0.2/h. Draw graphs of S(¢) and 7'(¢)
versus ¢ on the same axes. From your graph estimate the amplitude R of the oscillatory
part of S(¢). Also estimate the time lag T between corresponding maxima of 7'(t) and S(¢).
(c) Letk, Ty, Ty, and w now be unspecified. Write the oscillatory part of S(¢) in the form
Rcos[w(t — 1)]. Use trigonometric identities to find expressions for R and . Let 77 and
o have the values given in part (b), and plot graphs of R and 7 versus k.

Consider a lake of constant volume V containing at time ¢ an amount Q() of pollutant,
evenly distributed throughout the lake with a concentration c(¢), where c(t) = Q(@)/V.
Assume that water containing a concentration k of pollutant enters the lake at a rate r,
and that water leaves the lake at the same rate. Suppose that pollutants are also added
directly to the lake at a constant rate P. Note that the given assumptions neglect a num-
ber of factors that may, in some cases, be important—for example, the water added or
lost by precipitation, absorption, and evaporation; the stratifying effect of temperature
differences in a deep lake; the tendency of irregularities in the coastline to produce shel-
tered bays; and the fact that pollutants are not deposited evenly throughout the lake but
(usually) at isolated points around its periphery. The results below must be interpreted in
the light of the neglect of such factors as these.

(a) If attime t = O the concentration of pollutant is ¢y, find an expression for the concen-
tration c(¢) at any time. What is the limiting concentration as t — c0?

(b) If the addition of pollutants to the lake is terminated (k =0 and P = 0 for ¢ > 0),
determine the time interval 7" that must elapse before the concentration of pollutants is
reduced to 50% of its original value;to 10% of its original value.

(c) Table 2.3.2 contains data® for several of the Great Lakes. Using these data, determine

This problem is based on R. H. Rainey, “Natural Displacement of Pollution from the Great Lakes,”
Science 155 (1967), pp. 1242-1243; the information in the table was taken from that source.
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from part (b) the time 7 necessary to reduce the contamination of each of these lakes to
10% of the original value.

TABLE 2.3.2 Volume and Flow Data for the Great

Lakes
Lake V (km? x 10%) r (km?/year)
Superior 12.2 65.2
Michigan 49 158
Erie 0.46 175
Ontario 1.6 209

.’Q, 20. A ball with mass 0.15 kg is thrown upward with initial velocity 20 m/s from the roof of a
building 30 m high. Neglect air resistance.

(a) Find the maximum height above the ground that the ball reaches.

(b) Assuming that the ball misses the building on the way down, find the time that it hits
the ground.

(c) Plot the graphs of velocity and position versus time.

."?, 21. Assume that the conditions are as in Problem 20 except that there is a force due to air
resistance of |v]/30, where the velocity v is measured in m/s.
(a) Find the maximum height above the ground that the ball reaches.
(b) Find the time that the ball hits the ground.
(c) Plot the graphs of velocity and position versus time. Compare these graphs with the
corresponding ones in Problem 20.

.’Q, 22. Assume that the conditions are as in Problem 20 except that there is a force due to air
resistance of v?/1325, where the velocity v is measured in m/s.
(a) Find the maximum height above the ground that the ball reaches.
(b) Find the time that the ball hits the ground.
(c) Plot the graphs of velocity and position versus time. Compare these graphs with the
corresponding ones in Problems 20 and 21.

.”?, 23. A sky diver weighing 180 b (including equipment) falls vertically downward from an
altitude of 5000 ft and opens the parachute after 10 s of free fall. Assume that the force
of air resistance is 0.75|v| when the parachute is closed and 12|v| when the parachute is
open, where the velocity v is measured in ft/s.

(a) Find the speed of the sky diver when the parachute opens.

(b) Find the distance fallen before the parachute opens.

(c) What is the limiting velocity v;, after the parachute opens?

(d) Determine how long the sky diver is in the air after the parachute opens.

(e) Plot the graph of velocity versus time from the beginning of the fall until the skydiver
reaches the ground.

24. A rocket sled having an initial speed of 150 mi/h is slowed by a channel of water. Assume
that, during the braking process, the acceleration a is given by a(v) = —uv?, where v is the
velocity and u is a constant.

(a) Asin Example 4 in the text, use the relation dv/dt = v(dv/dx) to write the equation
of motion in terms of v and x.

(b) Ifitrequires a distance of 2000 ft to slow the sled to 15 mi/h, determine the value of p.
(c) Find the time 7 required to slow the sled to 15 mi/h.
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25.

26.

27.

A body of constant mass m is projected vertically upward with an initial velocity vy in a
medium offering a resistance k|v|, where k is a constant. Neglect changes in the gravita-
tional force.

(a) Find the maximum height x,, attained by the body and the time ¢z, at which this
maximum height is reached.
(b) Show that if kvy/mg < 1, then t,, and x,, can be expressed as

RS PR YT S A
g 2 mg 3 \mg

2
U P T A
2g 3mg 2 \mg

(c) Show that the quantity kv,/mg is dimensionless.

A body of mass m is projected vertically upward with an initial velocity vy in a medium
offering a resistance k|v|, where k is a constant. Assume that the gravitational attraction
of the earth is constant.

(a) Find the velocity v(z) of the body at any time.
(b) Use the result of part (a) to calculate the limit of v(¢) as k — 0,that is, as the resistance

approaches zero. Does this result agree with the velocity of a mass m projected upward
with an initial velocity v, in a vacuum?

(c) Use the result of part (a) to calculate the limit of v(¢) as m — 0, that is, as the mass
approaches zero.

A body falling in a relatively dense fluid, oil for example, is acted on by three forces
(see Figure 2.3.5): a resistive force R, a buoyant force B, and its weight w due to gravity.
The buoyant force is equal to the weight of the fluid displaced by the object. For a slowly
moving spherical body of radius a, the resistive force is given by Stokes’s law, R = 6z alv|,
where v is the velocity of the body, and p is the coefficient of viscosity of the surrounding
fluid.”

58

.

FIGURE 2.3.5 A body falling in a dense fluid.

"George Gabriel Stokes (1819-1903), professor at Cambridge, was one of the foremost applied mathe-
maticians of the nineteenth century. The basic equations of fluid mechanics (the Navier-Stokes equations)
are named partly in his honor, and one of the fundamental theorems of vector calculus bears his name.
He was also one of the pioneers in the use of divergent (asymptotic) series, a subject of great interest and
importance today.
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(a) Find the limiting velocity of a solid sphere of radius @ and density p falling freely in a
medium of density p’ and coefficient of viscosity .

(b) In 1910 R. A. Millikan® studied the motion of tiny droplets of oil falling in an electric
field. A field of strength E exerts a force Ee on a droplet with charge e. Assume that E
has been adjusted so the droplet is held stationary (v = 0) and that w and B are as given
above. Find an expression for e. Millikan repeated this experiment many times, and from
the data that he gathered he was able to deduce the charge on an electron.

.’Q, 28. A mass of 0.25 kg is dropped from rest in a medium offering a resistance of 0.2|v|, where

29.

&' 30.

¢ 31

v is measured in m/s.
(a) If the mass is dropped from a height of 30 m, find its velocity when it hits the ground.

(b) If the mass is to attain a velocity of no more than 10 m/s, find the maximum height
from which it can be dropped.

(c) Suppose that the resistive force is k|v|, where v is measured in m/s and & is a constant.
If the mass is dropped from a height of 30 m and must hit the ground with a velocity of no
more than 10 m/s, determine the coefficient of resistance k that is required.

Suppose that a rocket is launched straight up from the surface of the earth with initial
velocity vo = \/2gR, where R is the radius of the earth. Neglect air resistance.

(a) Find an expression for the velocity v in terms of the distance x from the surface of the
earth.

(b) Find the time required for the rocket to go 240,000 mi (the approximate distance from
the earth to the moon). Assume that R = 4000 mi.

Let v(¢) and w(¢), respectively, be the horizontal and vertical components of the velocity
of a batted (or thrown) baseball. In the absence of air resistance, v and w satisfy the
equations

dv/dt =0, dw/dt = —g.

(a) Show that
V=1UCOSA, w=—gt+usinA,

where u is the initial speed of the ball and A is its initial angle of elevation.

(b) Letx(¢) and y(¢), respectively, be the horizontal and vertical coordinates of the ball at
time ¢. If x(0) = 0 and y(0) = A, find x(¢) and y(¢) at any time ¢.

(c) Letg =32 ft/s?, u =125 ft/s,and h = 3 ft. Plot the trajectory of the ball for several
values of the angle A; that is, plot x(¢) and y(¢) parametrically.

(d) Suppose the outfield wall is at a distance L and has height H. Find a relation between
u and A that must be satisfied if the ball is to clear the wall.

(e) Suppose that L =350 ftand H = 10 ft. Using the relation in part (d), find (or estimate
from a plot) the range of values of A that correspond to an initial velocity of u = 110 ft/s.

(f) For L =350 and H = 10, find the minimum initial velocity u and the corresponding
optimal angle A for which the ball will clear the wall.

A more realistic model (than that in Problem 30) of a baseball in flight includes the effect
of air resistance. In this case the equations of motion are

dv/dt = —rv, dw/dt = —g —rw,

8Robert A. Millikan (1868-1953) was educated at Oberlin College and Columbia University. Later he
was a professor at the University of Chicago and California Institute of Technology. His determination of
the charge on an electron was published in 1910. For this work, and for other studies of the photoelectric
effect, he was awarded the Nobel Prize in 1923.
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where r is the coefficient of resistance.

(a) Determine v(¢) and w(?) in terms of initial speed u and initial angle of elevation A.
(b) Find x(¢) and y(¢) if x(0) = 0 and y(0) = A.

(c) Plot the trajectory of the ball for r = 1/5,u = 125, h = 3, and for several values of A.
How do the trajectories differ from those in Problem 31 with r = 0?

(d) Assuming thatr = 1/5 and & = 3, find the minimum initial velocity u and the optimal
angle A for which the ball will clear a wall that is 350 ft distant and 10 ft high. Compare
this result with that in Problem 30(f).

32. Brachistochrone Problem. One of the famous problems in the history of mathematics is
the brachistochrone® problem: to find the curve along which a particle will slide without
friction in the minimum time from one given point P to another Q, the second point being
lower than the first but not directly beneath it (see Figure 2.3.6). This problem was posed
by Johann Bernoulli in 1696 as a challenge problem to the mathematicians of his day.
Correct solutions were found by Johann Bernoulli and his brother Jakob Bernoulli and
by Isaac Newton, Gottfried Leibniz, and the Marquis de L’'Hospital. The brachistochrone
problem is important in the development of mathematics as one of the forerunners of the
calculus of variations.

In solving this problem, it is convenient to take the origin as the upper point P and to
orient the axes as shown in Figure 2.3.6. The lower point Q has coordinates (xo,yo). It is
then possible to show that the curve of minimum time is given by a function y = ¢ (x) that
satisfies the differential equation

(1+y?y =k, (i)

where k? is a certain positive constant to be determined later.

Qlxg, ¥p)

y
FIGURE 2.3.6 The brachistochrone.

(a) Solve Eq. (i) for y’. Why is it necessary to choose the positive square root?
(b) Introduce the new variable ¢ by the relation

y = k?sin’1. (i)
Show that the equation found in part (a) then takes the form

2k sin’ t dt = dx. (iii)

9The word “brachistochrone” comes from the Greek words brachistos, meaning shortest, and chronos,
meaning time.
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(c) Letting 6 = 2t, show that the solution of Eq. (iii) for which x = 0 when y = 0 is given
by
x = k*(0 —sin6)/2, y = k*(1 — cos0)/2. (iv)

Equations (iv) are parametric equations of the solution of Eq. (i) that passes through
(0,0). The graph of Egs. (iv) is called a cycloid.

(d) If we make a proper choice of the constant k, then the cycloid also passes through
the point (x, yo) and is the solution of the brachistochrone problem. Find k if xo = 1 and
Yo =2.

2.4 Differences Between Linear and Nonlinear Equations

Theorem 2.4.1

Up to now, we have been primarily concerned with showing that first order differ-
ential equations can be used to investigate many different kinds of problems in the
natural sciences, and with presenting methods of solving such equations if they are
either linear or separable. Now it is time to turn our attention to some more general
questions about differential equations and to explore in more detail some important
ways in which nonlinear equations differ from linear ones.

Existence and Uniqueness of Solutions. So far, we have discussed a number of initial value
problems, each of which had a solution and apparently only one solution. This raises
the question of whether this is true of all initial value problems for first order equa-
tions. In other words, does every initial value problem have exactly one solution?
This may be an important question even for nonmathematicians. If you encounter
an initial value problem in the course of investigating some physical problem, you
might want to know that it has a solution before spending very much time and effort
in trying to find it. Further, if you are successful in finding one solution, you might
be interested in knowing whether you should continue a search for other possible
solutions or whether you can be sure that there are no other solutions. For linear
equations the answers to these questions are given by the following fundamental
theorem.

If the functions p and g are continuous on an open interval /: o < ¢t < 8 con-
taining the point ¢ = ¢, then there exists a unique function y = ¢ (¢) that satisfies
the differential equation

Y +p)y =g (1)
for each ¢ in 7, and that also satisfies the initial condition
y(to) = yo, 2)

where yy is an arbitrary prescribed initial value.

Observe thatTheorem 2.4.1 states that the given initial value problem Aas a solution
and also that the problem has only one solution. In other words, the theorem asserts
both the existence and uniqueness of the solution of the initial value problem (1), (2).
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In addition, it states that the solution exists throughout any interval I containing the
initial point #, in which the coefficients p and g are continuous. That is, the solution
can be discontinuous or fail to exist only at points where at least one of p and g is
discontinuous. Such points can often be identified at a glance.

The proof of this theorem is partly contained in the discussion in Section 2.1 leading
to the formula [Eq. (32) in Section 2.1]

n@®y = / (g dt +c, 3)

where [Eq. (30) in Section 2.1]

n(t) = exp f p()dt. 4)

The derivation in Section 2.1 shows that if Eq. (1) has a solution, then it must be
given by Eq. (3). By looking slightly more closely at that derivation, we can also
conclude that the differential equation (1) must indeed have a solution. Since p is
continuous for « < t < 8, it follows that u is defined in this interval and is a nonzero
differentiable function. Upon multiplying Eq. (1) by u(?), we obtain

[k(@®yl = g ). &)

Since both u and g are continuous, the function ug is integrable, and Eq. (3) follows
from Eq. (5). Further, the integral of ug is differentiable, so y as given by Eq. (3)
exists and is differentiable throughout the interval « < ¢t < 8. By substituting the
expression for y from Eq. (3) into either Eq. (1) or Eq. (5), you can verify that
this expression satisfies the differential equation throughout the interval « < t < 8.
Finally, the initial condition (2) determines the constant ¢ uniquely, so there is only
one solution of the initial value problem; this completes the proof.

Equation (4) determines the integrating factor wu(f) only up to a multiplicative
factor that depends on the lower limit of integration. If we choose this lower limit to
be ¢y, then

p(t) = exp / p(s)ds, (6)
4

and it follows that u(f) = 1. Using the integrating factor given by Eq. (6), and
choosing the lower limit of integration in Eq. (3) also to be #;, we obtain the general
solution of Eq. (1) in the form

1 t
y= 0 [ [ w0 ds+c] )
wu(t) to

To satisfy the initial condition (2), we must choose ¢ = yy. Thus the solution of the
initial value problem (1), (2) is

1 t
y=—= [/ wu(s)g(s) ds +yo} , ®)
() to

where w(¢) is given by Eq. (6).
Turning now to nonlinear differential equations, we must replace Theorem 2.4.1
by a more general theorem, such as the following.



70

Chapter 2. First Order Differential Equations

Theorem 2.4.2

EXAMPLE

1

Let the functions f and df/dy be continuous in some rectangle o <t < g,
y <y < § containing the point (#p,yo). Then, in some interval tp —h <t <ty +h
contained in @ < ¢ < B, there is a unique solution y = ¢ (¢) of the initial value prob-
lem

Y =fty, yt)=yo. 9)

Observe that the hypotheses in Theorem 2.4.2 reduce to those in Theorem 2.4.1 if
the differential equation is linear. For then f(¢,y) = —p(t)y + g(¢t) and 9f (¢,y)/dy =
—p(t), so the continuity of f and df/dy is equivalent to the continuity of p and g in
this case. The proof of Theorem 2.4.1 was comparatively simple because it could be
based on the expression (3) that gives the solution of an arbitrary linear equation.
There is no corresponding expression for the solution of the differential equation (9),
so the proof of Theorem 2.4.2 is much more difficult. It is discussed to some extent in
Section 2.8 and in greater depth in more advanced books on differential equations.

Here we note that the conditions stated in Theorem 2.4.2 are sufficient to guarantee
the existence of a unique solution of the initial value problem (9) in some interval
to —h <t <ty + h, but they are not necessary. That is, the conclusion remains true
under slightly weaker hypotheses about the function f. In fact, the existence of a
solution (but not its uniqueness) can be established on the basis of the continuity of
f alone.

An important geometrical consequence of the uniqueness parts of Theorems 2.4.1
and 2.4.2 is that the graphs of two solutions cannot intersect each other. Otherwise,
there would be two solutions that satisfy the initial condition corresponding to the
point of intersection, in contradiction to Theorem 2.4.1 or 2.4.2.

We now consider some examples.

Use Theorem 2.4.1 to find an interval in which the initial value problem
1y +2y = 41, (10)
Y1) =2 (11)

has a unique solution.
Rewriting Eq. (10) in the standard form (1), we have

Y+ @/ny =41,

sop(t) = 2/tand g(t) = 4t. Thus,for this equation, g is continuous for all #, while p is continuous
only for t < O or for ¢ > 0. The interval ¢+ > 0 contains the initial point; consequently, Theorem
2.4.1 guarantees that the problem (10), (11) has a unique solution on the interval 0 < ¢ < oo.
In Example 3 of Section 2.1 we found the solution of this initial value problem to be

y=+-, t>0. (12)

Now suppose that the initial condition (11) is changed to y(—1) = 2. Then Theorem 2.4.1
asserts the existence of a unique solution for ¢t < 0. As you can readily verify, the solution is
again given by Eq. (12), but now on the interval —oo < t < 0.
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EXAMPLE

2

EXAMPLE

3

Apply Theorem 2.4.2 to the initial value problem

dy 3x*+4x+2

o= -1 0 YO (13)

Note that Theorem 2.4.1 is not applicable to this problem since the differential equation is
nonlinear. To apply Theorem 2.4.2, observe that

3x2+4x +2 of 3x2+4x +2
fx.y) TR y(x,y)

Thus each of these functions is continuous everywhere except on the line y = 1. Consequently,
arectangle can be drawn about the initial point (0, —1) in which both f and d9f /dy are continu-
ous. Therefore Theorem 2.4.2 guarantees that the initial value problem has a unique solution in
some interval about x = 0. However, even though the rectangle can be stretched infinitely far
in both the positive and negative x directions, this does not necessarily mean that the solution
exists for all x. Indeed, the initial value problem (13) was solved in Example 2 of Section 2.2
and the solution exists only for x > —2.

Now suppose we change the initial condition to y(0) = 1. The initial point now lies on
the line y = 1 so no rectangle can be drawn about it, within which f and 9f/dy are contin-
uous. Consequently, Theorem 2.4.2 says nothing about possible solutions of this modified
problem. However, if we separate the variables and integrate, as in Section 2.2, we find
that

y =2y =x*+2x* +2x +c.
Further, if x = 0 and y = 1, then ¢ = —1. Finally, by solving for y, we obtain
y=1%vx3+2x2+2x. (14)

Equation (14) provides two functions that satisfy the given differential equation for x > 0 and
also satisfy the initial condition y(0) = 1.

Consider the initial value problem
Y=y y0)=0 (15)

for t > 0. Apply Theorem 2.4.2 to this initial value problem and then solve the problem.

The function f(¢,y) = y/? is continuous everywhere, but 3f/dy does not exist when y = 0,
and hence is not continuous there. Thus Theorem 2.4.2 does not apply to this problem and
no conclusion can be drawn from it. However, by the remark following Theorem 2.4.2 the
continuity of f does ensure the existence of solutions, but not their uniqueness.

To understand the situation more clearly, we must actually solve the problem, which is easy
to do since the differential equation is separable. Thus we have

y_1/3dy = dta
SO
R e
and }2
y=[3¢+o]".

The initial condition is satisfied if ¢ = 0, so

y=¢ =307, 1=0 (16)
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satisfies both of Egs. (15). On the other hand, the function

y=k0=—G0)", =0 17)
is also a solution of the initial value problem. Moreover, the function
y=v() =0, t>0 (18)
is yet another solution. Indeed, for an arbitrary positive #j, the functions

0, 0 <1<t

19
20 -], ifr=1 (19)

y=x@®=

are continuous, differentiable (in particular at ¢ = ¢)), and are solutions of the initial value
problem (15). Hence this problem has an infinite family of solutions; see Figure 2.4.1, where
a few of these solutions are shown.

y40)

FIGURE 2.4.1 Several solutions of the initial value problem y’ = y'/3, y(0) = 0.
Asalready noted, the nonuniqueness of the solutions of the problem (15) does not contradict
the existence and uniqueness theorem, since the theorem is not applicable if the initial point
lies on the ¢-axis. If (#, yo) is any point not on the ¢-axis, however, then the theorem guarantees
that there is a unique solution of the differential equation y’ = y!/3 passing through (ty, yo).

Interval of Definition. According to Theorem 2.4.1,the solution of a linear equation (1)

Yy +p@y =g,

subject to the initial condition y(fy) = yo, exists throughout any interval about t = 1,
in which the functions p and g are continuous. Thus, vertical asymptotes or other
discontinuities in the solution can occur only at points of discontinuity of p or g. For
instance, the solutions in Example 1 (with one exception) are asymptotic to the y-
axis, corresponding to the discontinuity at # = 0 in the coefficient p(f) = 2/t,but none
of the solutions has any other point where it fails to exist and to be differentiable.
The one exceptional solution shows that solutions may sometimes remain continuous
even at points of discontinuity of the coefficients.
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EXAMPLE

4

On the other hand, for a nonlinear initial value problem satisfying the hypotheses
of Theorem 2.4.2, the interval in which a solution exists may be difficult to determine.
The solution y = ¢ (¢) is certain to exist as long as the point [z, ¢ (¢)] remains within a
region in which the hypotheses of Theorem 2.4.2 are satisfied. This is what determines
the value of / in that theorem. However, since ¢ (¢) is usually not known, it may be
impossible to locate the point [t, ¢ ()] with respect to this region. In any case, the
interval in which a solution exists may have no simple relationship to the function f
in the differential equation y’ = f(¢, y). This is illustrated by the following example.

Solve the initial value problem
Y=y, y0=1 (20)

and determine the interval in which the solution exists.

Theorem 2.4.2 guarantees that this problem has a unique solution since f(¢,y) = y*> and
df /0y = 2y are continuous everywhere. To find the solution, we separate the variables and
integrate with the result that

y*dy =dr 1)
and
—~yl=t+c
Then, solving for y, we have
1
=— . 22
y r+c ( )
To satisfy the initial condition, we must choose ¢ = —1, so
1
_ 23
Y=, (23)

is the solution of the given initial value problem. Clearly, the solution becomes unbounded as
t — 1; therefore, the solution exists only in the interval —oo < ¢ < 1. There is no indication
from the differential equation itself, however, that the point t = 1 is in any way remarkable.
Moreover, if the initial condition is replaced by

y(0) = yo, (24)
then the constant ¢ in Eq. (22) must be chosen to be ¢ = —1/yy, and it follows that

Yo
= yor (25)

is the solution of the initial value problem with the initial condition (24). Observe that the
solution (25) becomes unbounded as t — 1/yy, so the interval of existence of the solution is
—oo <t <1/ygifyy > 0,andis 1/yy <t < oo if yo < 0. This example illustrates another fea-
ture of initial value problems for nonlinear equations; namely, the singularities of the solution
may depend in an essential way on the initial conditions as well as on the differential equation.

General Solution. Another way in which linear and nonlinear equations differ concerns
the concept of a general solution. For a first order linear equation it is possible to
obtain a solution containing one arbitrary constant, from which all possible solutions
follow by specifying values for this constant. For nonlinear equations this may not be
the case; even though a solution containing an arbitrary constant may be found, there
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may be other solutions that cannot be obtained by giving values to this constant. For
instance, for the differential equation y’ = y? in Example 4, the expression in Eq. (22)
contains an arbitrary constant, but does not include all solutions of the differential
equation. To show this, observe that the function y = 0 for all¢is certainly a solution of
the differential equation, but it cannot be obtained from Eq. (22) by assigning a value
to c. In this example we might anticipate that something of this sort might happen
because to rewrite the original differential equation in the form (21), we must require
that y is not zero. However, the existence of “additional” solutions is not uncommon
for nonlinear equations; a less obvious example is given in Problem 22. Thus we will
use the term “general solution” only when discussing linear equations.

Implicit Solutions. Recall again that, for an initial value problem for a first order linear
equation, Eq. (8) provides an explicit formula for the solution y = ¢(¢). As long as
the necessary antiderivatives can be found, the value of the solution at any point can
be determined merely by substituting the appropriate value of ¢ into the equation.
The situation for nonlinear equations is much less satisfactory. Usually, the best that
we can hope for is to find an equation

F(t,y) =0 (26)

involving ¢ and y that is satisfied by the solution y = ¢ (¢). Even this can be done only
for differential equations of certain particular types, of which separable equations
are the most important. The equation (26) is called an integral, or first integral, of the
differential equation, and (as we have already noted) its graph is an integral curve, or
perhaps a family of integral curves. Equation (26), assuming it can be found, defines
the solution implicitly; that is, for each value of ¢+ we must solve Eq. (26) to find the
corresponding value of y. If Eq. (26) is simple enough, it may be possible to solve
it for y by analytical means and thereby obtain an explicit formula for the solution.
However, more frequently this will not be possible, and you will have to resort to a
numerical calculation to determine (approximately) the value of y for a given value
of . Once several pairs of values of ¢ and y have been calculated, it is often helpful
to plot them and then to sketch the integral curve that passes through them. You
should arrange for a computer to do this for you, if possible.

Examples 2, 3, and 4 are nonlinear problems in which it is easy to solve for an
explicit formula for the solution y = ¢ (). On the other hand, Examples 1 and 3 in
Section 2.2 are cases in which it is better to leave the solution in implicit form, and to
use numerical means to evaluate it for particular values of the independent variable.
The latter situation is more typical; unless the implicit relation is quadratic in y, or
has some other particularly simple form, it is unlikely that it can be solved exactly
by analytical methods. Indeed, more often than not, it is impossible even to find an
implicit expression for the solution of a first order nonlinear equation.

Graphical or Numerical Construction of Integral Curves. Because of the difficulty in obtain-
ing exact analytical solutions of nonlinear differential equations, methods that yield
approximate solutions or other qualitative information about solutions are of cor-
respondingly greater importance. We have already described, in Section 1.1, how
the direction field of a differential equation can be constructed. The direction field
can often show the qualitative form of solutions and can also be helpful in identi-
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fying regions of the ty-plane where solutions exhibit interesting features that merit
more detailed analytical or numerical investigation. Graphical methods for first or-
der equations are discussed further in Section 2.5. An introduction to numerical
methods for first order equations is given in Section 2.7, and a systematic discussion
of numerical methods appears in Chapter 8. However, it is not necessary to study
the numerical algorithms themselves in order to use effectively one of the many
software packages that generate and plot numerical approximations to solutions of
initial value problems.

Summary. The linear equation y’ + p(¢)y = g(¢) has several nice properties that can
be summarized in the following statements:

1. Assuming that the coefficients are continuous, there is a general solution, containing an
arbitrary constant, that includes all solutions of the differential equation. A particular
solution that satisfies a given initial condition can be picked out by choosing the proper
value for the arbitrary constant.

2. There is an expression for the solution, namely, Eq. (7) or Eq. (8). Moreover, although it
involves two integrations, the expression is an explicit one for the solution y = ¢ (¢) rather
than an equation that defines ¢ implicitly.

3. The possible points of discontinuity, or singularities, of the solution can be identified (with-
out solving the problem) merely by finding the points of discontinuity of the coefficients.
Thus, if the coefficients are continuous for all 7, then the solution also exists and is differ-
entiable for all 7.

None of these statements is true, in general, of nonlinear equations. Although a
nonlinear equation may well have a solution involving an arbitrary constant, there
may also be other solutions. There is no general formula for solutions of nonlinear
equations. If you are able to integrate a nonlinear equation, you are likely to obtain an
equation defining solutions implicitly rather than explicitly. Finally, the singularities
of solutions of nonlinear equations can usually be found only by solving the equation
and examining the solution. It is likely that the singularities will depend on the initial
condition as well as the differential equation.

PROBLEMS

In each of Problems 1 through 6 determine (without solving the problem) an interval in which
the solution of the given initial value problem is certain to exist.

1. ¢t —3)y' + (nt)y =2, y(1) =2

2.t —4)y +y=0, y2)=1

3. y' + (tant)y = sint, y) =0 4. (4 -1y + 2ty = 3£, y(=3) =1
5. (4—12)y + 2ty = 3¢, y1) =-3 6. (Inr)y +y = cott, y2) =3

In each of Problems 7 through 12 state where in the ty-plane the hypotheses of Theorem 2.4.2
are satisfied.

r—y
7.y = 8.y =(10-1—y»1”?
Y = tsy y=( ¥
In |t
9.y = n|ty| 10. y' = (2 + )32

_1_12+y2
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%
&

dy 1+7

12 ﬂ_(cott)y
dt T 3y—y? Tdt T 14y

In each of Problems 13 through 16 solve the given initial value problem and determine how
the interval in which the solution exists depends on the initial value yj.

13y =—4t/y,  y(0) =y, 4.y =2y, y(0) =y

15.y+y'=0,  y0) =y 16. y =22/y(1+1),  y0) =y

In each of Problems 17 through 20 draw a direction field and plot (or sketch) several solutions

of the given differential equation. Describe how solutions appear to behave as ¢ increases and
how their behavior depends on the initial value y, when ¢ = 0.

17. y =ty3 - y) ¢ 18y =yB -1y
19. y = —y3 —1ty) 620y =t-1-y

21. Consider the initial value problem y’ = y'/3, y(0) = 0 from Example 3 in the text.
(a) Isthere a solution that passes through the point (1,1)? If so, find it.
(b) Is there a solution that passes through the point (2,1)? If so, find it.

(c) Consider all possible solutions of the given initial value problem. Determine the set
of values that these solutions have at ¢t = 2.

22. (a) Verify that both y;(t) =1 —t and y,(t) = —?/4 are solutions of the initial value
problem
B N (R )M
y = fy y@ =-1L
Where are these solutions valid?

(b) Explain why the existence of two solutions of the given problem does not contradict
the uniqueness part of Theorem 2.4.2.

(c) Show thaty = ct + ¢?, where c is an arbitrary constant, satisfies the differential equa-
tion in part (a) for r > —2¢. If ¢ = —1, the initial condition is also satisfied, and the
solution y = y;(¢) is obtained. Show that there is no choice of c that gives the second
solution y = y,(¢).

23. (a) Show that ¢(¢) = €* is a solution of y’ — 2y = 0 and that y = c¢(¢) is also a solution
of this equation for any value of the constant c.

(b) Show that ¢(¢) = 1/t is a solution of y’ + y?> = 0 for ¢ > 0 but that y = c¢(¢) is not
a solution of this equation unless ¢ = 0 or ¢ = 1. Note that the equation of part (b) is
nonlinear, while that of part (a) is linear.

24. Show that if y = ¢(¢) is a solution of y' + p(t)y = 0, then y = c¢ (¢) is also a solution for
any value of the constant c.

25. Let y = y;(¢) be a solution of
Y +p®)y =0, (i)

and let y = y,(¢) be a solution of
Y +p0)y =gQ. (ii)

Show that y = y;(¢) + y»(¢) is also a solution of Eq. (ii).

26. (a) Show that the solution (7) of the general linear equation (1) can be written in the
form

y =cyi(0) + y2(0), i)

where c is an arbitrary constant. Identify the functions y; and y,.
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(b) Show that y, is a solution of the differential equation
Y +p®)y =0, (ii)

corresponding to g(¢) = 0.
(c) Show that y, is a solution of the full linear equation (1). We see later (for example,
in Section 3.5) that solutions of higher order linear equations have a pattern similar to

Eq. (i).

Bernoulli Equations. Sometimes it is possible to solve a nonlinear equation by making a
change of the dependent variable that converts it into a linear equation. The most important
such equation has the form

Y +p®y=q@®)y",
and is called a Bernoulli equation after Jakob Bernoulli. Problems 27 through 31 deal with
equations of this type.

27. (a) Solve Bernoulli’s equation when n = 0; whenn = 1.

(b) Show thatifn # 0,1, then the substitution v = y!~" reduces Bernoulli’s equation to a
linear equation. This method of solution was found by Leibniz in 1696.

In each of Problems 28 through 31 the given equation is a Bernoulli equation. In each case

solve it by using the substitution mentioned in Problem 27(b).

28. 12y +2ty —y* =0, >0

29. y' =ry — ky?, r > 0 and k > 0. This equation is important in population dynamics and is
discussed in detail in Section 2.5.

30. yy = ey —o0)> € > 0and o > 0. This equation occurs in the study of the stability of fluid
flow.

31. dy/dt = (T cost + T)y — y*, where I' and T are constants. This equation also occurs in
the study of the stability of fluid flow.

Discontinuous Coefficients. Linear differential equations sometimes occur in which one or
both of the functions p and g have jump discontinuities. If ¢, is such a point of discontinuity,
then it is necessary to solve the equation separately for ¢ < ) and ¢ > ¢,. Afterward, the two
solutions are matched so that y is continuous at fy; this is accomplished by a proper choice of
the arbitrary constants. The following two problems illustrate this situation. Note in each case
that it is impossible also to make y’ continuous at ¢.

32. Solve the initial value problem

Y+2y=g0, y0)=0,

1, 0<t<1,
gt) =

where

0, t> 1.
33. Solve the initial value problem
Y +py=0,  y0) =1,

where

® 2, 0<t<l1,
1) =
P 1, t>1.
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2.5 Autonomous Equations and Population Dynamics

Animportant class of first order equations consists of those in which the independent
variable does not appear explicitly. Such equations are called autonomous and have
the form

dy/dt =f (). (1

We will discuss these equations in the context of the growth or decline of the popula-
tion of a given species, an important issue in fields ranging from medicine to ecology
to global economics. A number of other applications are mentioned in some of the
problems. Recall that in Sections 1.1 and 1.2 we considered the special case of Eq. (1)
in which f(y) = ay + b.

Equation (1) is separable, so the discussion in Section 2.2 is applicable to it, but
the main purpose of this section is to show how geometrical methods can be used
to obtain important qualitative information directly from the differential equation,
without solving the equation. Of fundamental importance in this effort are the
concepts of stability and instability of solutions of differential equations. These ideas
were introduced informally in Chapter 1, but without using this terminology. They
are discussed further here and will be examined in greater depth and in a more
general setting in Chapter 9.

Exponential Growth. Let y = ¢ (f) be the population of the given species at time ¢. The
simplest hypothesis concerning the variation of population is that the rate of change
of y is proportional'’ to the current value of y; that is,

dy/dt =ry, (2)

where the constant of proportionality r is called the rate of growth or decline, de-
pending on whether it is positive or negative. Here, we assume that r > 0, so the
population is growing.

Solving Eq. (2) subject to the initial condition

y(0) = yo, (3)
we obtain
y = yoe". “4)

Thus the mathematical model consisting of the initial value problem (2), (3) with
r > 0 predicts that the population will grow exponentially for all time, as shown
in Figure 2.5.1 for several values of yg. Under ideal conditions, Eq. (4) has been
observed to be reasonably accurate for many populations, at least for limited periods
of time. However, it is clear that such ideal conditions cannot continue indefinitely;
eventually, limitations on space, food supply, or other resources will reduce the growth
rate and bring an end to uninhibited exponential growth.

101t was apparently the British economist Thomas Malthus (1766-1834) who first observed that many
biological populations increase at a rate proportional to the population. His first paper on populations
appeared in 1798.
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| | |
1/r 2/r 3/r 4/rt

FIGURE 2.5.1 Exponential growth: y versus ¢ for dy/dt = ry.

Logistic Growth. To take account of the fact that the growth rate actually depends on
the population, we replace the constant r in Eq. (2) by a function A(y) and thereby
obtain the modified equation

dy/dt = h(y)y. (5)

We now want to choose /(y) so that 4(y) = r > 0 when y is small, #(y) decreases as
y grows larger, and h(y) < 0 when y is sufficiently large. The simplest function that
has these properties is A(y) = r — ay, where a is also a positive constant. Using this
function in Eq. (5), we obtain

dy/dt = (r — ay)y. (6)

Equation (6) is known as the Verhulst!! equation or the logistic equation. It is often
convenient to write the logistic equation in the equivalent form

d
(-2 0
where K = r/a. The constant r is called the intrinsic growth rate, that is, the growth
rate in the absence of any limiting factors. The interpretation of K will become clear
shortly.

We will investigate the solutions of Eq. (7) in some detail later in this section.
Before doing that, however, we will show how you can easily draw a qualitatively
correct sketch of the solutions. The same methods also apply to the more general

Eq. (1).

1P, F. Verhulst (1804-1849) was a Belgian mathematician who introduced Eq. (6) as a model for human
population growth in 1838. He referred to it as logistic growth; hence Eq. (6) is often called the logistic
equation. He was unable to test the accuracy of his model because of inadequate census data, and it did
not receive much attention until many years later. Reasonable agreement with experimental data was
demonstrated by R. Pearl (1930) for Drosophila melanogaster (fruit fly) populations and by G. F. Gause
(1935) for Paramecium and Tribolium (flour beetle) populations.
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We first seek solutions of Eq. (7) of the simplest possible type, that is, constant
functions. For such a solution dy/dt = 0 for all ¢, so any constant solution of Eq. (7)
must satisfy the algebraic equation

rl—y/K)y =0.

Thus the constant solutions are y = ¢;(¢) = 0 and y = ¢,(t) = K. These solutions
are called equilibrium solutions of Eq. (7) because they correspond to no change or
variation in the value of y as ¢ increases. In the same way, any equilibrium solutions
of the more general Eq. (1) can be found by locating the roots of f(y) = 0. The zeros
of f(y) are also called critical points.

To visualize other solutions of Eq. (7) and to sketch their graphs quickly, we start
by drawing the graph of f(y) versus y. In the case of Eq. (7), f(y) = r(1 — y/K)y,
so the graph is the parabola shown in Figure 2.5.2. The intercepts are (0,0) and
(K, 0), corresponding to the critical points of Eq. (7), and the vertex of the parabola
is (K/2,rK/4). Observe that dy/dt > 0 for 0 < y < K; therefore, y is an increasing
function of ¢ when y is in this interval; this is indicated by the rightward-pointing
arrows near the y-axis in Figure 2.5.2. Similarly, if y > K, then dy/dt < 0; hence y is
decreasing, as indicated by the leftward-pointing arrow in Figure 2.5.2.

(K/2, rK/4)

e | _— <

K/2 K\ y

FIGURE 2.5.2 f(y) versus y for dy/dt = r(1 — y/K)y.

In this context the y-axis is often called the phase line, and it is reproduced in its
more customary vertical orientation in Figure 2.5.3a. The dots at y =0 and y = K
are the critical points, or equilibrium solutions. The arrows again indicate that y is
increasing whenever 0 < y < K and that y is decreasing whenever y > K.

Further, from Figure 2.5.2, note that if y is near zero or K, then the slope f(y) is
near zero, so the solution curves are relatively flat. They become steeper as the value
of y leaves the neighborhood of zero or K.

To sketch the graphs of solutions of Eq. (7) in the ty-plane, we start with the equi-
librium solutions y = 0 and y = K; then we draw other curves that are increasing
when 0 < y < K, decreasing when y > K, and flatten out as y approaches either of
the values 0 or K. Thus the graphs of solutions of Eq. (7) must have the general
shape shown in Figure 2.5.3b, regardless of the values of r and K.
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K/2

0e -
(a) (b)
FIGURE 2.5.3 Logistic growth: dy/dt = r(1 —y/K)y. (a) The phase line. (b) Plots of y
VETSUS 1.

Figure 2.5.3b may seem to show that other solutions intersect the equilibrium
solution y = K, but is this really possible? No, the uniqueness part of Theorem 2.4.2,
the fundamental existence and uniqueness theorem, states that only one solution can
pass through a given point in the ty-plane. Thus, although other solutions may be
asymptotic to the equilibrium solution as t — oo, they cannot intersect it at any finite
time.

To carry the investigation one step further, we can determine the concavity of the
solution curves and the location of inflection points by finding d?y/dt*>. From the
differential equation (1) we obtain (using the chain rule)

dy ddy d,. - dy
o5 =g = M= = 0f ). ®)

The graph of y versus ¢ is concave up when y” > 0, that is, when f and f’ have the
same sign. Similarly, it is concave down when y” < 0, which occurs when f and f’
have opposite signs. The signs of f and f’ can be easily identified from the graph of
f(y) versus y. Inflection points may occur when f'(y) = 0.

In the case of Eq. (7), solutions are concave up for 0 < y < K/2 where f is positive
and increasing (see Figure 2.5.2), so that both f and f’ are positive. Solutions are
also concave up for y > K where f is negative and decreasing (both f and f’ are
negative). For K/2 < y < K, solutions are concave down since here f is positive and
decreasing, so f is positive but f’ is negative. There is an inflection point whenever
the graph of y versus ¢ crosses the line y = K /2. The graphs in Figure 2.5.3b exhibit
these properties.

Finally, observe that K is the upper bound that is approached, but not exceeded,
by growing populations starting below this value. Thus it is natural to refer to K as
the saturation level, or the environmental carrying capacity, for the given species.

A comparison of Figures 2.5.1 and 2.5.3b reveals that solutions of the nonlinear
equation (7) are strikingly different from those of the linear equation (1), at least
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for large values of . Regardless of the value of K, that is, no matter how small the
nonlinear term in Eq. (7), solutions of that equation approach a finite value as t — oo,
whereas solutions of Eq. (1) grow (exponentially) without bound as t — oco. Thus
even a tiny nonlinear term in the differential equation (7) has a decisive effect on
the solution for large ¢.

In many situations it is sufficient to have the qualitative information about a solu-
tiony = ¢ (¢) of Eq. (7) that is shown in Figure 2.5.3b. This information was obtained
entirely from the graph of f(y) versus y, and without solving the differential equation
(7). However, if we wish to have a more detailed description of logistic growth—for
example, if we wish to know the value of the population at some particular time—
then we must solve Eq. (7) subject to the initial condition (3). Provided that y # 0
and y # K, we can write Eq. (7) in the form

d
—y — rdt
(I =y/K)y
Using a partial fraction expansion on the left side, we have
( 1 1/K
-+
y 1-y/K
Then, by integrating both sides, we obtain

)dy =rdt.

1n|y|—1n‘1—%’:rt+6, ©)

where ¢ is an arbitrary constant of integration to be determined from the initial
condition y(0) = yo. We have already noted that if 0 < yg < K, then y remains in
this interval for all time. Thus in this case we can remove the absolute value bars in
Eqg. (9), and by taking the exponential of both sides, we find that

y rt
——F = Ce", 10
1-W/K) (10)
where C = ¢°. In order to satisfy the initial condition y(0) = yy, we must choose
C = yo/[1 — (yo/K)]. Using this value for C in Eq. (10) and solving for y, we obtain

_ YoK . (11)
Yo+ (K —yple "

We have derived the solution (11) under the assumption that 0 < yy < K. If
vo > K, then the details of dealing with Eq. (9) are only slightly different, and we
leave it to you to show that Eq. (11) is also valid in this case. Finally, note that
Eq. (11) also contains the equilibrium solutions y = ¢1(t) =0 and y = ¢»(¢t) = K
corresponding to the initial conditions yo = 0 and yy = K, respectively.

All the qualitative conclusions that we reached earlier by geometrical reason-
ing can be confirmed by examining the solution (11). In particular, if yo = 0, then
Eq. (11) requires that y(t) = 0 for all z. If yo > 0, and if we let t — oo in Eq. (11),
then we obtain

y

lim y(@) = yoK/yo = K.

Thus, for each yy > 0, the solution approaches the equilibrium solutiony = ¢, (t) = K
asymptotically as t — oco. Therefore we say that the constant solution ¢, (¢) = K is
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EXAMPLE

1

an asymptotically stable solution of Eq. (7) or that the point y = K is an asymp-
totically stable equilibrium or critical point. After a long time, the population is
close to the saturation level K regardless of the initial population size, as long as
it is positive. Other solutions approach the equilibrium solution more rapidly as r
increases.

On the other hand, the situation for the equilibrium solution y = ¢;(¢) = 0is quite
different. Even solutions that start very near zero grow as ¢ increases and, as we
have seen, approach K as t — oco. We say that ¢;(¢) = 0 is an unstable equilibrium
solution or that y = 0is an unstable equilibrium or critical point. This means that the
only way to guarantee that the solution remains near zero is to make sure its initial
value is exactly equal to zero.

The logistic model has been applied to the natural growth of the halibut population in certain
areas of the Pacific Ocean.!? Let y, measured in kilograms, be the total mass, or biomass, of
the halibut population at time ¢. The parameters in the logistic equation are estimated to have
the values r = 0.71/year and K = 80.5 x 10° kg. If the initial biomass is yo = 0.25K, find the
biomass 2 years later. Also find the time t for which y(7) = 0.75K.

It is convenient to scale the solution (11) to the carrying capacity K; thus we write Eq. (11)

in the form
Y _ Yo/ K (12)
K (yo/K)+ 11— (yo/K)le" "

Using the data given in the problem, we find that

o 0.25

=—— =(.5797.
K 0.25 4 0.75¢142

Consequently, y(2) = 46.7 x 10° kg.
To find 7, we can first solve Eq. (12) for r. We obtain

o Q0B = /)]
G/ = Go/K)1

hence
1. (/K1 - (y/K)]
— _p 2 T O 13
LT N GBI = Go/K)] (13)

Using the given values of r and y,/K and setting y/K = 0.75, we find that

1 029025 1
= ) 923,095 years.
T 075075 071 ¢ years

The graphs of y/K versus ¢ for the given parameter values and for several initial conditions
are shown in Figure 2.5.4.

12A good source of information on the population dynamics and economics involved in making efficient
use of a renewable resource, with particular emphasis on fisheries, is the book by Clark listed in the
references at the end of this chapter. The parameter values used here are given on page 53 of this book
and were obtained from a study by H. S. Mohring.
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y/K
1.75

1.50
1.25
1.00
0.75
0.50
0.25

FIGURE 2.54 y/K versust for population model of halibut in the Pacific Ocean.

A Critical Threshold. We now turn to a consideration of the equation

d
(-2 o
where r and T are given positive constants. Observe that (except for replacing the
parameter K by 7)) this equation differs from the logistic equation (7) only in the
presence of the minus sign on the right side. However, as we will see, the solutions
of Eq. (14) behave very differently from those of Eq. (7).

For Eq. (14) the graph of f(y) versus y is the parabola shown in Figure 2.5.5.
The intercepts on the y-axis are the critical points y = 0 and y = T, corresponding
to the equilibrium solutions ¢ (¥) = 0 and ¢,(t) = T. If 0 < y < T, then dy/dt < 0,
and y decreases as ¢ increases. On the other hand, if y > T, then dy/dt > 0, and y
grows as t increases. Thus ¢;(¢) = 0 is an asymptotically stable equilibrium solution
and ¢,(t) = T is an unstable one. Further, f'(y) is negative for 0 <y < 7/2 and
positive for T/2 < y < T,so the graph of y versus ¢ is concave up and concave down,
respectively, in these intervals. Also, f'(y) is positive for y > T, so the graph of y
versus ¢ is also concave up there.

f(y)

-rT/4 =

(T2, —rT/4)
FIGURE 2.5.5 f(y) versus y for dy/dt = —r(1 — y/T)y.
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Figure 2.5.6a shows the phase line (the y-axis) for Eq. (14). The dots at y = 0 and
y = T are the critical points, or equilibrium solutions, and the arrows indicate where
solutions are either increasing or decreasing.

Solution curves of Eq. (14) can now be sketched quickly, as follows. First draw
the equilibrium solutions y = O and y = 7. Then sketch curvesin the strip0 <y < T
that are decreasing as t increases and change concavity as they cross the line y = 7/2.
Next draw some curves above y = T that increase more and more steeply as ¢ and
y increase. Make sure that all curves become flatter as y approaches either zero or
T. The result is Figure 2.5.6b, which is a qualitatively accurate sketch of solutions of
Eq. (14) for any r and 7. From this figure it appears that as time increases, y either
approaches zero or grows without bound, depending on whether the initial value y,
is less than or greater than 7. Thus T is a threshold level, below which growth does

not occur.
y * y
Te T
T/2
(a) (b)
FIGURE 2.5.6 Growth with a threshold: dy/dt = —r(1 — y/T)y. (a) The phase line.
(b) Plots of y versus .

We can confirm the conclusions that we have reached through geometrical rea-
soning by solving the differential equation (14). This can be done by separating the
variables and integrating, just as we did for Eq. (7). However, if we note that Eq. (14)
can be obtained from Eq. (7) by replacing K by T and r by —r, then we can make
the same substitutions in the solution (11) and thereby obtain

_ yoT
yo+ (T —yp)e’

which is the solution of Eq. (14) subject to the initial condition y(0) = yy.

If0 < yo < T,then it follows from Eq. (15) that y — 0 as ¢t — oo. This agrees with
our qualitative geometric analysis. If yg > T, then the denominator on the right side
of Eq. (15) is zero for a certain finite value of . We denote this value by #* and

y (15)
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calculate it from
yo— (vo — T)e™ =0,
which gives
1
t*=—1In 0 .
r yo—T

(16)

Thus, if the initial population yy is above the threshold 7', the threshold model predicts
that the graph of y versus ¢ has a vertical asymptote at ¢ = *; in other words, the
population becomes unbounded in a finite time, whose value depends on yg, T,and r.
The existence and location of this asymptote were not apparent from the geometric
analysis, so in this case the explicit solution yields additional important qualitative,
as well as quantitative, information.

The populations of some species exhibit the threshold phenomenon. If too few
are present, then the species cannot propagate itself successfully and the population
becomes extinct. However, if the population is larger than the threshold level, then
further growth occurs. Of course, the population cannot become unbounded, so
eventually Eq. (14) must be modified to take this into account.

Critical thresholds also occur in other circumstances. For example,in fluid mechan-
ics,equations of the form (7) or (14) often govern the evolution of a small disturbance
y in a laminar (or smooth) fluid flow. For instance, if Eq. (14) holds and y < T, then
the disturbance is damped out and the laminar flow persists. However,if y > T, then
the disturbance grows larger and the laminar flow breaks up into a turbulent one. In
this case T is referred to as the critical amplitude. Experimenters speak of keeping
the disturbance level in a wind tunnel sufficiently low so that they can study laminar
flow over an airfoil, for example.

Logistic Growth with a Threshold. As we mentioned in the last subsection, the threshold
model (14) may need to be modified so that unbounded growth does not occur when
yis above the threshold T. The simplest way to do this is to introduce another factor
that will have the effect of making dy/dt negative when y is large. Thus we consider

D (1-2) (1-2) (17)

wherer > 0and 0 < T < K.

The graph of f(y) versus y is shown in Figure 2.5.7. In this problem there are three
critical points, y = 0,y = T, and y = K, corresponding to the equilibrium solutions
¢1(t) =0, ¢o(t) = T,and ¢3(¢t) = K, respectively. From Figure 2.5.7 we observe that
dy/dt > 0for T <y < K, and consequently y is increasing there. Further, dy/dt < 0
for y < T and for y > K, so y is decreasing in these intervals. Consequently, the
equilibrium solutions ¢ (f) and ¢3(¢) are asymptotically stable, and the solution ¢, (¢)
is unstable.

The phase line for Eq. (17) is shown in Figure 2.5.8a, and the graphs of some
solutions are sketched in Figure 2.5.8b. You should make sure that you understand
the relation between these two figures, as well as the relation between Figures 2.5.7
and 2.5.8a. From Figure 2.5.8b we see that if y starts below the threshold 7', then
y declines to ultimate extinction. On the other hand, if y starts above T, then y
eventually approaches the carrying capacity K. The inflection points on the graphs
of y versus ¢ in Figure 2.5.8b correspond to the maximum and minimum points, y;
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FIGURE 2.5.7 f(y) versus y fordy/dt = —r(1 — y/T)(1 — y/K)y.

(a) (b)
FIGURE 2.5.8 Logistic growth with a threshold: dy/dt = —r(1 — y/T)(1 — y/K)y. (a) The
phase line. (b) Plots of y versus .

and y,, respectively, on the graph of f(y) versus y in Figure 2.5.7. These values can
be obtained by differentiating the right side of Eq. (17) with respect to y, setting the
result equal to zero, and solving for y. We obtain

yis=(K+T+VK2— KT+ T?)/3, (18)

where the plus sign yields y; and the minus sign y;.

A model of this general sort apparently describes the population of the passenger
pigeon,'® which was present in the United States in vast numbers until late in the
nineteenth century. It was heavily hunted for food and for sport, and consequently
its numbers were drastically reduced by the 1880s. Unfortunately, the passenger pi-
geon could apparently breed successfully only when present in a large concentration,
corresponding to a relatively high threshold T'. Although a reasonably large number
of individual birds remained alive in the late 1880s, there were not enough in any one

13See, for example, Oliver L. Austin, Ir., Birds of the World (New York: Golden Press, 1983), pp. 143-145.
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place to permit successful breeding, and the population rapidly declined to extinc-
tion. The last survivor died in 1914. The precipitous decline in the passenger pigeon
population from huge numbers to extinction in a few decades was one of the early
factors contributing to a concern for conservation in this country.

PROBLEMS

Problems 1 through 6 involve equations of the form dy/dt = f(y). In each problem sketch
the graph of f(y) versus y, determine the critical (equilibrium) points, and classify each one as
asymptotically stable or unstable. Draw the phase line, and sketch several graphs of solutions
in the ty-plane.

1. dy/dt = ay + by?, a>0, b>0, y>0

2. dy/dt = ay + by?, a>0, b>0, —oo<y)<oo
3.dy/dt=y(y -1y —-2), >0

4. dy/dt =¢ — 1, —00 < yp < 00

5. dyj/dt =e —1, —00 < Yy < 00

6. dy/dt = —2(arctany)/(1 + y?), —00 < Yy < 00

7.

Semistable Equilibrium Solutions. Sometimes a constant equilibrium solution has the
property that solutions lying on one side of the equilibrium solution tend to approach it,
whereas solutions lying on the other side depart from it (see Figure 2.5.9). In this case the
equilibrium solution is said to be semistable.

(@) t ) g

FIGURE 2.5.9 In both cases the equilibrium solution ¢ (¢) = k is semistable.
(a) dy/dt < 0;(b) dy/dt > 0.

(a) Consider the equation
dy/dt = k(1 - y)?, (1)

where k is a positive constant. Show that y = 1 is the only critical point, with the corre-
sponding equilibrium solution ¢ (¢) = 1.

(b) Sketch f(y) versus y. Show that y is increasing as a function of ¢ for y < 1 and also
for y > 1. The phase line has upward-pointing arrows both below and above y = 1. Thus
solutions below the equilibrium solution approach it,and those above it grow farther away.
Therefore ¢ (f) = 1 is semistable.

(c) Solve Eq. (i) subject to the initial condition y(0) = y, and confirm the conclusions
reached in part (b).

Problems 8 through 13 involve equations of the form dy/dt = f(y). In each problem sketch
the graph of f(y) versus y, determine the critical (equilibrium) points, and classify each one
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as asymptotically stable, unstable, or semistable (see Problem 7). Draw the phase line, and
sketch several graphs of solutions in the ty-plane.

8.

9.
10.
11.
12.
13.
14.

15.

16.

17.

18.

dy/dt = —k(y —1)?,
dy/dt = y*(y* = 1),
dy/dt = y(1—y?),
dy/dt = ay — b./y,
dy/dt = y*(4 —y?),
dy/dt = y*(1 - y)*,
Consider the equation dy/dt = f(y) and suppose that y, is a critical point, that s, f (y;) = 0.

Show that the constant equilibrium solution ¢ (f) = y; is asymptotically stable if f'(y;) < 0
and unstable if f'(y;) > 0.

Suppose that a certain population obeys the logistic equation dy/dt = ry[1 — (y/K)].

(a) Ify, = K/3,find the time 7 at which the initial population has doubled. Find the value
of 7 corresponding to r = 0.025 per year.

(b) If yo/K = «, find the time T at which y(T)/K = B,where 0 < «, 8 < 1. Observe that
T — ooasa — 0oras B — 1. Find the value of T for r = 0.025 per year, « = 0.1, and
B =009.

Another equation that has been used to model population growth is the Gompertz'4
equation

k>0,

—00 < yp < 00

—00 < yp < 00

—00 < yp < 00
b=>0,

—00 < Yy < 00

a >0, Yo=>0

—00 < ypg < 00

dy/dt = ryln(K/y),

where r and K are positive constants.

(a) Sketch the graph of f(y) versus y, find the critical points, and determine whether each
is asymptotically stable or unstable.

(b) For 0 <y < K, determine where the graph of y versus ¢ is concave up and where it is
concave down.

(c) ForeachyinO < y < K, show that dy/dt as given by the Gompertz equation is never
less than dy/dt as given by the logistic equation.

(a) Solve the Gompertz equation
dy/dt = ryln(K/y),

subject to the initial condition y(0) = y,.

Hint: You may wish to let u = In(y/K).

(b) For the data given in Example 1 in the text (r = 0.71 per year, K = 80.5 x 10° kg,
yo/K = 0.25), use the Gompertz model to find the predicted value of y(2).

(c) For the same data as in part (b), use the Gompertz model to find the time t at which
y(r) = 0.75K.

A pond forms as water collects in a conical depression of radius a and depth 4. Suppose
that water flowsin at a constantrate k and is lost through evaporation at a rate proportional
to the surface area.

(a) Show that the volume V(¢) of water in the pond at time ¢ satisfies the differential
equation
dV/dt = k — an(3a/mh)**V*3,

where « is the coefficient of evaporation.

14Benjamin Gompertz (1779-1865) was an English actuary. He developed his model for population
growth, published in 1825, in the course of constructing mortality tables for his insurance company.
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(b) Find the equilibrium depth of water in the pond. Is the equilibrium asymptotically
stable?

(c) Find a condition that must be satisfied if the pond is not to overflow.

19. Consider a cylindrical water tank of constant cross section A. Water is pumped into the
tank at a constant rate k and leaks out through a small hole of area a in the bottom of the
tank. From Torricelli’s principle in hydrodynamics (see Problem 6 in Section 2.3) it follows
that the rate at which water flows through the hole is «a,/2gh, where / is the current depth
of water in the tank, g is the acceleration due to gravity, and « is a contraction coefficient
that satisfies 0.5 < o < 1.0.

(a) Show that the depth of water in the tank at any time satisfies the equation

dh/dt = (k — aa/2gh)/A.

(b) Determine the equilibrium depth 4, of water, and show that it is asymptotically stable.
Observe that s, does not depend on A.

Harvesting a Renewable Resource. Suppose that the population y of a certain species of fish
(for example, tuna or halibut) in a given area of the ocean is described by the logistic equation

dy/dt =r(1—y/K)y.

Although it is desirable to utilize this source of food, it is intuitively clear that if too many
fish are caught, then the fish population may be reduced below a useful level and possibly
even driven to extinction. Problems 20 and 21 explore some of the questions involved in
formulating a rational strategy for managing the fishery."

20. At a given level of effort, it is reasonable to assume that the rate at which fish are caught
depends on the population y: the more fish there are, the easier it is to catch them. Thus we
assume that the rate at which fish are caught is given by Ey, where E is a positive constant,
with units of 1/time, that measures the total effort made to harvest the given species of
fish. To include this effect, the logistic equation is replaced by

dy/dt =r(1—-y/K)y — Ey. ()

This equation is known as the Schaefer model after the biologist M. B. Schaefer, who
applied it to fish populations.

(a) Show thatif E < r,then there are two equilibrium points, y; = 0 and
y»=KA—-E/r)> 0.

(b) Show that y = y; is unstable and y = y, is asymptotically stable.

(c) A sustainable yield Y of the fishery is a rate at which fish can be caught indefinitely.
It is the product of the effort E and the asymptotically stable population y,. Find Y as a
function of the effort E; the graph of this function is known as the yield—effort curve.

(d) Determine E so as to maximize Y and thereby find the maximum sustainable yield Y.
21. In this problem we assume that fish are caught at a constant rate 4 independent of the size
of the fish population. Then y satisfies

dy/dt =r(1—y/K)y — h. )

15An excellent treatment of this kind of problem, which goes far beyond what is outlined here, may be
found in the book by Clark mentioned previously, especially in the first two chapters. Numerous additional
references are given there.
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The assumption of a constant catch rate 7 may be reasonable when y is large but becomes
less so when y is small.

(a) If h < rK/4, show that Eq. (i) has two equilibrium points y; and y, with y; < y;;
determine these points.

(b) Show that y; is unstable and y, is asymptotically stable.

(c) From a plot of f(y) versus y, show that if the initial population y, > y;, then y — y,
as t — oo, but that if y, < y;, then y decreases as ¢ increases. Note that y = 0 is not an
equilibrium point, so if yy < y1, then extinction will be reached in a finite time.

(d) If h > rK/4,show that y decreases to zero as ¢ increases regardless of the value of yj.
(e) If h = rK/4,show that there is a single equilibrium point y = K/2 and that this point
is semistable (see Problem 7). Thus the maximum sustainable yield is 4,, = rK /4, corre-
sponding to the equilibrium value y = K /2. Observe that £, has the same value as Y,,
in Problem 20(d). The fishery is considered to be overexploited if y is reduced to a level
below K /2.

Epidemics. The use of mathematical methods to study the spread of contagious diseases goes
back at least to some work by Daniel Bernoulli in 1760 on smallpox. In more recent years
many mathematical models have been proposed and studied for many different diseases.®
Problems 22 through 24 deal with a few of the simpler models and the conclusions that can be
drawn from them. Similar models have also been used to describe the spread of rumors and
of consumer products.

22.

23.

Suppose that a given population can be divided into two parts: those who have a given
disease and can infect others, and those who do not have it but are susceptible. Let x be the
proportion of susceptible individuals and y the proportion of infectious individuals; then
x+y =1. Assume that the disease spreads by contact between sick and well members
of the population and that the rate of spread dy/dt is proportional to the number of such
contacts. Further, assume that members of both groups move about freely among each
other, so the number of contacts is proportional to the product of x and y. Sincex =1 —y,
we obtain the initial value problem

dy/dt = ay(l —y), y(0) = yo, (i)

where « is a positive proportionality factor, and yj is the initial proportion of infectious
individuals.

(a) Find the equilibrium points for the differential equation (i) and determine whether
each is asymptotically stable, semistable, or unstable.

(b) Solve the initial value problem (i) and verify that the conclusions you reached in
part (a) are correct. Show that y(#) — 1 as t — oo, which means that ultimately the dis-
ease spreads through the entire population.

Some diseases (such as typhoid fever) are spread largely by carriers, individuals who can
transmit the disease but who exhibit no overt symptoms. Let x and y, respectively, denote
the proportion of susceptibles and carriers in the population. Suppose that carriers are
identified and removed from the population at a rate 8, so

dy/dt = —By. (i)

16 A standard source is the book by Bailey listed in the references. The models in Problems 22 through 24
are discussed by Bailey in Chapters 5, 10, and 20, respectively.
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Suppose also that the disease spreads at a rate proportional to the product of x and y; thus
dx/dt = —axy. (ii)

(a) Determine y at any time ¢ by solving Eq. (i) subject to the initial condition y(0) = yj.
(b) Use the result of part (a) to find x at any time # by solving Eq. (ii) subject to the initial
condition x(0) = x.
(c) Find the proportion of the population that escapes the epidemic by finding the limiting
value of x as t — oo.

24. Daniel Bernoulli’s work in 1760 had the goal of appraising the effectiveness of a contro-
versial inoculation program against smallpox, which at that time was a major threat to
public health. His model applies equally well to any other disease that, once contracted
and survived, confers a lifetime immunity.

Consider the cohort of individuals born in a given year (t = 0), and let n(¢) be the
number of these individuals surviving ¢ years later. Let x(¢) be the number of members of
this cohort who have not had smallpox by year ¢ and who are therefore still susceptible.
Let B be the rate at which susceptibles contract smallpox, and let v be the rate at which
people who contract smallpox die from the disease. Finally, let i(¢) be the death rate from
all causes other than smallpox. Then dx/dt, the rate at which the number of susceptibles
declines, is given by

dx/dt = —[B + n(®)lx. ()

The first term on the right side of Eq. (i) is the rate at which susceptibles contract smallpox,
and the second term is the rate at which they die from all other causes. Also

dn/dt = —vBx — u(t)n, (ii)

where dn/dt is the death rate of the entire cohort, and the two terms on the right side are
the death rates due to smallpox and to all other causes, respectively.

(a) Let z = x/n and show that z satisfies the initial value problem
dz/dt = —Bz(1 —vz), z(0) =1. (iii)

Observe that the initial value problem (iii) does not depend on p(t).

(b) Find z(¢) by solving Eq. (iii).

(c) Bernoulli estimated thatv = 8 = é. Using these values, determine the proportion of
20-year-olds who have not had smallpox.

Note: On the basis of the model just described and the best mortality data available at
the time, Bernoulli calculated that if deaths due to smallpox could be eliminated (v = 0),
then approximately 3 years could be added to the average life expectancy (in 1760) of 26
years, 7 months. He therefore supported the inoculation program.

Bifurcation Points. For an equation of the form

dy/dt = f(a,y), (i)

where a is a real parameter, the critical points (equilibrium solutions) usually depend on the
value of a. As a steadily increases or decreases, it often happens that at a certain value of q,
called a bifurcation point, critical points come together, or separate, and equilibrium solutions
may either be lost or gained. Bifurcation points are of great interest in many applications,
because near them the nature of the solution of the underlying differential equation is under-
going an abrupt change. For example, in fluid mechanics a smooth (laminar) flow may break
up and become turbulent. Or an axially loaded column may suddenly buckle and exhibit a
large lateral displacement. Or, as the amount of one of the chemicals in a certain mixture is in-
creased, spiral wave patterns of varying color may suddenly emerge in an originally quiescent
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fluid. Problems 25 through 27 describe three types of bifurcations that can occur in simple
equations of the form (i).

25.

26.

27.

Consider the equation
dy/dt = a — y*. (ii)

(a) Find all of the critical points for Eq. (ii). Observe that there are no critical points if
a < 0, one critical point if a = 0, and two critical points if a > 0.

(b) Draw the phase line in each case and determine whether each critical point is asymp-
totically stable, semistable, or unstable.

(c) In each case sketch several solutions of Eq. (ii) in the ty-plane.

(d) If we plot the location of the critical points as a function of a in the ay-plane, we obtain
Figure 2.5.10. This is called the bifurcation diagram for Eq. (ii). The bifurcation ata = 0
is called a saddle-node bifurcation. This name is more natural in the context of second
order systems, which are discussed in Chapter 9.

Asymptotically stable

-2 -1 1 2 3 4 a
\
N
~
-1k N - Unstable
2= T~

FIGURE 2.5.10 Bifurcation diagram for y’ = a — ).

Consider the equation
dy/dt = ay —y* = y(a — y?). (iii)
(a) Again consider the cases a < 0,a = 0,and a > 0. In each case find the critical points,

draw the phase line, and determine whether each critical point is asymptotically stable,
semistable, or unstable.

(b) In each case sketch several solutions of Eq. (iii) in the ty-plane.

(c) Draw the bifurcation diagram for Eq. (iii), that is, plot the location of the critical points
versus a. For Eq. (iii) the bifurcation point at @ = 0 is called a pitchfork bifurcation; your
diagram may suggest why this name is appropriate.

Consider the equation
dy/dt = ay —y* = y(a—y). (iv)
(a) Again consider the cases a < 0,a = 0,and a > 0. In each case find the critical points,

draw the phase line, and determine whether each critical point is asymptotically stable,
semistable, or unstable.

(b) In each case sketch several solutions of Eq. (iv) in the zy-plane.
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(c) Draw the bifurcation diagram for Eq. (iv). Observe that for Eq. (iv) there are the
same number of critical points for ¢ < 0 and a > 0 but that their stability has changed.
For a < 0 the equilibrium solution y = 0 is asymptotically stable and y = a is unstable,
while for a > 0 the situation is reversed. Thus there has been an exchange of stability as a
passes through the bifurcation point a = 0. This type of bifurcation is called a transcritical
bifurcation.

28. Chemical Reactions. A second order chemical reaction involves the interaction (colli-
sion) of one molecule of a substance P with one molecule of a substance Q to produce
one molecule of a new substance X this is denoted by P + Q — X. Suppose that p and
g, where p # g, are the initial concentrations of P and Q, respectively, and let x(¢) be the
concentration of X at time ¢. Then p — x(¢) and g — x(¢) are the concentrations of P and
Q at time ¢, and the rate at which the reaction occurs is given by the equation

dx/dt = a(p — x)(q — x), (i)

where « is a positive constant.

(a) If x(0) = 0, determine the limiting value of x(¢) as t — oo without solving the differ-
ential equation. Then solve the initial value problem and find x(¢) for any .

(b) If the substances P and Q are the same, then p = g and Eq. (i) is replaced by
dx/dt = a(p — x)°. (ii)

If x(0) = 0, determine the limiting value of x(¢) as t — oo without solving the differential
equation. Then solve the initial value problem and determine x(¢) for any .

2.6 Exact Equations and Integrating Factors

EXAMPLE

1

For first order equations there are a number of integration methods that are applica-
ble to various classes of problems. The most important of these are linear equations
and separable equations, which we have discussed previously. Here, we consider a
class of equations known as exact equations for which there is also a well-defined
method of solution. Keep in mind, however, that those first order equations that
can be solved by elementary integration methods are rather special; most first order
equations cannot be solved in this way.

Solve the differential equation
2x +y* +2xyy = 0. 1)

The equation is neither linear nor separable, so the methods suitable for those types of
equations are not applicable here. However, observe that the function ¥ (x, y) = x? + xy? has
the property that

oy oy
2 LR 2xy = —. 2
Xty = =%y ©)
Therefore the differential equation can be written as
a9 oy d

ax = Ay dx
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Theorem 2.6.1

Assuming that y is a function of x and calling upon the chain rule, we can write Eq. (3) in the
equivalent form

dyr d , )

bk A —0. 4

o = dr x+xy)=0 4)
Therefore

Yy =x2+x’=c, 5)

where c is an arbitrary constant, is an equation that defines solutions of Eq. (1) implicitly.

In solving Eq. (1) the key step was the recognition that there is a function v that
satisfies Egs. (2). More generally, let the differential equation

M(x,y) + N(x,y)y' =0 (6)
be given. Suppose that we can identify a function v such that
0 B
%(x,w — M(x,y), %(x,y) = N@x,y), (7)
and such that i (x,y) = ¢ defines y = ¢(x) implicitly as a differentiable function
of x. Then sy oy d 4
/ Y
M N -4 77 _ -
(x,y) + N(x,y)y ox Ty ax dxt/f[x,¢>(X)]

and the differential equation (6) becomes

d
Et/f[x,qb(x)] =0. (®)

In this case Eq. (6) is said to be an exact differential equation. Solutions of Eq. (6),
or the equivalent Eq. (8), are given implicitly by

v(x,y) =c, )

where c is an arbitrary constant.

In Example 1 it was relatively easy to see that the differential equation was exact
and, in fact, easy to find its solution, by recognizing the required function . For
more complicated equations it may not be possible to do this so easily. A systematic
way of determining whether a given differential equation is exact is provided by the
following theorem.

Let the functions M, N, M,, and N,, where subscripts denote partial derivatives, be
continuous in the rectangular!’ region R:a < x < 8,y <y < 8. Then Eq. (6)

M(x,y) + N(x,y)y' =0

171t is not essential that the region be rectangular, only that it be simply connected. In two dimensions
this means that the region has no holes in its interior. Thus, for example, rectangular or circular regions
are simply connected, but an annular region is not. More details can be found in most books on advanced
calculus.
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is an exact differential equation in R if and only if
My(xsy) =Nx(an) (10)
at each point of R. That is, there exists a function v satisfying Egs. (7),

U, y) = M(x,y),  dy(x,y) =Nx,y),
if and only if M and N satisty Eq. (10).

The proof of this theorem has two parts. First, we show that if there is a function
¥ such that Eqgs. (7) are true, then it follows that Eq. (10) is satisfied. Computing M,
and N, from Egs. (7), we obtain

My(x,y) = Yy (x, ), Ni(x,y) = Yye(x, ). (11)

Since M, and N are continuous, it follows that v, and v, are also continuous. This
guarantees their equality, and Eq. (10) follows.

We now show that if M and N satisfy Eq. (10), then Eq. (6) is exact. The proof
involves the construction of a function v satisfying Eqgs. (7)

Vx(x,y) = M(x,y), Yy(x,y) = N(x,y).

We begin by integrating the first of Egs. (7) with respect to x, holding y constant. We
obtain

Y(x,y) = Qx,y) +h(y), (12)

where Q(x,y) is any differentiable function such that dQ(x,y)/dx = M(x,y). For
example, we might choose

Q(x,y):/ M(s,y)ds, (13)

where x is some specified constant in & < xy < 8. The function 4 in Eq. (12) is an
arbitrary differentiable function of y, playing the role of the arbitrary constant. Now
we must show that it is always possible to choose A(y) so that the second of Egs. (7)
is satisfied, that is, 1, = N. By differentiating Eq. (12) with respect to y and setting
the result equal to N(x, y), we obtain

d
Uy(x,y) = a—g(xay) +H(y) = N(x,y).
Then, solving for 4’(y), we have
d
K@) =Nxy) - 8—5()«, ). (14)

In order for us to determine 4(y) from Eq. (14), the right side of Eq. (14), despite
its appearance, must be a function of y only. To establish that this is true, we can
differentiate the quantity in question with respect to x, obtaining

IN 3 90

W(X,Y) - a@(&)’) (15)

By interchanging the order of differentiation in the second term of Eq. (15), we have

aN(x ) a aQ(x )
ox dy ox V)
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EXAMPLE

2

EXAMPLE

3

or,since dQ/dx = M,
oN oM
x x,y) — —x,y),
X ay

which is zero on account of Eq. (10). Hence, despite its apparent form, the right
side of Eq. (14) does not, in fact, depend on x. Then we find 4(y) by integrating
Eq. (14), and upon substituting this function in Eq. (12), we obtain the required
function v (x, y). This completes the proof of Theorem 2.6.1.

It is possible to obtain an explicit expression for ¥ (x, y) in terms of integrals (see
Problem 17), but in solving specific exact equations, it is usually simpler and easier just
to repeat the procedure used in the preceding proof. That is, integrate ¥, = M with
respect to x, including an arbitrary function of /(y) instead of an arbitrary constant,
and then differentiate the result with respect to y and set it equal to N. Finally, use
this last equation to solve for 4(y). The next example illustrates this procedure.

Solve the differential equation
(ycosx + 2xe*) + (sinx + x%¢’ — 1)y’ = 0. (16)
By calculating M, and N,, we find that
M,(x,y) = cosx + 2xe’ = N,(x,y),
so the given equation is exact. Thus there is a ¥ (x, y) such that

Ye(x,y) = ycosx + 2xe’,

Yy (x,y) =sinx +x% — 1.
Integrating the first of these equations, we obtain
V(x,y) = ysinx + x%¢” + h(y). 17)
Setting v/, = N gives
Yy (x,y) = sinx + x*¢” + I'(y) = sinx + x%¢’ — 1.

Thus #'(y) = —1and h(y) = —y. The constant of integration can be omitted since any solution
of the preceding differential equation is satisfactory; we do not require the most general one.
Substituting for A(y) in Eq. (17) gives

Y (x,y) = ysinx + x*e¢’ — y.
Hence solutions of Eq. (16) are given implicitly by
ysinx +x%’ —y =c. (18)

Solve the differential equation
Gxy + ) + (¢ + xy)y' = 0. (19)

‘We have
M, (x,y) = 3x +2y, N (x,y) =2x+y;

since M, # N, the given equation is not exact. To see that it cannot be solved by the procedure
described above, let us seek a function v such that

Yo(x,y) =3xy +3%, Yy(x,y) = x* +xy. (20)
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Integrating the first of Egs. (20) gives
V(x.y) = 3%y +xy° +h(y), (21)

where £ is an arbitrary function of y only. To try to satisfy the second of Egs. (20), we compute
¥, from Eq. (21) and set it equal to NV, obtaining

3.2 4 2
5x°+2xy +H(y) =x" +xy

or
H(y) =—1x* —xy. (22)

Since the right side of Eq. (22) depends on x as well as y, it is impossible to solve Eq. (22) for
h(y). Thus there is no v (x, y) satisfying both of Egs. (20).

Integrating Factors. It is sometimes possible to convert a differential equation that is
not exact into an exact equation by multiplying the equation by a suitable integrating
factor. Recall that this is the procedure that we used in solving linear equations in
Section 2.1. To investigate the possibility of implementing this idea more generally,
let us multiply the equation

Mx,y)dx + N(x,y)dy =0 (23)
by a function u and then try to choose p so that the resulting equation
(e, YYM (x,y) dx + 1 (x, )N (x,y) dy = 0 (24)
is exact. By Theorem 2.6.1, Eq. (24) is exact if and only if
(uM)y = (N);. (25)

Since M and N are given functions, Eq. (25) states that the integrating factor ; must
satisfy the first order partial differential equation

Mﬂy_N/'Lx+(My_Nx)l'L=0~ (26)

If a function u satisfying Eq. (26) can be found, then Eq. (24) will be exact. The
solution of Eq. (24) can then be obtained by the method described in the first part of
this section. The solution found in this way also satisfies Eq. (23), since the integrating
factor u can be canceled out of Eq. (24).

A partial differential equation of the form (26) may have more than one solution;
if this is the case, any such solution may be used as an integrating factor of Eq. (23).
This possible nonuniqueness of the integrating factor is illustrated in Example 4.

Unfortunately, Eq. (26), which determines the integrating factor u, is ordinarily at
least as hard to solve as the original equation (23). Therefore, although in principle
integrating factors are powerful tools for solving differential equations, in practice
they can be found only in special cases. The most important situations in which
simple integrating factors can be found occur when p is a function of only one of the
variables x or y, instead of both. Let us determine necessary conditions on M and N
so that Eq. (23) has an integrating factor u that depends on x only. Assuming that u
is a function of x only, we have

dp

(uM)y = uM,, (MN)X=MNX+NE.



2.6 Exact Equations and Integrating Factors 99

EXAMPLE

4

Thus, if (uM), is to equal (uN)y, it is necessary that

du M, — N,
dx« N
If (M, — Ny)/N is a function of x only, then there is an integrating factor y that also
depends only on x; further, u (x) can be found by solving Eq. (27), which is both linear
and separable.
A similar procedure can be used to determine a condition under which Eq. (23)
has an integrating factor depending only on y; see Problem 23.

27)

Find an integrating factor for the equation
Bxy +y) + (P +xy)y =0 (19)

and then solve the equation.

In Example 3 we showed that this equation is not exact. Let us determine whether it has an
integrating factor that depends on x only. On computing the quantity (M, — N,)/N, we find
that

My(x,y) =Ne(x,y) _ 3x+2y—(2x+y 1

. 2
N(x,y) x% + xy X (28)

Thus there is an integrating factor u that is a function of x only, and it satisfies the differential
equation

dp
- _ 2 29
dx x 29)
Hence
wn(x) = x. (30)
Multiplying Eq. (19) by this integrating factor, we obtain
Gx%y +xy°) + (¢ +x7y)y' = 0. (31)
The latter equation is exact, and its solutions are given implicitly by
xy + %xzy2 =c. (32)

Solutions may also be found in explicit form since Eq. (32) is quadratic in y.
You may also verify that a second integrating factor for Eq. (19) is

1
x? = s < b
wux,y) Bty

and that the same solution is obtained, though with much greater difficulty, if this integrating
factor is used (see Problem 32).

PROBLEMS

Determine whether each of the equations in Problems 1 through 12 is exact. If it is exact, find
the solution.

1. 2x+3)+Q2y—2)y =0 2. 2x+4y)+ 2x=2y)y =0
3. Bx? —2xy +2)dx + (6y> — x> +3)dy =0
4. 2xy* +2y) + 2x%y +2x)y' =0
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@_ ax + by 6 ﬂ_ ax — by

> dx ~ bx+cy “dx bx—cy
7. (¢*siny —2ysinx)dx + (¢*cosy +2cosx)dy =0
8. (¢*siny+3y)dx — 3x —e*siny)dy =0
9. (ye¥ cos2x — 2 sin 2x + 2x) dx + (xe” cos2x —3)dy =0
10. (y/x+6x)dx + (Inx —2)dy =0, x>0
11. (xIny +xy)dx + (ylnx +xy)dy = 0; x>0, y>0
xdx vdy .
T2y Ty
In each of Problems 13 and 14 solve the given initial value problem and determine at least
approximately where the solution is valid.
13. 2x—y)dx+ 2y —x)dy =0, y1)=3
14. Ox*+y—1dx — (4y —x)dy =0, y1) =0

In each of Problems 15 and 16 find the value of b for which the given equation is exact, and
then solve it using that value of b.

15. (xy? +bx*y)dx + (x + y)x*dy =0

16. (ye* 4 x) dx + bxe* dy =0

17. Assume that Eq. (6) meets the requirements of Theorem 2.6.1 in a rectangle R and is
therefore exact. Show that a possible function ¥ (x, y) is

x y
Vi) = / Mesyods+ | N,
X0

Yo
where (xy, yo) is a point in R.
18. Show that any separable equation

M@ +NQ@)Y =0
is also exact.

In each of Problems 19 through 22 show that the given equation is not exact but becomes exact
when multiplied by the given integrating factor. Then solve the equation.

19. 2y} +x(1+yM)y =0,  pux,y) =1/xy*

. 2 —X
20. (w —2e™* sinx) dx + (w) dy =0, ux,y) = ye*

y y
21 ydx+ (2x —ye)dy =0,  px,y)=y
22. (x+2)siny dx +xcosy dy =0, u(x,y) = xe*
23. Show that if (N, — M,)/M = Q, where Q is a function of y only, then the differential

equation
M+ Ny =0

has an integrating factor of the form
n(y) = eXp/ QW) dy.

24. Show that if (N, — M,)/(xM — yN) = R, where R depends on the quantity xy only, then
the differential equation
M+ Ny =0

has an integrating factor of the form wu(xy). Find a general formula for this integrating
factor.
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In each of Problems 25 through 31 find an integrating factor and solve the given equation.
25. B2y +2xy +yHdx + (> +y)dy=0 26. y =e* +y—1

27. dx+ (x/y —siny)dy =0 28. ydx + Q2xy —e)dy =0

29. e*dx + (e*coty+2ycscy)dy =0

30. [4(3/y?) + B/y)ldx + [3(x/y?) + 4yldy = 0

2
31. (3x+§>+(x—+3x)d—y=o
y y x /) dx

Hint: See Problem 24.
32. Solve the differential equation

Gxy +y*) + (& +xy)y =0

using the integrating factor u(x,y) = [xy(2x + y)]~!. Verify that the solution is the same
as that obtained in Example 4 with a different integrating factor.

2.7 Numerical Approximations: Euler’s Method

Recall two important facts about the first order initial value problem

d
d—f =f(t,y), y(to) = yo. (1)

First, if f and 9f /0y are continuous, then the initial value problem (1) has a unique
solution y = ¢(¢) in some interval surrounding the initial point ¢ = fy. Second, it is
usually not possible to find the solution ¢ by symbolic manipulations of the differ-
ential equation. Up to now we have considered the main exceptions to the latter
statement: differential equations that are linear, separable, or exact, or that can be
transformed into one of these types. Nevertheless, it remains true that solutions of
the vast majority of first order initial value problems cannot be found by analytical
means, such as those considered in the first part of this chapter.

Therefore it is important to be able to approach the problem in other ways. As we
have already seen, one of these ways is to draw a direction field for the differential
equation (which does not involve solving the equation) and then to visualize the
behavior of solutions from the direction field. This has the advantage of being a
relatively simple process, even for complicated differential equations. However, it
does not lend itself to quantitative computations or comparisons, and this is often a
critical shortcoming.

For example, Figure 2.7.1 shows a direction field for the differential equation

d

d—)t/:3—2t—%y. @)
From the direction field you can visualize the behavior of solutions on the rectangle
shown in the figure. A solution starting at a point on the y-axis initially increases with
t, but it soon reaches a maximum value and then begins to decrease as ¢ increases
further.
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FIGURE 2.7.1 A direction field for Eq. (2).

You may also observe that in Figure 2.7.1 many tangent line segments at successive
values of ¢ almost touch each other. It takes only a bit of imagination to consider
starting at a point on the y-axis and linking line segments for successive values of ¢ in
the grid, thereby producing a piecewise linear graph. Such a graph would apparently
be an approximation to a solution of the differential equation. To convert this idea
into a useful method for generating approximate solutions, we must answer several
questions, including the following:

1. Can we carry out the linking of tangent lines in a systematic and straightforward manner?

2. If so, does the resulting piecewise linear function provide an approximation to an actual
solution of the differential equation?

3. If so, can we assess the accuracy of the approximation? That is, can we estimate how far
the approximation deviates from the solution itself?

It turns out that the answer to each of these questions is affirmative. The resulting
method was originated by Euler about 1768 and is referred to as the tangent line
method or the Euler method. We will deal with the first two questions in this section,
but defer a systematic discussion of the third question until Chapter 8.

To see how the Euler method works, let us consider how we might use tangent
lines to approximate the solution y = ¢ (¢) of Egs. (1) near ¢t = fo. We know that the
solution passes through the initial point (¢, yo), and from the differential equation, we
also know that its slope at this point is f (fo, yo). Thus we can write down an equation
for the line tangent to the solution curve at (¢, yo), namely,

Y =Yo+ft,y0)t — o). (3)

The tangent line is a good approximation to the actual solution curve on an interval
short enough so that the slope of the solution does not change appreciably from its
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value at the initial point; see Figure 2.7.2. Thus, if # is close enough to #), we can
approximate ¢ (1) by the value y; determined by substituting ¢ = #; into the tangent
line approximation at ¢ = f; thus

y1 = yo + f(to, yo) (t1 — to). (4)
y
Tangent line
¥ =y + g yo) (t—2p)
- Soluti
,,,,,,,, olution
o) =00
o |b==

FIGURE 2.7.2 A tangent line approximation.

To proceed further, we can try to repeat the process. Unfortunately, we do not know
the value ¢ (#;) of the solution at #;. The best we can do is to use the approximate
value y; instead. Thus we construct the line through (¢, y;) with the slope f (11, y1),

y=y1+ft,y)t —t). )
To approximate the value of ¢ (¢) at a nearby point #,, we use Eq. (5) instead, obtaining
y2 =y1+f(t1,yD (&2 — tr). (6)

Continuing in this manner, we use the value of y calculated at each step to deter-
mine the slope of the approximation for the next step. The general expression for
the tangent line starting at (¢,, y,) is

Y =Yn+fltn, y) (€ — 1); (7)
hence the approximate value y,; at t,1 in terms of #,, #,11, and y,, is
Yt = Yn + f U y)tne1 — 1), n=0,1,2,.... ®)
If we introduce the notation f,, = f(t,, y,), then we can rewrite Eq. (8) as
Y1 = Yn + o (tns1 — t), n=0,1,2,.... )

Finally, if we assume that there is a uniform step size & between the points #y, t1, f, . . . ,
then t,.1 = t, + h for each n, and we obtain Euler’s formula in the form

yn+1:yl’l +fnh> I’L=0,1,2,.... (10)

To use Euler’s method, you simply evaluate Eq. (9) or Eq. (10) repeatedly, de-
pending on whether or not the step size is constant, using the result of each step to
execute the next step. In this way you generate a sequence of values yy, y», y3, . . . that
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approximate the values of the solution ¢ (¢) at the points #1,%, 13, . . .. If, instead of a
sequence of points, you need a function to approximate the solution ¢ (¢), then you
can use the piecewise linear function constructed from the collection of tangent line
segments. That is, let y be given in [f,#;] by Eq. (7) with n = 0, in [#, 2] by Eq. (7)
with n = 1, and so on.

Consider the initial value problem

% =3-2—1y, y(0) =1. (11)
Use Euler’s method with step size & = 0.2 to find approximate values of the solution of Egs. (11)
att=0.2,04, 0.6, 0.8, and 1. Compare them with the corresponding values of the actual
solution of the initial value problem.

Note that the differential equation in the given initial value problem is the same as in Eq. (2).
This equation is linear, so it can be solved as in Section 2.1, using the integrating factor ¢'/2.
The resulting solution of the initial value problem (11) is

y=¢@t) =14 — 4 — 13e7/2, (12)

To approximate this solution by means of Euler’s method, note that in this case
ft,y) =3 =2t —y/2. Using the initial values ¢, = 0 and y, = 1, we find that

fo=flto,y0) =f(0,1)=3-0-05=25
and then, from Eq. (3), the tangent line approximation near ¢t = 0 is
y=1425t—-0)=1+2.5¢. (13)
Setting ¢t = 0.2 in Eq. (13), we find the approximate value y; of the solution at # = 0.2, namely,
y1=1+2.5)(0.2) =1.5.
At the next step we have
fi=£(0.2,1.5) =3 -2(0.2) — (0.5)(1.5) =3 —-0.4 — 0.75 = 1.85.
Then the tangent line approximation near ¢ = 0.2 is
y=15+1.85t—-0.2)=1.13+1.85¢. (14)
Evaluating the expression in Eq. (14) for t = 0.4, we obtain
y2 =113 +1.85(0.4) = 1.87.

Repeating this computational procedure three more times, we obtain the results shown in
Table 2.7.1.

The first column contains the f-values separated by the step size # = 0.2. The third column
shows the corresponding y-values computed from Euler’s formula (10). In the fourth column
are the tangent line approximations found from Eq. (7). The second column contains values of
the solution (12) of the initial value problem (11), correct to five decimal places. The solution
(12) and the tangent line approximation are also plotted in Figure 2.7.3.

FromTable 2.7.1 and Figure 2.7.3 we see that the approximations given by Euler’s method for
this problem are greater than the corresponding values of the actual solution. This is because
the graph of the solution is concave down and therefore the tangent line approximations lie
above the graph.
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TABLE 2.7.1 Results of Euler’s Method with & = 0.2 for
y’=3—21—%y, y0) =1

Euler

t Exact withh =0.2 Tangent line
0.0 1.00000 1.00000 y=1425¢
0.2 1.43711 1.50000 y=113+1.85¢
0.4 1.75650 1.87000 y =1.364 + 1.265¢
0.6 1.96936 2.12300 y =1.6799 + 0.7385¢
0.8 2.08584 2.27070 y = 2.05898 + 0.26465¢
1.0 2.11510 2.32363

\ \ \ \ \
0.2 0.4 0.6 0.8 1t

FIGURE 2.7.3 Plots of the solution and a tangent line approximation for the initial value
problem (11).

The accuracy of the approximations in this example is not good enough to be satisfactory in
a typical scientific or engineering application. For example, at ¢ = 1 the error in the approxi-
mation is 2.32363 — 2.11510 = 0.20853, which is a percentage error of about 9.86% relative to
the exact solution. One way to achieve more accurate results is to use a smaller step size, with
a corresponding increase in the number of computational steps. We explore this possibility in
the next example.

Of course, computations such as those in Example 1 and in the other examples
in this section are usually done on a computer. Some software packages include
code for the Euler method, while others do not. In any case, it is straightforward to
write a computer program that will carry out the calculations required to produce
results such as those in Table 2.7.1. Basically, what is required is a loop that will
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evaluate Eq. (10) repetitively, along with suitable instructions for input and output.
The output can be a list of numbers, as in Table 2.7.1, or a plot, as in Figure 2.7.3.
The specific instructions can be written in any high-level programming language with
which you are familiar.

Consider again the initial value problem (11)

dy

=32 ly,  yO) =1

Use Euler’s method with various step sizes to calculate approximate values of the solution
for 0 <t <5. Compare the calculated results with the corresponding values of the exact
solution (12)

y=¢) =14 — 4t — 1372

We used step sizes 4 = 0.1, 0.05, 0.025, and 0.01, corresponding respectively to 50, 100, 200,
and 500 steps, to go from ¢ = 0 to ¢ = 5. The results of these calculations, along with the values
of the exact solution, are presented in Table 2.7.2. All computed entries are rounded to four
decimal places, although more digits were retained in the intermediate calculations.

TABLE 2.7.2 A Comparison of Exact Solution with Euler’s Method for Several
Step Sizes hfory =3 — 2t — %y, y0) =1

t Exact h=0.1 h =0.05 h =0.025 h=0.01
0.0 1.0000 1.0000 1.0000 1.0000 1.0000
1.0 2.1151 2.2164 2.1651 2.1399 2.1250
2.0 1.2176 1.3397 1.2780 1.2476 1.2295
3.0 —0.9007 —0.7903 —0.8459 —0.8734 —0.8898
4.0 —3.75%4 —3.6707 —3.7152 —3.7373 —3.7506
5.0 —7.0671 —7.0003 —7.0337 —7.0504 —7.0604

What conclusions can we draw from the data in Table 2.7.2? The most important observation
is that, for a fixed value of ¢, the computed approximate values become more accurate as the
step size h decreases. You can see this by reading across a particular row in the table from left
to right. This is what we would expect, of course, but it is encouraging that the data confirm our
expectations. For example, for ¢t = 2 the approximate value with 4 = 0.1 is too large by 0.1221
(about 10%), whereas the value with 2 = 0.01 is too large by only 0.0119 (about 1%). In this
case, reducing the step size by a factor of 10 (and performing 10 times as many computations)
also reduces the error by a factor of about 10. By comparing the errors for other pairs of
values in the table, you can verify that this relation between step size and error holds for them
also: reducing the step size by a given factor also reduces the error by approximately the same
factor. Does this mean that for the Euler method the error is approximately proportional to
the step size? Of course, one example does not establish such a general result but it is at least
an interesting conjecture. '

18A more detailed discussion of the errors in using the Euler method appears in Chapter 8.
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A second observation from Table 2.7.2 is that, for a fixed step size &, the approximations
become more accurate as t increases, at least for ¢ > 2. For instance, for 4 = 0.1 the error for
t = 5 is only 0.0668, which is a little more than one half of the error at t = 2. We will return to
this matter later in this section.

All in all, Euler’s method seems to work rather well for this problem. Reasonably good
results are obtained even for a moderately large step size & = 0.1, and the approximation can
be improved by decreasing 4.

Let us now look at another example.

Consider the initial value problem

d

D4y, yO) =1 (15)
dt

The general solution of this differential equation was found in Example 2 of Section 2.1, and
the solution of the initial value problem (15) is

y=—I41pp 12 (16)

Use Euler’s method with several step sizes to find approximate values of the solution on the
interval 0 < ¢t < 5. Compare the results with the corresponding values of the solution (16).

Using the same range of step sizes as in Example 2, we obtain the results presented in Table
2.7.3.

TABLE 2.7.3 A Comparison of Exact Solution with Euler’s Method for Several Step Sizes &
fory =4—t+4+2y, y00)=1

t Exact h=0.1 h=0.05 h =0.025 h=0.01
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
1.0 19.06990 15.77728 17.25062 18.10997 18.67278
2.0 149.3949 104.6784 123.7130 135.5440 143.5835
3.0 1109.179 652.5349 837.0745 959.2580 1045.395
4.0 8197.884 4042.122 5633.351 6755.175 7575.577
5.0 60573.53 25026.95 37897.43 47555.35 54881.32

The data in Table 2.7.3 again confirm our expectation that, for a given value of ¢, accuracy
improves as the step size 4 is reduced. For example, for r = 1 the percentage error diminishes
from 17.3% when 2 = 0.1 to 2.1% when & = 0.01. However, the error increases fairly rapidly
as t increases for a fixed h. Even for & = 0.01, the error at t =5 is 9.4%, and it is much
greater for larger step sizes. Of course, the accuracy that is needed depends on the purpose
for which the results are intended, but the errors in Table 2.7.3 are too large for most scientific
or engineering applications. To improve the situation, one might either try even smaller step
sizes or else restrict the computations to a rather short interval away from the initial point.
Nevertheless, it is clear that Euler’s method is much less effective in this example than in
Example 2.
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To understand better what is happening in these examples, let us look again at
Euler’s method for the general initial value problem (1)

d

d—f =ft.y),  yt)=yo,
whose solution we denote by ¢ (¢). Recall that a first order differential equation has
an infinite family of solutions, indexed by an arbitrary constant ¢, and that the initial
condition picks out one member of this infinite family by determining the value of c.
Thus in the infinite family of solutions, ¢ (¢) is the one that satisfies the initial con-
dition ¢ (tp) = yo.

Atthe first step Euler’s method uses the tangent line approximation to the graph of

y = ¢ (t) passing through the initial point (¢, yo), and this produces the approximate
value y; at #;. Usually y; # ¢(t1), so at the second step Euler’s method uses the
tangent line approximation not to y = ¢ (¢), but to a nearby solution y = ¢;(¢) that
passes through the point (¢,y1). So it is at each following step. Euler’s method
uses a succession of tangent line approximations to a sequence of different solutions
o), d1(1), P2(0), ... of the differential equation. At each step the tangent line is
constructed to the solution passing through the point determined by the result of
the preceding step, as shown in Figure 2.7.4. The quality of the approximation after
many steps depends strongly on the behavior of the set of solutions that pass through
the points (¢,,y,) forn =1,2,3,....

FIGURE 2.7.4 The Euler method.

In Example 2 the general solution of the differential equation is
y =14 — 4t + ce™'? 17)

and the solution of the initial value problem (11) corresponds to ¢ = —13. The family
of solutions (17) is a converging family since the term involving the arbitrary constant
¢ approaches zero as t — oo. It does not matter very much which solutions we are
approximating by tangent lines in the implementation of Euler’s method, since all
the solutions are getting closer and closer to each other as ¢ increases.
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On the other hand, in Example 3 the general solution of the differential equation is
y=—7+41t+ce”, (18)

and this is a diverging family. Note that solutions corresponding to two nearby values
of ¢ become arbitrarily far apart as ¢ increases. In Example 3 we are trying to follow
the solution for ¢ = 11/4, but in the use of Euler’s method we are actually at each
step following another solution that separates from the desired one faster and faster
as t increases. This explains why the errors in Example 3 are so much larger than
those in Example 2.

In using a numerical procedure such as the Euler method, you must always keep
in mind the question of whether the results are accurate enough to be useful. In
the preceding examples, the accuracy of the numerical results could be determined
directly by a comparison with the solution obtained analytically. Of course, usually
the analytical solution is not available if a numerical procedure is to be employed,
so what is usually needed are bounds for, or at least estimates of, the error that do
not require a knowledge of the exact solution. You should also keep in mind that
the best that we can expect, or hope for, from a numerical approximation is that it
reflects the behavior of the actual solution. Thus a member of a diverging family
of solutions will always be harder to approximate than a member of a converging
family.

If you wish to read more about numerical approximations to solutions of initial
value problems, you may go directly to Chapter 8 at this point. There we present
some information on the analysis of errors and also discuss several algorithms that
are computationally much more efficient than the Euler method.

PROBLEMS

Many of the problems in this section call for fairly extensive numerical computations. The
amount of computing that it is reasonable for you to do depends strongly on the type of
computing equipment that you have. A few steps of the requested calculations can be carried
out on almost any pocket calculator—or even by hand if necessary. To do more, you will find at
least a programmable calculator desirable, and for some problems a computer may be needed.

Remember also that numerical results may vary somewhat depending on how your program
is constructed and on how your computer executes arithmetic steps, rounds off, and so forth.
Minor variations in the last decimal place may be due to such causes and do not necessarily
indicate that something is amiss. Answers in the back of the book are recorded to six digits in
most cases, although more digits were retained in the intermediate calculations.

In each of Problems 1 through 4:

(a) Find approximate values of the solution of the given initial value problem at r = 0.1, 0.2,
0.3, and 0.4 using the Euler method with 2 = 0.1.

(b) Repeat part (a) with 2 = 0.05. Compare the results with those found in (a).

(c) Repeat part (a) with 4 = 0.025. Compare the results with those found in (a) and (b).

(d) Find the solution y = ¢ (¢) of the given problem and evaluate ¢ (¢) at t = 0.1,0.2, 0.3, and
0.4. Compare these values with the results of (a), (b), and (c).

¢ Ly=3+t—y, y0=1 ¢ 2y=2-1, y0=1
¢ 3.y=05-rt+2y, yO)=1 ¢ 4 y=3cost—2y, y0)=0
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In each of Problems 5 through 10 draw a direction field for the given differential equation and
state whether you think that the solutions are converging or diverging.

& s
& 7
& o

Y =5-3yy ¢ 6.y =y3-1y)
y==@-ty)/1+y>) & 8 y=-1y+01y
y =02+ 60 10y =02 +2t0)/B+1)

In each of Problems 11 through 14 use Euler’s method to find approximate values of the
solution of the given initial value problem at t = 0.5,1,1.5,2,2.5,and 3:

(a)
(©)
¢ 11

& 12

& 13.

& 14.

¢ 15

& 16.

¢ 1.

¢ 18

& 1.

With h =0.1. (b) With A = 0.05.
With A = 0.025. (d) With A =0.01.
Yy =5-3/y, y(0) =2

y=y@3—ty), y0)=05
y=@-ty/0+y),  y0)=-2
y=-ty+01y’,  y0) =1

Consider the initial value problem

Y =32/Gy =4,  yD=0.
(a) Use Euler’s method with 2 = 0.1 to obtain approximate values of the solution at
t=12,14,1.6,and 1.8.
(b) Repeat part (a) with & = 0.05.
(c) Compare the results of parts (a) and (b). Note that they are reasonably close for
t =12, 1.4, and 1.6 but are quite different for r = 1.8. Also note (from the differential

equation) that the line tangent to the solution is parallel to the y-axis when y = £2/+/3
= +1.155. Explain how this might cause such a difference in the calculated values.

Consider the initial value problem
y=0£+y, y0) =1

Use Euler’s method with & = 0.1, 0.05, 0.025, and 0.01 to explore the solution of this
problem for 0 < ¢ < 1. What is your best estimate of the value of the solution at ¢t = 0.8?
Att =1? Are your results consistent with the direction field in Problem 9?

Consider the initial value problem

Y =0"+20)/CG+1),  yl) =2

Use Euler’s method with 4 = 0.1, 0.05, 0.025, and 0.01 to explore the solution of this
problem for 1 <t < 3. What is your best estimate of the value of the solution at t = 2.5?
At t = 3? Are your results consistent with the direction field in Problem 10?

Consider the initial value problem
Yy =—ty+01y’,  y0)=a,

where « is a given number.

(a) Draw a direction field for the differential equation (or reexamine the one from Prob-
lem 8). Observe that there is a critical value of « in the interval 2 < « < 3 that separates
converging solutions from diverging ones. Call this critical value «y.

(b) Use Euler’s method with & = 0.01 to estimate «y. Do this by restricting o to an
interval [a, b], where b — a = 0.01.

Consider the initial value problem
Y=y -2 y0) =

where « is a given number.
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(a) Draw a direction field for the differential equation. Observe that there is a critical
value of « in the interval 0 < o < 1 that separates converging solutions from diverging
ones. Call this critical value «.

(b) Use Euler’s method with & = 0.01 to estimate «p. Do this by restricting oy to an
interval [a, b], where b — a = 0.01.

20. Convergence of Euler’s Method. It can be shown that, under suitable conditions on f,

the numerical approximation generated by the Euler method for the initial value problem
y =f(,y), y(ty) = yo converges to the exact solution as the step size & decreases. This is
illustrated by the following example. Consider the initial value problem

y=1=t+y, yt) = yo.
(a) Show that the exact solutionis y = ¢(t) = (yo — fp)e' ™ + 1.
(b) Using the Euler formula, show that

Ye = (L + M)y +h — hiy_y, k=12,....

(c) Noting that y; = (1 + h)(yo — t) + t1, show by induction that

yn=0+m"yo—10) +tn (i)

for each positive integer n.

(d) Consider a fixed point ¢ > #, and for a given n choose h = (t — ty)/n. Then t,, = ¢ for
every n. Note also that & — 0 as n — co. By substituting for 4 in Eq. (i) and letting
n — oo,show thaty, — ¢(¢) asn — oo.

Hint: lim (1 + a/n)" = e".

In each of Problems 21 through 23 use the technique discussed in Problem 20 to show that
the approximation obtained by the Euler method converges to the exact solution at any fixed
point as A — 0.

2.y =y, yO =1
2. y=2y-1, y0)=1 Hint: y; = (1 +2h)/2+1/2
2B.y=~1-1+2y, yO)=1 Hint: yy = (14+2h) + 1,/2

2.8 The Existence and Uniqueness Theorem

In this section we discuss the proof of Theorem 2.4.2, the fundamental existence and
uniqueness theorem for first order initial value problems. This theorem states that
under certain conditions on f (¢, y), the initial value problem

Y =fty), yt)=yo (1)

has a unique solution in some interval containing the point #;.

In some cases (for example, if the differential equation is linear) the existence
of a solution of the initial value problem (1) can be established directly by actually
solving the problem and exhibiting a formula for the solution. However, in general,
this approach is not feasible because there is no method of solving the differential
equation that applies in all cases. Therefore, for the general case, it is necessary to
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Theorem 2.8.1

adopt an indirect approach that demonstrates the existence of a solution of Egs. (1)
but usually does not provide a practical means of finding it. The heart of this method is
the construction of a sequence of functions that converges to a limit function satisfying
the initial value problem, although the members of the sequence individually do
not. As a rule, it is impossible to compute explicitly more than a few members
of the sequence; therefore the limit function can be determined only in rare cases.
Nevertheless, under the restrictions on f(¢,y) stated in Theorem 2.4.2, it is possible
to show that the sequence in question converges and that the limit function has
the desired properties. The argument is fairly intricate and depends, in part, on
techniques and results that are usually encountered for the first time in a course on
advanced calculus. Consequently, we do not go into all the details of the proof here;
we do, however, indicate its main features and point out some of the difficulties that
must be overcome.

First of all, we note that it is sufficient to consider the problem in which the initial
point (%o, yo) is the origin; that is, we consider the problem

y =fty, y0)=0. 2

If some other initial point is given, then we can always make a preliminary change
of variables, corresponding to a translation of the coordinate axes, that will take the
given point (%, yo) into the origin. The existence and uniqueness theorem can now
be stated in the following way.

If f and 9f/dy are continuous in a rectangle R:|t| < a, |y| < b, then there is
some interval || < & < a in which there exists a unique solution y = ¢(¢) of the
initial value problem (2).

For the method of proof discussed here it is necessary to transform the initial value
problem (2) into a more convenient form. If we suppose temporarily that there is a
differentiable function y = ¢ (¢) that satisfies the initial value problem, then f[t, ¢ (¢)]
is a continuous function of ¢ only. Hence we can integrate y' = f (¢, y) from the initial
point ¢ = 0 to an arbitrary value of ¢, obtaining

t
(1) = /0 Fls, d(s)] ds, (3)

where we have made use of the initial condition ¢ (0) = 0. We also denote the dummy
variable of integration by s.

Since Eq. (3) contains an integral of the unknown function ¢, it is called an integral
equation. This integral equation is not a formula for the solution of the initial value
problem, but it does provide another relation satisfied by any solution of Egs. (2).
Conversely, suppose that there is a continuous function y = ¢ (¢) that satisfies the
integral equation (3); then this function also satisfies the initial value problem (2). To
show this, we first substitute zero for ¢ in Eq. (3), which shows that the initial condition
is satisfied. Further, since the integrand in Eq. (3) is continuous, it follows from the
fundamental theorem of calculus that ¢ is differentiable, and that ¢'(¢) = f[¢t, ¢ (¢)].
Therefore the initial value problem and the integral equation are equivalent in the
sense that any solution of one is also a solution of the other. It is more convenient
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to show that there is a unique solution of the integral equation in a certain interval
|t| < h. The same conclusion will then hold also for the initial value problem.

One method of showing that the integral equation (3) has a unique solution is
known as the method of successive approximations or Picard’s" iteration method.
In using this method, we start by choosing an initial function ¢y, either arbitrarily or
to approximate in some way the solution of the initial value problem. The simplest
choice is

¢o(t) =0; 4)

then ¢y at least satisfies the initial condition in Egs. (2), although presumably not the
differential equation. The next approximation ¢; is obtained by substituting ¢g(s)
for ¢ (s) in the right side of Eq. (3) and calling the result of this operation ¢; (¢). Thus

¢ (1) = /Otf[s, Po($)1ds. ®)
Similarly, ¢, is obtained from ¢:
020 = [ flspronas (6)
and, in general,
Pnr1(t) = /0 tf [5, ¢n ()] ds. (M
In this manner we generate the sequence of functions {¢,} = ¢o,¢1,...,¢n,.... Each

member of the sequence satisfies the initial condition, but in general none satisfies
the differential equation. However, if at some stage, say, for n = k, we find that
dr+1(t) = ¢i (1), then it follows that ¢ is a solution of the integral equation (3). Hence
¢ 1s also a solution of the initial value problem (2), and the sequence is terminated
at this point. In general, this does not occur, and it is necessary to consider the entire
infinite sequence.

To establish Theorem 2.8.1, we must answer four principal questions:

1. Do all members of the sequence {¢,} exist, or may the process break down at some stage?

2. Does the sequence converge?

3. What are the properties of the limit function? In particular, does it satisfy the integral
equation (3) and hence the initial value problem (2)?

4. Is this the only solution, or may there be others?

We first show how these questions can be answered in a specific and relatively simple
example and then comment on some of the difficulties that may be encountered in
the general case.

9Charles-Emile Picard (1856-1914), except for Henri Poincaré, perhaps the most distinguished French
mathematician of his generation, was appointed professor at the Sorbonne before the age of 30. He
is known for important theorems in complex variables and algebraic geometry as well as differential
equations. A special case of the method of successive approximations was first published by Liouville
in 1838. However, the method is usually credited to Picard, who established it in a general and widely
applicable form in a series of papers beginning in 1890.
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EXAMPLE

1

Solve the initial value problem
y=20+y, y0)=0 8)

by the method of successive approximations.
Note first that if y = ¢ (¢), then the corresponding integral equation is

t
o) = / 2s[1 4+ ¢(s)]ds. )
0
If the initial approximation is ¢y (t) = 0, it follows that
t t
d () = f 2s[1 + ¢o(s)1 ds = / 2sds = 1°. (10)
0 0
Similarly,
t t l‘4
i) = [ 2511+ s = [ 214 P1ds =+ 5 (11)
0 0
and
t t § 4 (6
&3(1) =/ 2s[1 + ¢o(s)1ds =/ 25|11+ +=|ds=>+=—+—. (12)
0 0 2 2 2-3
Equations (10), (11), and (12) suggest that
t4 t6 [2"
Pt 2 —_— —_— e JE—
du(t) =t + 2 + 3 + + ol (13)

for each n > 1, and this result can be established by mathematical induction, as follows. Equa-
tion (13) is certainly true for n = 1;see Eq. (10). We must show that if it is true for n = k, then
it also holds for n = k + 1. We have

i () = / 2501 + i (s)] ds
0

' , s 2k
:‘/0 2s<1+s +2—!+~--+F> ds

4 6 2k
A (22
=C4+ =+ =+

LA 14
TR AT (14)

and the inductive proof is complete.

A plot of the first four iterates, ¢;(¢),...,¢4(t), is shown in Figure 2.8.1. As k increases,
the iterates seem to remain close over a gradually increasing interval, suggesting eventual
convergence to a limit function.

It follows from Eq. (13) that ¢, (¢) is the nth partial sum of the infinite series

=S
l2k

Kk
k=1

(15)

hence lim ¢, () exists if and only if the series (15) converges. Applying the ratio test, we see

that, for each t,
12k+2 k!

(k +1)! 2k

t2

=k7+1_)0 as k — oo. (16)

Thus the series (15) converges for all ¢, and its sum ¢ (¢) is the limit of the sequence {¢,(?)}.
Further, since the series (15) is a Taylor series, it can be differentiated or integrated term by

term as long as ¢ remains within the interval of convergence, which in this case is the entire
o0

t-axis. Therefore, we can verify by direct computation that ¢ () = Y t?/k!is a solution of the
k=1

integral equation (9). Alternatively, by substituting ¢ (¢) for y in Egs. (8), we can verify that
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| | |
-15 -1 -05 0.5 1 15 ¢
FIGURE 2.8.1 Plots of ¢;(¢), ..., ¢4(t) for Example 1.

this function satisfies the initial value problem. In this example it is also possible, from the
series (15), to identify ¢ in terms of elementary functions, namely, ¢ (¢) = ¢’ — 1. However,
this is not necessary for the discussion of existence and uniqueness.

Explicit knowledge of ¢(f) does make it possible to visualize the convergence of the se-
quence of iterates more clearly by plotting ¢ (¢) — ¢« (¢) for various values of k. Figure 2.8.2
shows this difference for k = 1,...,4. This figure clearly shows the gradually increasing inter-
val over which successive iterates provide a good approximation to the solution of the initial
value problem.

y k=2
1+ 7
k=3
0.8 Bo1
0.6
0.4 -
02 =4
| |
15 -1 05 05 1 15 ¢

FIGURE 2.8.2 Plots of ¢ (t) — ¢« (¢t) for Example 1 fork =1,...,4.

Finally, to deal with the question of uniqueness, let us suppose that the initial value problem
has two solutions ¢ and ¥. Since ¢ and ¥ both satisfy the integral equation (9), we have by
subtraction that

W) -y = /O 2s[¢(s) — Y (s)]ds.
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Taking absolute values of both sides, we have, if t > 0,

o) —v @O = ’/0 2s[p(s) — v (9)]ds

5/0 2516(5) — ¥ (5)] ds.

If we restrict ¢ to lie in the interval 0 < ¢t < A/2, where A is arbitrary, then 2t < A, and

o) -y <A /Ot [P (s) — ¥ ()| ds. (17)
It is now convenient to introduce the function U defined by
U@ = /Ot [p(s) — Y (9) ds. (18)
Then it follows at once that
U@ =0, (19)
U(@) =0, for t=>0. (20)

Further, U is differentiable, and U’ (¢) = |¢(t) — ¥ (¢)|. Hence, by Eq. (17),

U'(t) — AU(1) < 0. 1)
Multiplying Eq. (21) by the positive quantity e=4* gives
e U] <0. (22)

Then, upon integrating Eq. (22) from zero to ¢ and using Eq. (19), we obtain
eMU@) <0 for t>0.

Hence U(¢) < 0fort > 0,and in conjunction with Eq. (20), this requires that U (t) = 0 for each
t > 0. Thus U’'(t) = 0, and therefore v () = ¢ (), which contradicts the original hypothesis.
Consequently, there cannot be two different solutions of the initial value problem for ¢ > 0.
A slight modification of this argument leads to the same conclusion for ¢ < 0.

Returning now to the general problem of solving the integral equation (3), let us
consider briefly each of the questions raised earlier:

1. Do all members of the sequence {¢,} exist? In the example, f and df /dy were continuous
in the whole ty-plane, and each member of the sequence could be explicitly calculated.
In contrast, in the general case, f and df/dy are assumed to be continuous only in the
rectangle R: |t| < a, |y| < b (see Figure 2.8.3). Furthermore, the members of the sequence
cannot as a rule be explicitly determined. The danger is that at some stage, say, for n = k,
the graph of y = ¢ (f) may contain points that lie outside the rectangle R. Hence at the
next stage—in the computation of ¢ (#)—it would be necessary to evaluate f(¢,y) at
points where it is not known to be continuous or even to exist. Thus the calculation of
di41(t) might be impossible.

To avoid this danger, it may be necessary to restrict ¢ to a smaller interval than |¢| < a.
To find such an interval, we make use of the fact that a continuous function on a closed
bounded region is bounded. Hence f is bounded on R; thus there exists a positive number
M such that

lfenl <M, (t,y)in R. (23)

We have mentioned before that
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(-a, -b) (a, -b)
FIGURE 2.8.3 Region of definition for Theorem 2.8.1.

for each n. Since f[t, ¢« (1)] is equal to ¢, (¢), the maximum absolute slope of the graph
of the equation y = ¢1(¢) is M. Since this graph contains the point (0,0), it must lie
in the wedge-shaped shaded region in Figure 2.8.4. Hence the point [¢, ¢x11(¢)] remains
in R at least as long as R contains the wedge-shaped region, which is for |t| < b/M. We
hereafter consider only the rectangle D: |¢| < h, |y| < b, where & is equal either to a or to
b/M,whichever is smaller. With this restriction, all members of the sequence {¢, (¢)} exist.
Note that whenever b/M < a, then you can try to obtain a larger value of 4 by finding a
better (that is, smaller) bound M for |f (¢, )|, if this is possible.

y:(pn(t) y y:q)n(t) y
,,y:b 77y=b
\\\ \
t t
i i -y=-b ——y=-b
Lo Lo \ \
t=—a t=-—_ t=_ | t=-a t=a
t=a

(a) (b)
FIGURE 2.8.4 Regions in which successive iterates lie. (a) b/M < a; (b) b/M > a.

2. Does the sequence {¢,(t)} converge? As in the example, we can identify ¢, () = ¢1(t) +
[2(1) — p1 (O] + - - - + [dn(t) — Ppn—1(t)] as the nth partial sum of the series

1O+ [res1 (1) — (D). (24)

k=1

The convergence of the sequence {¢,(?)} is established by showing that the series (24)
converges. To do this, it is necessary to estimate the magnitude |¢y1(f) — @i (t)| of the
general term. The argument by which this is done is indicated in Problems 15 through
18 and will be omitted here. Assuming that the sequence converges, we denote the limit
function by ¢, so that

(1) = lim ¢, (). (25)

3. What are the properties of the limit function ¢? In the first place, we would like to know
that ¢ is continuous. This is not, however, a necessary consequence of the convergence
of the sequence {¢, ()}, even though each member of the sequence is itself continuous.
Sometimes a sequence of continuous functions converges to a limit function that is dis-
continuous. A simple example of this phenomenon is given in Problem 13. One way to
show that ¢ is continuous is to show not only that the sequence {¢,} converges, but also
that it converges in a certain manner, known as uniform convergence. We do not take up
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this question here but note only that the argument referred to in paragraph 2 is sufficient
to establish the uniform convergence of the sequence {¢,} and, hence, the continuity of
the limit function ¢ in the interval |¢| < h.

Now let us return to Eq. (7)

Dni1 () =/ fls, pu(s)]ds.
0

Allowing n to approach co on both sides, we obtain

(1) = lim / FL5.6u(s)] ds. (26)
n—oo ()

We would like to interchange the operations of integrating and taking the limit on the
right side of Eq. (26) so as to obtain

o(1) = f tim fls, én(s)] ds. @7)
0 n—oo

In general, such an interchange is not permissible (see Problem 14, for example), but once
again, the fact that the sequence {¢,(¢)} converges uniformly is sufficient to allow us to
take the limiting operation inside the integral sign. Next, we wish to take the limit inside
the function f, which would give

(1) = / fls. Tim ¢, (5)] ds (28)
0 n—oo
and hence
() = / fls.$(s)1 ds. (29)
0

The statement that
lim fls, ¢ (9)] = fIs, lim ¢, ()]

is equivalent to the statement that f is continuous in its second variable, which is known by
hypothesis. Hence Eq. (29) is valid, and the function ¢ satisfies the integral equation (3).
Thus ¢ is also a solution of the initial value problem (2).

Are there other solutions of the integral equation (3) besides y = ¢ (¢)? To show the
uniqueness of the solution y = ¢ (), we can proceed much as in the example. First, assume
the existence of another solution y = ¢ (¢). It is then possible to show (see Problem 19)
that the difference ¢ (1) — ¥ (¢) satisfies the inequality

6(1) — v o) sA/O 16(s) — ¥(s)|ds (30)

for 0 <t < h and a suitable positive number A. From this point the argument is identical
to that given in the example, and we conclude that there is no solution of the initial value
problem (2) other than the one generated by the method of successive approximations.

PROBLEMS

In each of Problems 1 and 2 transform the given initial value problem into an equivalent
problem with the initial point at the origin.

1. dy/dt = > +y?, y(1) =2 2. dy/dt =1 —y3, y(-1) =3
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In each of Problems 3 through 6 let ¢y (#) = 0 and use the method of successive approximations
to solve the given initial value problem.

(a) Determine ¢,(t) for an arbitrary value of n.

(b) Plot ¢,,(t) forn =1, ...,4. Observe whether the iterates appear to be converging.

(c) Express lim ¢, () = ¢(¢) in terms of elementary functions; that is, solve the given initial
value problerril_.)Oo

(d) Plot (1) — ¢u(®)| for n =1,...,4. For each of ¢(¢),...,¢4(t), estimate the interval in
which it is a reasonably good approximation to the actual solution.

¢ 3 y=20+D. y0)=0 ¢l 4y=-y-1  y0)=0
2 5. y=—y2+t,  y0)=0 & 6 y=y+l-t1, y0O=0

In each of Problems 7 and 8 let ¢ (f) = 0 and use the method of successive approximations to
solve the given initial value problem.

(a) Determine ¢, () for an arbitrary value of n.
(b) Plot ¢, (¢) forn =1,...,4. Observe whether the iterates appear to be converging.
¢ 1. y=t+1,  y0)=0 ¢ 8. y=ry—1, y0)=0
In each of Problems 9 and 10 let ¢, (f) = 0 and use the method of successive approximations

to approximate the solution of the given initial value problem.

(a) Calculate ¢;(1),...,¢3(1).
(b) Plot ¢ (1), ...,¢5(t) and observe whether the iterates appear to be converging.

¢ 9y =2+, y0)=0 6210,y =1-y",  y0)=0
In each of Problems 11 and 12 let ¢y (¥) = 0 and use the method of successive approximations

to approximate the solution of the given initial value problem.

(a) Calculate ¢;(2),...,¢4(t), or (if necessary) Taylor approximations to these iterates. Keep
terms up to order six.

(b) Plot the functions you found in part (a) and observe whether they appear to be converging.
¢ 11y =—siny+1,  y0) =0 L 12,y =GP +4+2)200 -1, y0)=0

13. Let ¢,(x) = x" for 0 < x < 1 and show that
y 0, 0<x<l1,
nLn;o¢n(x) = {l, 1
This example shows that a sequence of continuous functions may converge to a limit
function that is discontinuous.
14. Consider the sequence ¢, (x) = 2nxe*'”‘2, O0<x<l.
(a) Show that '}Lnolo ¢, (x) =0for 0 < x < 1;hence

1
/ lim ¢, (x) dx = 0.
0 n—o00

1
(b) Show that / 2nxe ™ dx = 1 — e~"; hence
0

1
lim ¢n(x)dx = 1.
n—oo 0

Thus, in this example,
b

b
lim ¢n(x) dx # / lim ¢,(x) dx,

—
n—oo a

even though lim ¢,(x) exists and is continuous.
n—oo
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In Problems 15 through 18 we indicate how to prove that the sequence {¢,(¢)}, defined by
Egs. (4) through (7), converges.
15. If af /dy is continuous in the rectangle D, show that there is a positive constant K such
that
lf @y —f@,y)l < Klyr — yal, (i)

where (¢,y1) and (¢,y;) are any two points in D having the same ¢ coordinate. This inequality
is known as a Lipschitz?® condition.
Hint: Hold ¢ fixed and use the mean value theorem on f as a function of y only. Choose
K to be the maximum value of |3f/dy| in D.
16. If ¢,_1 (t) and ¢, (¢) are members of the sequence {¢,(¢)}, use the result of Problem 15 to
show that
[f 12, $n O] = fLE, @1 D] < Klu () — Ppn1(D)].

17. (a) Show that if |¢| < h, then
1 ()] < Mlt],

where M is chosen so that |[f(¢,y)| < M for (¢,y) in D.
(b) Use the results of Problem 16 and part (a) of Problem 17 to show that
1]?

MK
[$2(8) — 1 (D] = 5

(c) Show, by mathematical induction, that

MKn_lllln MKn—lhn
160(0) = B (D] < == < :

n!
18. Note that

Gn(D) = &1 () + [2()) — A (D] + -+ + [P () — Pu1(D].
(a) Show that
[on (D] < 11 (O] + 1d2(1) — S1 (D] + - - + |Pu (D) — D1 (D]

(b) Use the results of Problem 17 to show that

T n!

2 n
L (Kh) ”+(Kh>].

lpn ()] < i [Kh +

(c) Show that the sum in part (b) converges as n — oo and, hence, the sum in part (a)
also converges as n — oo. Conclude therefore that the sequence {¢,(¢)} converges since
it is the sequence of partial sums of a convergent infinite series.

19. In this problem we deal with the question of uniqueness of the solution of the integral
equation (3)

$(0) = / FLs.6(5)] ds.
0

(a) Suppose that ¢ and ¢ are two solutions of Eq. (3). Show that, for z > 0,

¢>(t)—1/f(t)=/0{f[s,cb(S)]—f[s,W(S)]}ds.

20Rudolf Lipschitz (1832-1903), professor at the University of Bonn for many years, worked in several ar-
eas of mathematics. The inequality (i) can replace the hypothesis that 9f /9y is continuous in Theorem 2.8.1;
this results in a slightly stronger theorem.
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(b) Show that
6() — ¥ ()] < / s, d()] — Fls. v (5)]] ds.
0

(c) Use the result of Problem 15 to show that
t

60— w0l <K [ 166~ volds
0

where K is an upper bound for |df/dy| in D. This is the same as Eq. (30), and the rest of
the proof may be constructed as indicated in the text.

2.9 First Order Difference Equations

Although a continuous model leading to a differential equation is reasonable and
attractive for many problems, there are some cases in which a discrete model may
be more natural. For instance, the continuous model of compound interest used
in Section 2.3 is only an approximation to the actual discrete process. Similarly,
sometimes population growth may be described more accurately by a discrete than
by a continuous model. This is true, for example, of species whose generations do
not overlap and that propagate at regular intervals, such as at particular times of
the calendar year. Then the population y,; of the species in the year n + 1 is some
function of n and the population y, in the preceding year; that is,

yn+1:f(n7yn)a n:0’1’2"'" (1)

Equation (1) is called a first order difference equation. It is first order because the
value of y,.; depends on the value of y, but not on earlier values y,_1, y,—2, and so
forth. As for differential equations, the difference equation (1) is linear if f is a linear
function of y,; otherwise, it is nonlinear. A solution of the difference equation (1) is
a sequence of numbers yg, y1, V2, . . . that satisfy the equation for each n. In addition
to the difference equation itself, there may also be an initial condition

Yo=«o (2)

that prescribes the value of the first term of the solution sequence.
We now assume temporarily that the function f in Eq. (1) depends only on y,,, but
not on x. In this case

Ynp1 =fn),  n=012,.... (3)
If yy is given, then successive terms of the solution can be found from Eq. (3). Thus

y1=f0o),

and
y2 =fO) = fIf o)l

The quantity f[f(yo)] is called the second iterate of the difference equation and is
sometimes denoted by f%(yo). Similarly, the third iterate y; is given by

y3 =f2) = fFIFIF OG0T} = £ o),
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and so on. In general, the nth iterate y, is

Yn :f()’nfl) =f"(YO)-

This procedure is referred to as iterating the difference equation. It is often of pri-
mary interest to determine the behavior of y, as n — oo; in particular, does y, ap-
proach a limit, and if so, what is it?

Solutions for which y, has the same value for all n are called equilibrium solutions.
They are frequently of specialimportance, just as in the study of differential equations.
If equilibrium solutions exist, one can find them by setting y,,.1 equal to y, in Eq. (3)
and solving the resulting equation

Yn = f()}n) (4)
for yj,.

Linear Equations. Suppose that the population of a certain species in a given region in
year n + 1, denoted by y,1, is a positive multiple p, of the population y, in year n;
that is,

Yn+1 = PnYn, n= O, 1,2, e (5)

Note that the reproduction rate p, may differ from year to year. The difference
equation (5) is linear and can easily be solved by iteration. We obtain

Y1 = poYo,
Y2 = p1Y1 = L1000,

and, in general,
Yn = Pn=1""" P0Y0, n=12,.... (6)

Thus, if the initial population yy is given, then the population of each succeeding
generation is determined by Eq. (6). Although for a population problem p,, is intrin-
sically positive, the solution (6) is also valid if p, is negative for some or all values of
n. Note, however, that if p, is zero for some #, then y,; and all succeeding values of
y are zero; in other words, the species has become extinct.

If the reproduction rate p, has the same value p for each n, then the difference
equation (5) becomes

Yn+1 = PYn (7)
and its solution is
Yn = p"Yo. )

Equation (7) also has an equilibrium solution, namely, y, = 0 for all n, corresponding
to the initial value yy = 0. The limiting behavior of y, is easy to determine from
Eq. (8). In fact,
0, if |p] < 1;
lim v, = { vo, itp=1; ©
n—oo . .
does not exist, otherwise.

In other words, the equilibrium solution y, = 0 is asymptotically stable for |p| < 1
and unstable if |p| > 1.

Now we will modify the population model represented by Eq. (5) to include the
effect of immigration or emigration. If b, is the net increase in population in year
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n due to immigration, then the population in year n + 1 is the sum of those due to
natural reproduction and those due to immigration. Thus

Yn+1 ZPYn+bn> n=0’1’25-"? (10)

where we are now assuming that the reproduction rate p is constant. We can solve
Eq. (10) by iteration in the same manner as before. We have

y1 = pyo + bo,
y2 = p(pyo + bo) + b1 = p*yo + pbo + b1,
y3 = p(p*yo + pbo + b1) + by = p’yo + p*bo + pby + ba,

and so forth. In general, we obtain

n—1

Yn = 0p"yo+ p" " bo + -+ pbys +bu1 = p"yo + Z p" ' b;. (11)
=0

Note that the first term on the right side of Eq. (11) represents the descendants of
the original population, while the other terms represent the population in year n
resulting from immigration in all preceding years.

In the special case where b, = b # 0 for all n, the difference equation is

Yn+1 = pyn + b, (12)
and from Eq. (11) its solution is
yn=p"yo+A+p+p>+ -+ p"Hb. (13)

If p # 1, we can write this solution in the more compact form

n

1-p
1-p

Yn = p"Yo + b, (14)
where again the two terms on the right side are the effects of the original population
and of immigration, respectively. Rewriting Eq. (14) as

Yn=p" <yo - L) + b (15)

1—0p 1—p

makes the long-time behavior of y, more evident. It follows from Eq. (15) that
Vo — b/(1—p) if |p| <1. If |p| > 1 or if p = —1 then y, has no limit unless
vo=>b/(1 — p). The quantity b/(1 — p), for p # 1, is an equilibrium solution of
Eq. (12), as can readily be seen directly from that equation. Of course, Eq. (14)
is not valid for p = 1. To deal with that case, we must return to Eq. (13) andlet p = 1
there. It follows that

Yn = Yo + nb, (16)

so in this case y, becomes unbounded as n — oc.

The same model also provides a framework for solving many problems of a finan-
cial character. For such problems y, is the account balance in the nth time period,
pn =1+ r,, where r, is the interest rate for that period, and b, is the amount
deposited or withdrawn. The following example is typical.
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EXAMPLE

1

A recent college graduate takes out a $10,000 loan to purchase a car. If the interest rate is
12%, what monthly payment is required to pay off the loan in 4 years?

The relevant difference equation is Eq. (12), where y,, is the loan balance outstanding in the
nth month, p = 1 + r, where r is the interest rate per month, and b is the effect of the monthly
payment. Note that p = 1.01, corresponding to a monthly interest rate of 1%. Since payments
reduce the loan balance, b must be negative; the actual payment is |b|.

The solution of the difference equation (12) with this value for p and the initial condition
yo = 10,000 is given by Eq. (15); that is,

Y = (1.01)" (10,000 4 100b) — 100b. 17)

The value of b needed to pay off the loan in 4 years is found by setting yss = 0 and solving
for b. This gives
(1.01)*

b=-100————
1.0nH® -1

= —263.34. (18)

The total amount paid on the loan is 48 times |b|, or $12,640.32. Of this amount, $10,000 is
repayment of the principal and the remaining $2640.32 is interest.

Nonlinear Equations. Nonlinear difference equations are much more complicated and
have much more varied solutions than linear equations. We will restrict our attention
to a single equation, the logistic difference equation

— _
Yn+1 = PYn ( k ) s (19)
which is analogous to the logistic differential equation
dy y
= = (1- E) (20)

that was discussed in Section 2.5. Note that if the derivative dy/dt in Eq. (20) is
replaced by the difference (y,+1 — yn)/h, then Eq. (20) reduces to Eq. (19) with
p =14 hrand k = (1 + hr)K/hr. To simplify Eq. (19) a little more, we can scale the
variable y, by introducing the new variable u,, = y,/k. Then Eq. (19) becomes

U1 = pup(1 — uy), (21)

where p is a positive parameter.

We begin our investigation of Eq. (21) by seeking the equilibrium, or constant, so-
lutions. These can be found by setting u,, 11 equal to u, in Eq. (21), which corresponds
to setting dy/dt equal to zero in Eq. (20). The resulting equation is

u, = pu, — pufl, (22)
so it follows that the equilibrium solutions of Eq. (21) are
-1
Up =0,  up=2"—. 23)
p

The next question is whether the equilibrium solutions are asymptotically stable or
unstable. That is, for an initial condition near one of the equilibrium solutions, does
the resulting solution sequence approach or depart from the equilibrium solution?
One way to examine this question is by approximating Eq. (21) by a linear equation
in the neighborhood of an equilibrium solution. For example, near the equilibrium
solution u, = 0, the quantity «2 is small compared to u, itself, so we assume that we
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can neglect the quadratic term in Eq. (21) in comparison with the linear terms. This
leaves us with the linear difference equation

Upt1 = PlUy, (24)

which is presumably a good approximation to Eq. (21) for u, sufficiently near zero.
However, Eq. (24) is the same as Eq. (7), and we have already concluded, in Eq. (9),
that u, — 0 as n — oo if and only if |p| < 1, or (since p must be positive) for
0 < p < 1. Thus the equilibrium solution u,, = 0 is asymptotically stable for the linear
approximation (24) for this set of p values, so we conclude that it is also asymptoti-
cally stable for the full nonlinear equation (21). This conclusion is correct, although
our argument is not complete. What is lacking is a theorem stating that the solutions
of the nonlinear equation (21) resemble those of the linear equation (24) near the
equilibrium solution u, = 0. We will not take time to discuss this issue here; the same
question is treated for differential equations in Section 9.3.

Now consider the other equilibrium solution u, = (p — 1)/p. To study solutions
in the neighborhood of this point, we write

-1
Uy = Py Un, (25)
P

where we assume that v, is small. By substituting from Eq. (25) in Eq. (21) and
simplifying the resulting equation, we eventually obtain

Vi1 = (2= p)vg — poj. (26)

Since v, is small, we again neglect the quadratic term in comparison with the linear
terms and thereby obtain the linear equation

V1 = 2 — p)oy. (27)

Referring to Eq. (9) once more, we find that v, — 0 as n — oo for |2 — p| < 1, that
is, for 1 < p < 3. Therefore we conclude that, for this range of values of p, the
equilibrium solution u,, = (p — 1)/p is asymptotically stable.

Figure 2.9.1 contains the graphs of solutions of Eq. (21) for p =0.8,p = 1.5, and
p = 2.8, respectively. Observe that the solution converges to zero for p = 0.8 and
to the nonzero equilibrium solution for p = 1.5 and p =2.8. The convergence is
monotone for p = 0.8 and p = 1.5 and is oscillatory for p = 2.8. The graphs shown
are for particular initial conditions, but the graphs for other initial conditions are
similar.

Up Un

sl un =55 = 0.6429

8

(a)

(b) (¢)
FIGURE 2.9.1 Solutions of u,,; = pu,(1 —u,): (a) p =0.8;(b) p =1.5;(c) p =2.8.
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0.6

0.4

0.2

Another way of displaying the solution of a difference equation is shown in
Figure 2.9.2. In each part of this figure the graphs of the parabola y = px(1 — x)
and of the straight line y = x are shown. The equilibrium solutions correspond to
the points of intersection of these two curves. The piecewise linear graph consisting
of successive vertical and horizontal line segments, sometimes called a stairstep di-
agram, represents the solution sequence. The sequence starts at the point uy on the
x-axis. The vertical line segment drawn upward to the parabola at u( corresponds to
the calculation of puy(1 — ug) = uy. This value is then transferred from the y-axis to
the x-axis; this step is represented by the horizontal line segment from the parabola
to the line y = x. Then the process is repeated over and over again. Clearly, the
sequence converges to the origin in Figure 2.9.2a and to the nonzero equilibrium
solution in the other two cases.

0.6

0.4 y=px(l-x)

(0.6429..., 0.6429...)
0.6

04

\ \ \ \
0.2 0.4 0.6 0.8 1 x
(e)
FIGURE 2.9.2 TIterates of u,,1 = pu,(1 —u,). (a) p = 0.8;(b) p = 1.5; (c) p =2.8.
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To summarize our results so far: the difference equation (21) has two equilib-
rium solutions, u, = 0 and u,, = (p — 1)/p; the former is asymptotically stable for
0 < p < 1,and the latter is asymptotically stable for 1 < p < 3. When p = 1, the two
equilibrium solutions coincide at u = 0; this solution can be shown to be asymptoti-
cally stable. In Figure 2.9.3 the parameter p is plotted on the horizontal axis and u on
the vertical axis. The equilibrium solutions # = 0 and u = (p — 1)/p are shown. The
intervals in which each one is asymptotically stable are indicated by the solid portions
of the curves. There is an exchange of stability from one equilibrium solution to the

otherat p = 1.
u
1 |
u=pP-p  _aem=——-
0.5+
Asymptotically stable
u=0 e NI Lo R
Q! 2 3 p
U4
A Unstable
0.5 /

FIGURE 2.9.3 Exchange of stability for u,1 = pu,(1 — u,).

For p > 3 neither of the equilibrium solutions is stable, and the solutions of
Eq. (21) exhibit increasing complexity as p increases. For p somewhat greater than 3,
the sequence u,, rapidly approaches a steady oscillation of period 2; that is, u,, oscil-
lates back and forth between two distinct values. For p = 3.2 a solution is shown in
Figure 2.9.4. For n greater than about 20, the solution alternates between the values
0.5130 and 0.7995. The graph is drawn for the particular initial condition uy = 0.3,
but it is similar for all other initial values between 0 and 1. Figure 2.9.4b also shows
the same steady oscillation as a rectangular path that is traversed repeatedly in the
clockwise direction.

At about p = 3.449, each state in the oscillation of period 2 separates into two
distinct states, and the solution becomes periodic with period 4; see Figure 2.9.5,
which shows a solution of period 4 for p =3.5. As p increases further, periodic
solutions of period 8§, 16, . .. appear. The appearance of a new solution at a certain
parameter value is called a bifurcation.

The p-values at which the successive period doublings occur approach a limit that
is approximately 3.57. For p > 3.57 the solutions possess some regularity, but no
discernible detailed pattern for most values of p. For example, a solution for p = 3.65
is shown in Figure 2.9.6. It oscillates between approximately 0.3 and 0.9, but its fine
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021
| | | |
10 20 30 40 n
(@)
y
1
0.8 < 0.7995
y=px (1 -x)
06
| — 0.5130
04 0.5130 0.7995
y=x
0.2
\ \ \ \
0.2 0.4 0.6 0.8 1 x
)

FIGURE 2.9.4 A solution of u,,; = pu,(1 — u,) for p =3.2; period 2. (a) u, versus n;
(b) a two-cycle.

structure is unpredictable. The term chaotic is used to describe this situation. One of
the features of chaotic solutions is extreme sensitivity to the initial conditions. This
is illustrated in Figure 2.9.7, where two solutions of Eq. (21) for p = 3.65 are shown.
One solution is the same as that in Figure 2.9.6 and has the initial value uy = 0.3,
while the other solution has the initial value uy = 0.305. For about 15 iterations the
two solutions remain close and are hard to distinguish from each other in the figure.
After that, although they continue to wander about in approximately the same set
of values, their graphs are quite dissimilar. It would certainly not be possible to use
one of these solutions to estimate the value of the other for values of n larger than
about 15.

Itis only comparatively recently that chaotic solutions of difference and differential
equations have become widely known. Equation (20) was one of the first instances
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(b)
FIGURE 2.9.5 A solution of u,,; = pu,(1 —u,) for p =3.5; period 4. (a) u, versus n;
(b) a four-cycle.

of mathematical chaos to be found and studied in detail, by Robert May?! in 1974.
On the basis of his analysis of this equation as a model of the population of certain
insect species, May suggested that if the growth rate p is too large, then it will be
impossible to make effective long-range predictions about these insect populations.
The occurrence of chaotic solutions in simple problems has stimulated an enormous
amount of research in recent years, but many questions remain unanswered. It is
increasingly clear, however, that chaotic solutions are much more common than was
suspected at first and that they may be a part of the investigation of a wide range of
phenomena.

2IR. M. May, “Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and
Chaos,” Science 186 (1974), pp. 645-647; “Biological Populations Obeying Difference Equations: Stable
Points, Stable Cycles, and Chaos,” Journal of Theoretical Biology 51 (1975), pp. 511-524.
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FIGURE 2.9.6 A solution of u, .1 = pu,(1 — u,) for p = 3.65; a chaotic solution.
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FIGURE 2.9.7 Two solutions of u,1 = pu,(1 — u,) for p = 3.65;uy = 0.3 and uy = 0.305.

PROBLEMS In each of Problems 1 through 6 solve the given difference equation in terms of the initial
=== value y,. Describe the behavior of the solution as n — ooc.

1.

3.

n+1
w1 = —0.9y, 2. Ynt1 = n
Yn+1 y Yn+1 n+2)’

n+3
il = ] ——Vn 4. . __1n+1n
Yn+1 " 1)’ Yugr = (=1)""y

. Yny1 =05y, +6 6. yy01 =—-05y,+6

. Find the effective annual yield of a bank account that pays interest at a rate of 7%,

compounded daily; that is, divide the difference between the final and initial balances by
the initial balance.
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8.

10.

11.

12.

13.

An investor deposits $1000 in an account paying interest at a rate of 8% compounded
monthly, and also makes additional deposits of $25 per month. Find the balance in the
account after 3 years.

. A certain college graduate borrows $8000 to buy a car. The lender charges interest at an

annual rate of 10%. What monthly payment rate is required to pay off the loan in 3 years?
Compare your result with that of Problem 9 in Section 2.3.

A homebuyer wishes to take out a mortgage of $100,000 for a 30-year period. What
monthly payment is required if the interest rate is (a) 9%, (b) 10%, (c) 12%?

A homebuyer takes out a mortgage of $100,000 with an interest rate of 9%. What monthly
payment is required to pay off the loan in 30 years? In 20 years? What is the total amount
paid during the term of the loan in each of these cases?

If the interest rate on a 20-year mortgage is fixed at 10% and if a monthly payment of
$1000 is the maximum that the buyer can afford, what is the maximum mortgage loan that
can be made under these conditions?

A homebuyer wishes to finance the purchase with a $95,000 mortgage with a 20-year term.
What is the maximum interest rate the buyer can afford if the monthly payment is not to
exceed $900?

The Logistic Difference Equation. Problems 14 through 19 deal with the difference equation
(21)7 Upp1 = pun(l — Up).

14.

¢ 15

16.

¢ 1.

¢ 18

Carry out the details in the linear stability analysis of the equilibrium solution
u, = (p — 1)/p. That is, derive the difference equation (26) in the text for the pertur-
bation v,,.

(a) For p =3.2 plot or calculate the solution of the logistic equation (21) for several
initial conditions, say, uy = 0.2, 0.4, 0.6, and 0.8. Observe that in each case the solution
approaches a steady oscillation between the same two values. This illustrates that the
long-term behavior of the solution is independent of the initial conditions.

(b) Make similar calculations and verify that the nature of the solution for large # is
independent of the initial condition for other values of p, such as 2.6,2.8, and 3.4.

Assume that p > 1in Eq. (21).

(a) Draw a qualitatively correct stairstep diagram and thereby show that if ©y < 0, then
Uy — —00 as n —> 00.

(b) In a similar way, determine what happens as n — oo if 1y > 1.

The solutions of Eq. (21) change from convergent sequences to periodic oscillations of
period 2 as the parameter p passes through the value 3. To see more clearly how this
happens, carry out the following calculations.

(a) Plot or calculate the solution for p = 2.9,2.95, and 2.99, respectively, using an initial
value u, of your choice in the interval (0,1). In each case estimate how many iterations
are required for the solution to get “very close” to the limiting value. Use any convenient
interpretation of what “very close” means in the preceding sentence.

(b) Plot or calculate the solution for p = 3.01, 3.05, and 3.1, respectively, using the same
initial condition as in part (a). In each case estimate how many iterations are needed to
reach a steady-state oscillation. Also find or estimate the two values in the steady-state
oscillation.

By calculating or plotting the solution of Eq. (21) for different values of p, estimate the
value of p at which the solution changes from an oscillation of period 2 to one of period
4. In the same way, estimate the value of p at which the solution changes from period 4
to period 8.
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.‘Q, 19. Let pi be the value of p at which the solution of Eq. (21) changes from period 27! to

period 2%, Thus, as noted in the text, p; = 3, p, = 3.449, and p; = 3.544.

(a) Using these values of py, p;, and ps, or those you found in Problem 18, calculate
(02 = p1)/(p3 = p2)-

(b) Let 8, = (pn — Pu=1)/(Pus1 — pn). It has been shown that §, approaches a limit § as
n — oo, where § = 4.6692 is known as the Feigenbaum 22 number. Determine the per-
centage difference between the limiting value § and &, as calculated in part (a).

(c) Assume thatd; = § and use this relation to estimate p4, the value of p at which solutions
of period 16 appear.

(d) By plotting or calculating solutions near the value of p4 found in part (c), try to detect
the appearance of a period 16 solution.

(e) Observe that

on=p1+ (2 —p1) + (03— p2) + -+ (P — Pu-1)-

Assuming that (ps — p3) = (03 — p2)87', (ps — p4) = (p3 — p2)8~2, and so forth, express p,
as a geometric sum. Then find the limit of p, as n — oo. This is an estimate of the value
of p at which the onset of chaos occurs in the solution of the logistic equation (21).

PROBLEMS

Miscellaneous Problems. One of the difficulties in solving first order equations is that there
are several methods of solution, each of which can be used on a certain type of equation. It
may take some time to become proficient in matching solution methods with equations. The
first 32 of the following problems are presented to give you some practice in identifying the
method or methods applicable to a given equation. The remaining problems involve certain
types of equations that can be solved by specialized methods.

In each of Problems 1 through 32 solve the given differential equation. If an initial condition
is given, also find the solution that satisfies it.

1 dy x’—2y 5 dy 1+4cosx
dx T x “dx T 2—siny

dy 2x+y dy

3. == ——->— 0)=0 4. =—=3-6 -2
dx  3+3y2—-x’ Yo dx Yy sy
dy 2xy +y*+1 dy

5. —=——5—— 6. x— =1- 1H)=0
I 1 2y Xty Y, y@
dy 4P +1 dy sinx

7.2 T 8 x @ 4oy SNX =1
dx  yQ2+3y) Y ix ey x @)
d 2 1

g, & _ 20+ 10. (2y +xy — y)dx + (x2y —2x*)dy =0
dx X2 +2y

22This result for the logistic difference equation was discovered by Mitchell Feigenbaum (1944 — )

in August 1975, while he was working at the Los Alamos National Laboratory. Within a few weeks he
had established that the same limiting value also appears in a large class of period-doubling difference
equations. Feigenbaum, who has a doctorate in physics from M.L.T.,is now at Rockefeller University.
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d 1
1. (P +y)dx+ (x+e)dy =0 12.—y+y:
dx 1+e"
d
13. d—y:1—|—2x—f—y2—i-2xy2 14. (x+y)dx+ (x+2y)dy =0, y2)=3
X
dy dy e *cosy—e¥cosx
15. @+ D =y — yer 16. 2 =
(@ + )dx yoye dx —e*siny+ 2e¥sinx
d d
17. & — e 43y 18. Loy e ) =3
dx dx
dy 3x*—2y—)3
9. = — 20. y ="
dx 2x + 3x)? Y
dy  2y*+6xy—4 dy x*—-1
2, —+ ———"——=0 2 —=— -H=1
dx = 3x% +4xy +3y2 dx  y*+1° y=b
d
23. td—); ++Dy=¢e* 24. 2sinysinx cos x dx + cos ysin® xdy = 0
2
x y X X
25. (2-——=——)d —— ——=]dy=0
(y ﬁ+ﬁ)x+<ﬁ+ﬁ yJ Y
d
26. xy' =y + xe*’* 27. d—i = xzyxi—{—}ﬁ Hint: Let u = x%.
d
28. (2y +3%) dx = —xdy 29 & _XHY
dx x-—y
d 3 2 2
30. (3y2 + 2xy) dx — 2xy + 2 dy = 0 3, Yo Xty y(1) = -2

dx ~ 203 +3xy’
32. xy' +y—y?e* =0, y1) =2

33. Riccati Equations. The equation

dy _ 2
2 = DO+ @0y +g0)y
is known as a Riccati®* equation. Suppose that some particular solution y; of this equation
is known. A more general solution containing one arbitrary constant can be obtained
through the substitution

1

y:yl(t)'f'rl).

Show that v(¢) satisfies the first order linear equation

dv

— == 2 —qs.
T (g2 +2q3y1)v — g3

Note that v(¢) will contain a single arbitrary constant.

ZRiccati equations are named for Jacopo Francesco Riccati (1676-1754), a Venetian nobleman, who
declined university appointments in Italy, Austria, and Russia to pursue his mathematical studies privately
at home. Riccati studied these equations extensively; however, it was Euler (in 1760) who discovered the
result stated in this problem.
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34. Using the method of Problem 33 and the given particular solution, solve each of the
following Riccati equations:

(a) ¥y =1+ =2ty +y% yit) =t
1 vy 1

b = —— — = 2. 1) = —

(b) y ao Y 0=

2cos?t —sin’t + y? )
y; y1(t) = sint

dy
© dr 2cost
35. The propagation of a single action in a large population (for example, drivers turning on
headlights at sunset) often depends partly on external circumstances (gathering darkness)
and partly on a tendency to imitate others who have already performed the action in
question. In this case the proportion y(¢) of people who have performed the action can
be described?* by the equation

dy/dt = (1 = y)[x(t) + byl, ()

where x(t) measures the external stimulus and b is the imitation coefficient.

(a) Observe that Eq. (i) is a Riccati equation and that y,(f) = 1 is one solution. Use the
transformation suggested in Problem 33, and find the linear equation satisfied by v(¢).

(b) Find v(¢) in the case that x(t) = at, where a is a constant. Leave your answer in the
form of an integral.

Some Special Second Order Equations. Second order equations involve the second deriva-
tive of the unknown function and have the general form y” = f(¢,y, y’). Usually such equations
cannot be solved by methods designed for first order equations. However, there are two types
of second order equations that can be transformed into first order equations by a suitable
change of variable. The resulting equation can sometimes be solved by the methods presented
in this chapter. Problems 36 through 51 deal with these types of equations.

Equations with the Dependent Variable Missing. For a second order differential equation
of the form y” = f(¢,y’), the substitution v = y’, v’ = y” leads to a first order equation of the
form v’ = f(¢,v). If this equation can be solved for v, then y can be obtained by integrating
dy/dt = v. Note that one arbitrary constant is obtained in solving the first order equation for
v, and a second is introduced in the integration for y. In each of Problems 36 through 41 use
this substitution to solve the given equation.

36. 2y +2ty —1=0, t>0 37. 0+ y =1, t>0
38. Yy +t(y)> =0 39. 22y" + (y)® = 21y, t>0
40. y' +y = e 41. 2y" = ()2, t>0

Equations with the Independent Variable Missing. Consider second order differential equa-
tions of the form y” = f(y,y’),in which the independent variable ¢ does not appear explicitly. If
we let v = y', then we obtain dv/dt = f(y, v). Since the right side of this equation depends on y
and v, rather than on ¢ and v, this equation contains too many variables. However, if we think
of y as the independent variable, then by the chain rule, dv/dt = (dv/dy)(dy/dt) = v(dv/dy).
Hence the original differential equation can be written as v(dv/dy) = f(y,v). Provided that
this first order equation can be solved, we obtain v as a function of y. A relation between y
and ¢ results from solving dy/dt = v(y), which is a separable equation. Again, there are two
arbitrary constants in the final result. In each of Problems 42 through 47 use this method to
solve the given differential equation.

24See Anatol Rapoport, “Contribution to the Mathematical Theory of Mass Behavior: 1. The Propagation
of Single Acts,” Bulletin of Mathematical Biophysics 14 (1952), pp. 159-169, and John Z. Hearon, “Note
on the Theory of Mass Behavior,” Bulletin of Mathematical Biophysics 17 (1955), pp. 7-13.
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CHAPTER

3

Second Order Linear

F.quations

Linear equations of second order are of crucial importance in the study of differential
equations for two main reasons. The first is that linear equations have a rich theo-
retical structure that underlies a number of systematic methods of solution. Further,
a substantial portion of this structure and of these methods is understandable at a
fairly elementary mathematical level. In order to present the key ideas in the sim-
plest possible context, we describe them in this chapter for second order equations.
Another reason to study second order linear equations is that they are vital to any
serious investigation of the classical areas of mathematical physics. One cannot go
very far in the development of fluid mechanics, heat conduction, wave motion, or
electromagnetic phenomena without finding it necessary to solve second order lin-
ear differential equations. As an example, we discuss the oscillations of some basic
mechanical and electrical systems at the end of the chapter.

3.1 Homogeneous Equations with Constant Coefficients

A second order ordinary differential equation has the form
dy dy
— =fty,— 1
o=t (D). 1)

where f is some given function. Usually, we will denote the independent variable
by ¢ since time is often the independent variable in physical problems, but some-
times we will use x instead. We will use y, or occasionally some other letter, to
designate the dependent variable. Equation (1) is said to be linear if the function f

137
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has the form
DY _ oy o ®
f (t,y, d[) =80 —p—- —a®)y 2)

thatis,if fislinearin y and dy/dt. InEq. (2) g,p,and q are specified functions of the in-
dependent variable ¢ but do not depend on y. In this case we usually rewrite Eq. (1) as

Y'+p@®y +q)y =g, (3)

where the primes denote differentiation with respect to ¢. Instead of Eq. (3), we
often see the equation

P)y" + Q@)Y + Ry = G(). 4)

Of course, if P(t) # 0, we can divide Eq. (4) by P(¢) and thereby obtain Eq. (3) with
_ oo 0 _Go

pt) = PO’ q@t) = PO’ HOES PO Q)

In discussing Eq. (3) and in trying to solve it, we will restrict ourselves to intervals in
which p, g, and g are continuous functions.!

If Eq. (1) is not of the form (3) or (4), then it is called nonlinear. Analytical
investigations of nonlinear equations are relatively difficult, so we will have little to
say about them in this book. Numerical or geometical approaches are often more
appropriate, and these are discussed in Chapters 8 and 9.

An initial value problem consists of a differential equation such as Eq. (1), (3), or
(4) together with a pair of initial conditions

y(to) = Yo, y'(to) = yp, (6)

where y, and y; are given numbers prescribing values for y and y’ at the initial
point fy. Observe that the initial conditions for a second order equation identify not
only a particular point (#, yo) through which the graph of the solution must pass,
but also the slope y;, of the graph at that point. It is reasonable to expect that two
initial conditions are needed for a second order equation because, roughly speaking,
two integrations are required to find a solution and each integration introduces an
arbitrary constant. Presumably, two initial conditions will suffice to determine values
for these two constants.

A second order linear equation is said to be homogeneous if the term g(7) in
Eq. (3), or the term G(¢) in Eq. (4), is zero for all z. Otherwise, the equation is
called nonhomogeneous. As a result, the term g(¢), or G(¢), is sometimes called
the nonhomogeneous term. We begin our discussion with homogeneous equations,
which we will write in the form

P(@)y"+ Oy + R(t)y = 0. (7)

Later, in Sections 3.5 and 3.6, we will show that once the homogeneous equation
has been solved, it is always possible to solve the corresponding nonhomogeneous

IThere is a corresponding treatment of higher order linear equations in Chapter 4. If you wish, you may
read the appropriate parts of Chapter 4 in parallel with Chapter 3.
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EXAMPLE

1

equation (4), or at least to express the solution in terms of an integral. Thus the
problem of solving the homogeneous equation is the more fundamental one.

In this chapter we will concentrate our attention on equations in which the func-
tions P, Q, and R are constants. In this case, Eq. (7) becomes

ay” + by +cy =0, ®)

where a, b, and ¢ are given constants. It turns out that Eq. (8) can always be solved
easily in terms of the elementary functions of calculus. On the other hand, it is
usually much more difficult to solve Eq. (7) if the coefficients are not constants, and
a treatment of that case is deferred until Chapter 5. Before taking up Eq. (8), let
us first gain some experience by looking at a simple example that in many ways is
typical.

Solve the equation

Y —y=0, )
and also find the solution that satisfies the initial conditions
y©0) =2, y©0)=-1 (10)

Observe that Eq. (9) is just Eq. (8) witha = 1,b = 0,and ¢ = —1. In words, Eq. (9) says that
we seek a function with the property that the second derivative of the function is the same as the
function itself. Do any of the functions that you studied in calculus have this property? A little
thought will probably produce at least one such function, namely, y; (f) = €', the exponential
function. A little more thought may also produce a second function, y,(¢) = e”’. Some further
experimentation reveals that constant multiples of these two solutions are also solutions. For
example, the functions 2¢' and Se™" also satisfy Eq. (9), as you can verify by calculating their
second derivatives. In the same way, the functions c;y; (t) = cie’ and c,y,(t) = e satisfy the
differential equation (9) for all values of the constants ¢; and c;.

Next, it is vital to notice that the sum of any two solutions of Eq. (9) is also a solution. In
particular, since c;y; (f) and c,y,(¢) are solutions of Eq. (9), so is the function

y=cyi(®) +cya(t) = cref + e’ (11)

for any values of ¢; and ¢,. Again, this can be verified by calculating the second derivative y”
from Eq. (11). We have y' = cie' — c;e™" and y” = cie' + ce7; thus y” is the same as y, and
Eq. (9) is satisfied.

Let us summarize what we have done so far in this example. Once we notice that the
functions y; (t) = €' and y,(t) = e are solutions of Eq. (9), it follows that the general linear
combination (11) of these functions is also a solution. Since the coefficients ¢; and ¢, in Eq. (11)
are arbitrary, this expression represents an infinite family of solutions of the differential equa-
tion (9).

It is now possible to consider how to pick out a particular member of this infinite family of
solutions that also satisfies a given set of initial conditions (10). In other words, we seek the
solution that passes through the point (0, 2) and at that point has the slope —1. First, we set
t =0andy =2in Eq. (11); this gives the equation

cl+c = 2. (12)
Next, we differentiate Eq. (11) with the result that

Yy =cie' — e,
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Then, setting t = 0 and y’ = —1, we obtain
L —C = —1. (13)
By solving Egs. (12) and (13) simultaneously for ¢; and ¢, we find that

. =3, (14)

ST

Ccl =
Finally, inserting these values in Eq. (11), we obtain
y=je+3e, (15)

the solution of the initial value problem consisting of the differential equation (9) and the
initial conditions (10).

What conclusions can we draw from the preceding example that will help us to
deal with the more general equation (8)

ay” + by +cy =0,

whose coefficients a, b, and c are arbitrary (real) constants? In the first place, in the
example the solutions were exponential functions. Further, once we had identified
two solutions, we were able to use a linear combination of them to satisfy the given
initial conditions as well as the differential equation itself.

It turns out that by exploiting these two ideas we can solve Eq. (8) for any values
of its coefficients and also satisfy any given set of initial conditions for y and y'. We
start by seeking exponential solutions of the form y = ¢”, where r is a parameter to
be determined. Then it follows that y = re” and y” = r?¢". By substituting these
expressions for y, y’,and y” in Eq. (8), we obtain

(ar* + br + c)e" =0,

or, since e" # 0,
ar’> +br +c=0. (16)

Equation (16) is called the characteristic equation for the differential equation (8).
Its significance lies in the fact that if 7 is a root of the polynomial equation (16), then
y = €' is a solution of the differential equation (8). Since Eq. (16) is a quadratic
equation with real coefficients, it has two roots, which may be real and different, real
but repeated, or complex conjugates. We consider the first case here and the latter
two cases in Sections 3.3 and 3.4.

Assuming that the roots of the characteristic equation (16) are real and different,
let them be denoted by r; and r,, where r; # r,. Then y;(f) = €"'* and y, () = ™' are
two solutions of Eq. (8). Just as in Example 1, it now follows that

y = ciy1(t) + caya(t) = cre’ + cpe™ 17)
is also a solution of Eq. (8). To verify that this is so, we can differentiate the expression

in Eq. (17); hence
y = cirie™ + core™ (18)

and

y' =cirie + cor3e’™. (19)
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Substituting these expressions for y, y', and y” in Eq. (8) and rearranging terms, we
obtain

ay" + by +cy = ci(ar? + bri + c)e"" + cy(ar? + bry + c)e™'. (20)

The quantity in each of the parentheses on the right side of Eq. (20) is zero because
r1 and r, are roots of Eq. (16); therefore, y as given by Eq. (17) is indeed a solution
of Eq. (8), as we wished to verify.

Now suppose that we want to find the particular member of the family of solutions
(17) that satisfies the initial conditions (6)

y(to) = yo, Y (t0) = Yp-
By substituting ¢ = £y and y = y, in Eq. (17), we obtain
c1e 4 e = yy. (21)
Similarly, setting t = #y and y’ = y;, in Eq. (18) gives
c1r € + care™ =y, (22)

On solving Egs. (21) and (22) simultaneously for ¢; and ¢,, we find that

! /

Yo — Yoz _ yort — Yy _
0 e rlto’ ) = 06 I’zlo. (23)
r—n n—n

1=

Recall that r; — r, # 0 so that the expressions in Eq. (23) always make sense. Thus,
no matter what initial conditions are assigned—that is, regardless of the values of ¢,
Yo, and y; in Egs. (6)—it is always possible to determine c; and ¢; so that the initial
conditions are satisfied. Moreover, there is only one possible choice of ¢; and ¢;
for each set of initial conditions. With the values of ¢; and ¢, given by Eq. (23), the
expression (17) is the solution of the initial value problem

ay’ +by' +cy=0,  yto) =yo, () =y (24)

It is possible to show, on the basis of the fundamental theorem cited in the next
section, that all solutions of Eq. (8) are included in the expression (17), at least for the
case in which the roots of Eq. (16) are real and different. Therefore, we call Eq. (17)
the general solution of Eq. (8). The fact that any possible initial conditions can be
satisfied by the proper choice of the constants in Eq. (17) makes more plausible the
idea that this expression does include all solutions of Eq. (8).

Let us now look at some further examples.

Find the general solution of
V' +5y +6y=0. (25)

We assume thaty = ¢, and it then follows that r must be a root of the characteristic equation
rP4+5r4+6=F+2)(F+3)=0.
Thus the possible values of r are r; = —2 and r, = —3; the general solution of Eq. (25) is

y= 616721 + C2€73l. (26)
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Find the solution of the initial value problem
EXAMPLE . )
3 Y +5Sy +6y=0, y0) =2, y(0)=3. (27)
The general solution of the differential equation was found in Example 2 and is given by
Eq. (26). To satisfy the first initial condition, we set t = 0 and y = 2 in Eq. (26); thus ¢; and ¢,
must satisfy
1+ = 2. (28)
To use the second initial condition, we must first differentiate Eq. (26). This gives
y = —2c1e7? — 3cre73. Then, setting 1 = 0 and y’ = 3, we obtain
—261 — 3C2 =3. (29)
By solving Egs. (28) and (29), we find that ¢; =9 and ¢, = —7. Using these values in the
expression (26), we obtain the solution
y=9e % — 77 (30)
of the initial value problem (27). The graph of the solution is shown in Figure 3.1.1.
y
0.5 1 15 2 t
FIGURE 3.1.1 Solution of y” 4+ 5y’ + 6y =0, y(0) =2, y'(0) =3.
Find the solution of the initial value problem
EXAMPLE

4

4y" — 8y +3y =0, y0)=2, y(0)= % . (31)
If y = ¢”, then the characteristic equation is
47 —8r+3=0
and its roots are r = 3/2 and r = 1/2. Therefore the general solution of the differential equa-
tion is
y = c1e¥? + cye'l?. (32)
Applying the initial conditions, we obtain the following two equations for ¢; and ¢;:

3 1 1
c+eo=2, 510+ 30 =73.

The solution of these equations is ¢; = —%, = g, so the solution of the initial value problem
(31)is

y = —%e3’/2 + %e’/z. (33)

Figure 3.1.2 shows the graph of the solution.
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Yy
2
—_ 132 52
y=—er+ e
1 —
\ \ \
0.5 1 1.5 2 3
1+
FIGURE 3.1.2 Solution of 4y” — 8y’ +3y =0, y(0) =2, y'(0) =0.5.
The solution (30) of the initial value problem (27) initially increases (because its initial slope
EXAMPLE is positive) but eventually approaches zero (because both terms involve negative exponential

5

functions). Therefore the solution must have a maximum point, and the graph in Figure 3.1.1
confirms this. Determine the location of this maximum point.

The coordinates of the maximum point can be estimated from the graph, but to find them
more precisely, we seek the point where the solution has a horizontal tangent line. By differ-
entiating the solution (30),y = 9% — 7e=¥ with respect to ¢, we obtain

y = —18e7% 4+ 21e7™. (34)

Setting y’ equal to zero and multiplying by ¢*, we find that the critical value ¢, satisfies ¢’ = 7/6;
hence
ty, =1n(7/6) = 0.15415. (35)

The corresponding maximum value y,, is given by

108
Y = 9e72m — JeTIm = 0= 2.20408. (36)

In this example the initial slope is 3, but the solution of the given differential equation
behaves in a similar way for any other positive initial slope. In Problem 26 you are asked to
determine how the coordinates of the maximum point depend on the initial slope.

Returning to the equation ay” + by’ + cy = 0 with arbitrary coefficients, recall that
when r; # ry,its general solution (17) is the sum of two exponential functions. There-
fore the solution has a relatively simple geometrical behavior: as ¢ increases, the
magnitude of the solution either tends to zero (when both exponents are negative)
or else grows rapidly (when at least one exponent is positive). These two cases are
illustrated by the solutions of Examples 3 and 4, which are shown in Figures 3.1.1
and 3.1.2, respectively. There is also a third case that occurs less often: the solution
approaches a constant when one exponent is zero and the other is negative.

In Sections 3.3 and 3.4, respectively, we return to the problem of solving the equa-
tion ay” + by’ + cy = 0 when the roots of the characteristic equation either are com-
plex conjugates or are real and equal. In the meantime, in Section 3.2, we provide
a systematic discussion of the mathematical structure of the solutions of all second
order linear homogeneous equations.
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PROBLEMS In each of Problems 1 through 8 find the general solution of the given differential equation.

&

2

1L y"+2y =3y=0
3.6y =y —y=0
5.y"+5y =0

7.5 =9 +9y=0

2.y"+3y+2y=0
4. 2y" =3y +y=0
6. 4" -9y =0
8.y —=2y—=2y=0
In each of Problems 9 through 16 find the solution of the given initial value problem. Sketch
the graph of the solution and describe its behavior as ¢ increases.
9. V' +y =2y=0, yO =1 YO =1
10. y"+4y' +3y =0, y0)=2, y'(0) =-1
11. 6y" =5y' +y =0, y0)=4, »y©0)=0
12. y" +3y' =0, y0)=-2, y0)=3
13. y" 4+ 5y +3y =0, y0)=1, y(©0)=0
14. 2y" +y —4y =0, y0)=0, y@©0) =1
15. y"+8y' =9y =0, ylh=1, y1)=0
16. y=2)=1, y(=2)=-1
17. Find a differential equation whose general solution is y = cje? + ce™.
18. 12
19.

4y —y =0,

2t

Find a differential equation whose general solution is y = cie™"/* 4+ c,e™'.

Find the solution of the initial value problem

yi—y=0, yO =2 yO0=-3

Plot the solution for 0 < ¢ < 2 and determine its minimum value.

20. Find the solution of the initial value problem

2y" =3y +y=0, y0) =2, y(©0) = %
Then determine the maximum value of the solution and also find the point where the
solution is zero.

21. Solve the initial value problem y” —y' —2y =0, y(0) = , y'(0) = 2. Then find « so that

the solution approaches zero as t — oo.
Solve the initial value problem 4y” —y =0, y(0) = 2, y’(0) = 8. Then find 8 so that the
solution approaches zero as t — oo.

22.

In each of Problems 23 and 24 determine the values of «, if any, for which all solutions tend to
zero ast — oo; also determine the values of «, if any, for which all (nonzero) solutions become
unbounded as t — oo.

23. Yy = QRa—1)y +al@—1)y=0
24,y + B —-a)y —2(x—1)y=0
25. Consider the initial value problem

2" +3y' =2y=0, yO) =1, y(0) =-8,

where 8 > 0.
(a) Solve the initial value problem.

(b) Plot the solution when 8 = 1. Find the coordinates (¢, yo) of the minimum point of
the solution in this case.

(c) Find the smallest value of 8 for which the solution has no minimum point.
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.‘Q 26. Consider the initial value problem (see Example 5)
Y'+5y +6y=0, y0)=2, y'(0) =8,

where 8 > 0.

(a) Solve the initial value problem.

(b) Determine the coordinates,, and y,, of the maximum point of the solution as functions
of B.

(c) Determine the smallest value of 8 for which y,, > 4.

(d) Determine the behavior of ¢, and y,, as 8 — oc.

27. Consider the equation ay” + by’ 4+ cy = d, where a, b, ¢, and d are constants.
(a) Find all equilibrium, or constant, solutions of this differential equation.
(b) Let y, denote an equilibrium solution, and let Y = y — y,. Thus Y is the deviation of
a solution y from an equilibrium solution. Find the differential equation satisfied by Y.
28. Consider the equation ay” + by’ + cy = 0, where a, b, and c are constants with a > 0. Find
conditions on a, b, and c such that the roots of the characteristic equation are:
(a) real, different, and negative.
(b) real with opposite signs.
(c) real, different, and positive.

3.2 Solutions of Linear Homogeneous Equations; the Wronskian

In the preceding section we showed how to solve some differential equations of the
form

ay” + by +cy =0,

where a, b, and ¢ are constants. Now we build on those results to provide a clearer
picture of the structure of the solutions of all second order linear homogeneous
equations. In turn, this understanding will assist us in finding the solutions of other
problems that we will encounter later.

To discuss general properties of linear differential equations, it is helpful to intro-
duce a differential operator notation. Let p and g be continuous functions on an
open interval 7, that is, for « < ¢t < 8. The cases « = —o0, or = oo, or both, are
included. Then, for any function ¢ that is twice differentiable on /, we define the
differential operator L by the equation

Ligl =¢" +pg’' +q¢. 1)
Note that L[¢] is a function on /. The value of L[¢] at a point ¢ is
Ligl(®) = ¢" () + p(0)' (1) + q()$ (D).
For example, if p(t) = 12, q(t) = 1 + t, and ¢ (¢) = sin 3¢, then

L[¢1(t) = (sin3t)" + *>(sin3¢) + (1 + £) sin 3¢
= —9sin 3¢ + 3> cos 3¢t + (1 + £) sin 3¢.
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The operator L is often written as L = D? 4+ pD + g, where D is the derivative
operator.

In this section we study the second order linear homogeneous equation
L[¢]() = 0. Since it is customary to use the symbol y to denote ¢ (¢), we will usually
write this equation in the form

Liyl=y"+p@®)y +qt)y =0. )
With Eq. (2) we associate a set of initial conditions
y(to) =yo,  Y'(to) =y, 3)

where #; is any point in the interval /, and y, and y; are given real numbers. We
would like to know whether the initial value problem (2), (3) always has a solution,
and whether it may have more than one solution. We would also like to know whether
anything can be said about the form and structure of solutions that might be helpful
in finding solutions of particular problems. Answers to these questions are contained
in the theorems in this section.

The fundamental theoretical result for initial value problems for second order
linear equations is stated in Theorem 3.2.1, which is analogous to Theorem 2.4.1
for first order linear equations. The result applies equally well to nonhomogeneous
equations, so the theorem is stated in that form.

(Existence and Uniqueness Theorem)

Consider the initial value problem

V' +p@)y +qy =g,  yt)=yo, Y(to)=yp 4)

where p, g, and g are continuous on an open interval / that contains the point f.
Then there is exactly one solution y = ¢ (¢) of this problem, and the solution exists
throughout the interval /.

We emphasize that the theorem says three things:

1. The initial value problem has a solution; in other words, a solution exists.
The initial value problem has only one solution; that is, the solution is unique.

3. The solution ¢ is defined throughout the interval I where the coefficients are continuous
and is at least twice differentiable there.

For some problems some of these assertions are easy to prove. For instance, we
found in Example 1 of Section 3.1 that the initial value problem

Y'=y=0, y0)=2 y0=-1 ®)

has the solution
y=3e +3e. (6)
The fact that we found a solution certainly establishes that a solution exists for this
initial value problem. Further, the solution (6) is twice differentiable,indeed differen-
tiable any number of times, throughout the interval (—oo, co) where the coefficients
in the differential equation are continuous. On the other hand, it is not obvious, and
is more difficult to show, that the initial value problem (5) has no solutions other
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Theorem 3.2.2

than the one given by Eq. (6). Nevertheless, Theorem 3.2.1 states that this solution
is indeed the only solution of the initial value problem (5).

For most problems of the form (4) it is not possible to write down a useful ex-
pression for the solution. This is a major difference between first order and second
order linear equations. Therefore, all parts of the theorem must be proved by general
methods that do not involve having such an expression. The proof of Theorem 3.2.1 is
fairly difficult,and we do not discuss it here.> We will, however, accept Theorem 3.2.1
as true and make use of it whenever necessary.

Find the longest interval in which the solution of the initial value problem
=30y +1y —(t+3)y=0, y1)=2, yd)=1

is certain to exist.

If the given differential equation is written in the form of Eq. (4), then p(r) = 1/(t — 3),
q(t) = —(t +3)/t(t — 3), and g(¢t) = 0. The only points of discontinuity of the coefficients are
t =0 and t = 3. Therefore, the longest open interval, containing the initial point ¢ = 1, in
which all the coefficients are continuous is 0 < ¢ < 3. Thus, this is the longest interval in which
Theorem 3.2.1 guarantees that the solution exists.

Find the unique solution of the initial value problem
Y +p@y +q@0y=0,  yt) =0, yt)=0,

where p and g are continuous in an open interval / containing .

The function y = ¢ (¢) = 0 for all ¢ in 7 certainly satisfies the differential equation and initial
conditions. By the uniqueness part of Theorem 3.2.1, it is the only solution of the given
problem.

Let us now assume that y; and y, are two solutions of Eq. (2); in other words,

Liyi]l =y +py; +qy1 =0,

and similarly for y,. Then, just as in the examples in Section 3.1, we can generate
more solutions by forming linear combinations of y; and y,. We state this result as a
theorem.

(Principle of Superposition)
If y; and y, are two solutions of the differential equation (2),
Lyl =y"+p@®)y +q)y =0,

then the linear combination c;y; + ¢y, is also a solution for any values of the
constants ¢; and c¢;.

2A proof of Theorem 3.2.1 may be found, for example, in Chapter 6, Section 8 of the book by Coddington
listed in the references at the end of this chapter.
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A special case of Theorem 3.2.2 occurs if either ¢; or c; is zero. Then we conclude
that any constant multiple of a solution of Eq. (2) is also a solution.
To prove Theorem 3.2.2, we need only substitute

y =cyi1(®) + cy2() (7

for y in Eq. (2). By calculating the indicated derivatives and rearranging terms, we
obtain

Llciy1 + c2y2] = [aiy1 + cay2]” + pleiyi + cay2] + gleiyr + ezl
= c1y] + c2yy + cpyy + c2pys + c1qy1 + c2qy2
= cailly] +py| + gl + clys + pys + g2l
= c1L[y1] + c2L[y2].

Since L[y;] =0 and L[y,] =0, it follows that L[ciy; + c;y.] = 0 also. Therefore,
regardless of the values of ¢; and ¢, y as given by Eq. (7) does satisfy the differential
equation (2), and the proof of Theorem 3.2.2 is complete.

Theorem 3.2.2 states that, beginning with only two solutions of Eq. (2), we can
construct an infinite family of solutions by means of Eq. (7). The next question is
whether all solutions of Eq. (2) are included in Eq. (7) or whether there may be
other solutions of a different form. We begin to address this question by examining
whether the constants ¢; and ¢, in Eq. (7) can be chosen so as to satisfy the initial
conditions (3). These initial conditions require ¢; and c¢; to satisfy the equations

c1y1(to) + c2y2(t) = Yo,

, , , ®)
c1y1(t) + oy, (to) = yp-
The determinant of coefficients of the system (8) is
yilto)  y2(to) / /
=, , = y1(to)y5(to) — y1(t0)y2(t0)- )
Yito)  y5(to)

If W # 0, then Egs. (8) have a unique solution (c1, ¢;) regardless of the values of yg
and y;,. This solution is given by

Yoy5(to) — yoy2(to) —yoy; (to) + yoy1(to)

L S omt) @ T w0
or, in terms of determinants,
Yo y2(to) yito) Yo
. Yo Y5(to) s Yito) ¥ _ ()

yito) y2(to)
Yi(to)  y5(to)

yi(to) y2(to)
Y1) ¥, (o)

With these values for ¢; and c;, the expression (7) satisfies the initial conditions (3)
as well as the differential equation (2).

On the other hand,if W = 0, then Egs. (8) have no solution unless y, and y;, satisfy
a certain additional condition; in this case there are infinitely many solutions.
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The determinant W is called the Wronskian® determinant, or simply the Wron-
skian, of the solutions y; and y,. Sometimes we use the more extended notation
W (y1,y2)(to) to stand for the expression on the right side of Eq. (9), thereby empha-
sizing that the Wronskian depends on the functions y; and y,, and that it is evaluated
at the point ). The preceding argument establishes the following result.

Suppose that y; and y, are two solutions of Eq. (2)
Lyl =y"+p@®)y +qny =0,
and that the initial conditions (3)

y(to) = o, Y'(t) =y,

are assigned. Then it is always possible to choose the constants ¢y, ¢; so that

y = c1y1(t) + c2y2(2)

satisfies the differential equation (2) and the initial conditions (3) if and only if the
Wronskian

W =y1y5 —yiy»

is not zero at .

~2 and y,(t) = e~ are solutions of the

In Example 2 of Section 3.1 we found that y, (1) = e
differential equation

V' +5y +6y=0.

Find the Wronskian of y; and y,.
The Wronskian of these two functions is

—2t =3t

e e

W= ‘—26*2’ e

Since W is nonzero for all values of ¢, the functions y; and y, can be used to construct solutions
of the given differential equation, together with initial conditions prescribed at any value of ¢.
One such initial value problem was solved in Example 3 of Section 3.1.

The next theorem justifies the term “general solution” that we introduced in Sec-
tion 3.1 for the linear combination c;y; + c2y».

Suppose that y; and y, are two solutions of the differential equation (2),
Liyl=y"+p®)y +4q@®)y =0.
Then the family of solutions
y=cy1(®) + c2y2(0)

with arbitrary coefficients ¢; and ¢, includes every solution of Eq. (2) if and only if
there is a point #y where the Wronskian of y; and y; is not zero.

3Wronskian determinants are named for Jésef Maria Hoéné-Wronski (1776-1853), who was born in
Poland but spent most of his life in France. Wronski was a gifted but troubled man, and his life was
marked by frequent heated disputes with other individuals and institutions.
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Let ¢ be any solution of Eq. (2). To prove the theorem, we must determine whether
¢ is included in the linear combinations c;y; + ¢;y,. That is, we must determine
whether there are values of the constants ¢; and ¢, that make the linear combination
the same as ¢. Let #p be a point where the Wronskian of y; and y; is nonzero. Then
evaluate ¢ and ¢’ at this point and call these values y, and yj,, respectively; thus

Yo = ¢ (), Vo = ¢’ (to).

Next, consider the initial value problem

V' +p@)y +qy=0,  yto) =yo, Y(to) =y (12)

The function ¢ is certainly a solution of this initial value problem. Further, since we
are assuming that W (y, y2)(f) is nonzero, then it is possible (by Theorem 3.2.3) to
choose ¢; and ¢; so that y = c1y1(¢) 4+ c2y2(¢) is also a solution of the initial value
problem (12). In fact, the proper values of ¢; and ¢, are given by Egs. (10) or (11).
The uniqueness part of Theorem 3.2.1 guarantees that these two solutions of the same
initial value problem are actually the same function; thus, for the proper choice of ¢;
and ¢,

(1) = cry1(t) + c2y2(1), (13)

and therefore ¢ is included in the family of functions c;y; + ¢;y,. Finally, since ¢
is an arbitrary solution of Eq. (2), it follows that every solution of this equation is
included in this family.

Now suppose that there is no point #) where the Wronskian is nonzero. Thus
W (y1,y2)(to) = 0 no matter which point ¢ is selected. Then (by Theorem 3.2.3) there
are values of yo and y;, such that the system (8) has no solution for ¢; and ¢;. Select
a pair of such values and choose the solution ¢ (¢) of Eq. (2) that satisfies the initial
condition (3). Observe that such a solution is guaranteed to exist by Theorem 3.2.1.
However, this solution is not included in the family y = ¢;y1 + czy,. Thus this linear
combination does not include all solutions of Eq. (2) if W (y1,y2) = 0. This completes
the proof of Theorem 3.2.4.

Theorem 3.2.4 states that,if and only if the Wronskian of y; and y, is not everywhere
zero, then the linear combination c1y; + ¢y, contains all solutions of Eq. (2). It is
therefore natural (and we have already done this in the preceding section) to call the
expression

y =c1y1(®) + cay2(0)

with arbitrary constant coefficients the general solution of Eq. (2). The solutions y;
and y, are said to form a fundamental set of solutions of Eq. (2) if and only if their
Wronskian is nonzero.

We can restate the result of Theorem 3.2.4 in slightly different language: to find the
general solution, and therefore all solutions, of an equation of the form (2), we need
only find two solutions of the given equation whose Wronskian is nonzero. We did
precisely this in several examples in Section 3.1, although there we did not calculate
the Wronskians. You should now go back and do that, thereby verifying that all the
solutions we called “general solutions” in Section 3.1 do satisfy the necessary Wron-
skian condition. Alternatively, the following example includes all those mentioned
in Section 3.1, as well as many other problems of a similar type.
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Suppose that y; (f) = et and y, () = "' are two solutions of an equation of the form (2). Show
that they form a fundamental set of solutions if r; # r,.
We calculate the Wronskian of y; and y,:

erlt erzt

et pent| = (ry — r1) expl(r1 + r2)tl.

Since the exponential function is never zero, and since we are assuming that
r, —ry # 0, it follows that W is nonzero for every value of . Consequently, y; and y, form a
fundamental set of solutions.

Show that y;(f) = t'/? and y,(¢) = t~! form a fundamental set of solutions of
202y" + 31y —y =0, t>0. (14)

We will show how to solve Eq. (14) later (see Problem 34 in Section 3.3). However, at
this stage we can verify by direct substitution that y; and y, are solutions of the differential
equation. Since y(t) = 1t7'/2 and y{(t) = — 1173/, we have

20— 43 =P = (=1 + 3 - Di'P =0,
Similarly, y,(t) = —¢~2 and y; (t) = 2t73,s0
202 +3(—tH) -t =@ -3-Dr' =0.
Next we calculate the Wronskian W of y; and y;:

(12 1
% 12 g2

—3, (15)

Since W # 0 for ¢ > 0, we conclude that y; and y, form a fundamental set of solutions there.

In several cases we have been able to find a fundamental set of solutions, and
therefore the general solution, of a given differential equation. However, this is
often a difficult task, and the question arises as to whether a differential equation
of the form (2) always has a fundamental set of solutions. The following theorem
provides an affirmative answer to this question.

Consider the differential equation (2)

Liyl=y"+p@®y +q@®)y =0,

whose coefficients p and g are continuous on some open interval /. Choose some
point #p in I. Let y; be the solution of Eq. (2) that also satisfies the initial conditions

Y(to) = ]-’ y/(t()) = 09
and let y, be the solution of Eq. (2) that satisfies the initial conditions
y(to) =0,  Y(to) =1

Then y; and y, form a fundamental set of solutions of Eq. (2).
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First observe that the existence of the functions y; and y; is ensured by the existence
part of Theorem 3.2.1. To show that they form a fundamental set of solutions, we
need only calculate their Wronskian at fy:

yi(to) y2(to)
Y1)  y5(to)

Wi, y2) (o) =

‘10

Loy

Since their Wronskian is not zero at the point ¢y, the functions y; and y, do form a
fundamental set of solutions, thus completing the proof of Theorem 3.2.5.

Note that the potentially difficult part of this proof, demonstrating the existence
of a pair of solutions, is taken care of by reference to Theorem 3.2.1. Note also that
Theorem 3.2.5 does not address the question of how to find the solutions y; and y;
by solving the specified initial value problems. Nevertheless, it may be reassuring to
know that a fundamental set of solutions always exists.

Find the fundamental set of solutions specified by Theorem 3.2.5 for the differential equation

y'—y=0, (16)

using the initial point ¢, = 0.

In Section 3.1 we noted that two solutions of Eq. (16) are y;(f) = ¢' and y,(t) = ¢™'. The
Wronskian of these solutions is W (yy, y,)(¢t) = —2 # 0, so they form a fundamental set of so-
lutions. However, they are not the fundamental solutions indicated by Theorem 3.2.5 because
they do not satisfy the initial conditions mentioned in that theorem at the point ¢t = 0.

To find the fundamental solutions specified by the theorem, we need to find the solutions
satisfying the proper initial conditions. Let us denote by y;(¢) the solution of Eq. (16) that
satisfies the initial conditions

yO =1, Y0 =0. (17)
The general solution of Eq. (16) is
y =cie' + e, (18)
and the initial conditions (17) are satisfied if ¢; = 1/2 and ¢, = 1/2. Thus
y3(t) = €' + e = cosht.
Similarly, if y4(¢) satisfies the initial conditions
y =0 yO=1, (19)

then

ya(t) = %e’ — %e” = sinht.

Since the Wronskian of y; and y, is
W(ys,y4)(t) = cosh®t — sinh?r = 1,

these functions also form a fundamental set of solutions, as stated by Theorem 3.2.5. Therefore,
the general solution of Eq. (16) can be written as

y = kycosht + k, sinh ¢, (20)

as well as in the form (18). We have used k; and k, for the arbitrary constants in Eq. (20)
because they are not the same as the constants ¢; and ¢; in Eq. (18). One purpose of this
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example is to make clear that a given differential equation has more than one fundamental
set of solutions; indeed, it has infinitely many; see Problem 21. As a rule, you should choose
the set that is most convenient.

Now let us examine further the properties of the Wronskian of two solutions of
a second order linear homogeneous differential equation. The following theorem,
perhaps surprisingly, gives a simple explicit formula for the Wronskian of any two
solutions of any such equation, even if the solutions themselves are not known.

(Abel’s Theorem)*
If y; and y; are solutions of the differential equation

Liyl=y"+p@®y +4q@)y =0, (21)

where p and g are continuous on an open interval /, then the Wronskian W (y1, y») (¢)
is given by

W1, y2)() = cexp [— /P(l) dt] , (22)

where c is a certain constant that depends on y; and y,, but not on ¢. Further,
W (y1,y2)(¢) either is zero for all ¢ in [ (if ¢ = 0) or else is never zero in I (if ¢ # 0).

To prove Abel’s theorem, we start by noting that y; and y, satisfy

"+ p)y, +qt)y; =0,
yi P y/l gy o)
Vs +p@)y; +q@)y, =0.

If we multiply the first equation by —y,, multiply the second by y;, and add the
resulting equations, we obtain

015 = yiy2) + PO (1ys — ¥iy2) =0. (24)
Next, we let W(t) = W (y1, y2)(t) and observe that
W' = y1y5 — ¥y (25)

Then we can write Eq. (24) in the form

W+ p()W = 0. (26)

“The result in Theorem 3.2.6 was derived by the Norwegian mathematician Niels Henrik Abel (1802-1829)
in 1827 and is known as Abel’s formula. Abel also showed that there is no general formula for solving a
quintic, or fifth degree, polynomial equation in terms of explicit algebraic operations on the coefficients,
thereby resolving a question that had been open since the sixteenth century. His greatest contributions,
however, were in analysis, particularly in the study of elliptic functions. Unfortunately, his work was
not widely noticed until after his death. The distinguished French mathematician Legendre called it a
“monument more lasting than bronze.”
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Equation (26) can be solved immediately since it is both a first order linear equation
(Section 2.1) and a separable equation (Section 2.2). Thus

W(t) = cexp [— /p(t) dti| , 27)

where ¢ is a constant. The value of ¢ depends on which pair of solutions of Eq. (21)
is involved. However, since the exponential function is never zero, W(¢) is not
zero unless ¢ = 0, in which case W (¢) is zero for all ¢, which completes the proof of
Theorem 3.2.6.

Note that the Wronskians of any two fundamental sets of solutions of the same
differential equation can differ only by a multiplicative constant, and that the Wron-
skian of any fundamental set of solutions can be determined, up to a multiplicative
constant, without solving the differential equation. Further, since under the condi-
tions of Theorem 3.2.6 the Wronskian W is either always zero or never zero, you can
determine which case actually occurs by evaluating W at any single convenient value
of r.

In Example 5 we verified that y;(t) = t'/? and y,(t) = ¢~! are solutions of the equation
262y + 3ty —y =0, t>0. (28)

Verify that the Wronskian of y; and y; is given by Eq. (22).
From the example just cited we know that W (y;, y2)(t) = —(3/2)t~3/2. To use Eq. (22), we
must write the differential equation (28) in the standard form with the coefficient of y” equal

to 1. Thus we obtain 3
" Ty -y — 07
Yot 2ty 212y

so p(t) = 3/2t. Hence

W(y1,y2)(t) = c exp [—/ %dr} = cexp (—% In t)
=ct72 (29)

Equation (29) gives the Wronskian of any pair of solutions of Eq. (28). For the particular
solutions given in this example we must choose ¢ = —3/2.

Summary. We can summarize the discussion in this section as follows: to find the
general solution of the differential equation

Vi+p®y +q)y =0, a<t<p,

we must first find two functions y; and y, that satisfy the differential equation in
a <t < B. Then we must make sure that there is a point in the interval where the
Wronskian W of y; and y; is nonzero. Under these circumstances y; and y, form a
fundamental set of solutions and the general solution is

y =cy1(t) + ey (1),

where ¢; and ¢, are arbitrary constants. If initial conditions are prescribed at a point
ina <t < B,then ¢; and ¢, can be chosen so as to satisfy these conditions.



3.2 Solutions of Linear Homogeneous Equations; the Wronskian 155

PROBLEMS

In each of Problems 1 through 6 find the Wronskian of the given pair of functions.

1. ¥, 32 2. cost, sint
3. ¢k, e 4. x, xe*
5. e'sint, ¢’ cost 6. cos?6, 1+ cos20

In each of Problems 7 through 12 determine the longest interval in which the given initial value
problem is certain to have a unique twice differentiable solution. Do not attempt to find the
solution.

7. ty" +3y=t, yh=1, yQQ)=2
8. (t—1y" =3ty +4y =sint, y(=2)=2, y(-2)=1
9. tt —4)y" +3ty +4y =2, y3) =0, y3) =-1
10. y” + (cost)y’ + 3(In|t|)y = 0, y2)=3, y2)=1
11. (x —3)y" +xy + (In|x))y =0, ybH) =0, yD=1
12. (x=2)y"+y + (x —2)(tanx)y = 0, y@3 =1 y@B3 =2

13. Verify that y;(t) = > and y,(t) = ¢! are two solutions of the differential equation
t2y" —2y =0 for t > 0. Then show that y = ¢;#*> 4 ¢,¢™! is also a solution of this equa-
tion for any ¢; and c;.

14. Verify that y;(f) = 1 and y, () = t'/? are solutions of the differential equation
yy" + ()2 =0 for ¢ > 0. Then show that y = ¢| + ¢,t"/? is not, in general, a solution of
this equation. Explain why this result does not contradict Theorem 3.2.2.

15. Show that if y = ¢ (¢) is a solution of the differential equation y” + p(t)y' + q(t)y = g(¢),
where g(¢) is not always zero, then y = c¢ (t), where c is any constant other than 1, is not a
solution. Explain why this result does not contradict the remark following Theorem 3.2.2.

16. Can y = sin(#?) be a solution on an interval containing ¢ = 0 of an equation
y'+ p@)y 4+ q(t)y = 0 with continuous coefficients? Explain your answer.

17. If the Wronskian W of f and g is 3e*, and if f(¢) = %, find g(¢).
18. If the Wronskian W of f and g is t?¢’, and if f(¢) = ¢, find g(¢).

19. If W(f,g) is the Wronskian of f and g, and if u = 2f — g,v = f + 2g, find the Wronskian
W (u,v) of u and v in terms of W (f, g).

20. Ifthe Wronskianof fandgistcost — sint,andifu = f 4+ 3g,v = f — g,find the Wronskian
of u and v.

21. Assume that y; and y, are a fundamental set of solutions of y” + p(t)y' + q(¢t)y = 0 and
let y3 = a1y1 + a2y, and y4 = b1y, + byy,, where a4, a;, by, and b, are any constants. Show
that

W(y3,y4) = (a1bs — azb1) W (y1,y2).

Are y; and y, also a fundamental set of solutions? Why or why not?
In each of Problems 22 and 23 find the fundamental set of solutions specified by Theorem 3.2.5
for the given differential equation and initial point.
22. y"+y =2y =0, tHh=0
23. y"+4y +3y =0, th=1
In each of Problems 24 through 27 verify that the functions y; and y, are solutions of the given
differential equation. Do they constitute a fundamental set of solutions?
24. ¥y +4y =0; y1(t) =cos2t, y,(t) =sin2t
25. " =2y +y=0; @) =é, y@) =te
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26.
27.

28.

41.

Ky —x(x+2)y +(x+2y=0, x>0, yi(x)=x, y(x)=xe
(1 —xcotx)y” —xy'+y=0, O0<x<m; yi(x) =x, y(x)=sinx

Consider the equation y” —y' — 2y = 0.

(a) Show that y;(¢) = e~ and y,(¢) = ¢* form a fundamental set of solutions.

(b) Let y3(t) = =2¢*, ya(t) = y1(2) + 2y2(2), and ys(1) = 2y1(1) — 2y3(1). Are y3(1), ya(t),
and ys(¢) also solutions of the given differential equation?

(c) Determine whether each of the following pairs forms a fundamental set of solutions:

i@, y:O); 2@®,y3(D]; 1D, y4(O;  [ya(®),ys®].

In each of Problems 29 through 32 find the Wronskian of two solutions of the given
differential equation without solving the equation.

29. 2y —t(t+2)y + (t+2)y =0 30. (cost)y” + (sinf)y —ty =0

31. X2y 4+ xy + (x> —vH)y =0, Bessel’s equation

32. 1 —=x?)y" —2xy +a(a+1)y =0, Legendre’s equation

33. Show thatif p is differentiable and p(¢) > 0, then the Wronskian W (¢) of two solutions
of [p()y'l + q@t)y =0is W(t) = ¢/p(t), where c is a constant.

34. If y; and y, are a fundamental set of solutions of ty” +2y' +te'y =0 and if
W(y1,y2)(1) = 2, find the value of W (yy, y2)(5).

35. If y; and y, are a fundamental set of solutions of 2y — 2y’ 4+ (3 +t)y =0 and if
W(y1,y2)(2) = 3, find the value of W (y1, y2)(4).

36. If the Wronskian of any two solutions of y” + p(#)y" + q(¢)y = 01is constant, what does
this imply about the coefficients p and g?

37. If f, g, and h are differentiable functions, show that W (fg, fh) = f2W (g, h).

In Problems 38 through 40 assume that p and g are continuous and that the functions y; and

¥ are solutions of the differential equation y” + p(¢)y’ + ¢(¢)y = 0 on an open interval /.

38. Provethatify, and y, are zero at the same pointin /, then they cannot be a fundamental
set of solutions on that interval.

39. Prove thatif y; and y, have maxima or minima at the same pointin /, then they cannot
be a fundamental set of solutions on that interval.

40. Prove that if y; and y, have a common point of inflection ¢, in /, then they cannot be
a fundamental set of solutions on / unless both p and g are zero at .

Exact Equations. The equation P(x)y” + Q(x)y’ + R(x)y = 0 is said to be exact if it can
be written in the form [P(x)y']" + [f (x)y] = 0, where f(x) is to be determined in terms of
P(x),O(x), and R(x). The latter equation can be integrated once immediately, resulting
in a first order linear equation for y that can be solved as in Section 2.1. By equating the
coefficients of the preceding equations and then eliminating f(x), show that a necessary
condition for exactness is P”(x) — Q'(x) + R(x) = 0. It can be shown that this is also a
sufficient condition.

In each of Problems 42 through 45 use the result of Problem 41 to determine whether the
given equation is exact. If so, solve the equation.

42.

Y +xy +y=0 43. y' +3x%y +xy =0

44. xy" — (cosx)y + (sinx)y =0, x>0 45. X*y" 4+ xy' —y=0, x>0

46.

The Adjoint Equation. If a second order linear homogeneous equation is not exact, it
can be made exact by multiplying by an appropriate integrating factor p(x). Thus we
require that (x) be such that u(x)P(x)y” + n(x)Q(x)y" + w(x)R(x)y = 0 can be written
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in the form [ (x)P(x)y'] + [f (x)y] = 0. By equating coefficients in these two equations
and eliminating f(x), show that the function x must satisfy

Pu”+ QP - Q'+ (P" = Q'+ R =0.

This equation is known as the adjoint of the original equation and is important in the
advanced theory of differential equations. In general, the problem of solving the ad-
joint differential equation is as difficult as that of solving the original equation, so only
occasionally is it possible to find an integrating factor for a second order equation.

In each of Problems 47 through 49 use the result of Problem 46 to find the adjoint of the given
differential equation.

47. x%y" +xy'+ (x* —v¥)y =0,  Bessel’s equation
48. (1 —x%)y" —2xy +a(a + 1)y =0, Legendre’s equation
49. y' —xy =0, Airy’s equation

50. For the second order linear equation P(x)y” 4+ Q(x)y’ + R(x)y = 0, show that the adjoint
of the adjoint equation is the original equation.

51. A second order linear equation P(x)y” + Q(x)y’ + R(x)y = 0 is said to be self-adjoint if
its adjoint is the same as the original equation. Show that a necessary condition for this
equation to be self-adjoint is that P'(x) = Q(x). Determine whether each of the equations
in Problems 47 through 49 is self-adjoint.

3.3 Complex Roots of the Characteristic Equation

We continue our discussion of the equation
ay” + by +cy =0, ey

where a, b, and ¢ are given real numbers. In Section 3.1 we found that if we seek
solutions of the form y = ¢, then r must be a root of the characteristic equation

ar* + br+¢=0. 2)

If the roots r; and r, are real and different, which occurs whenever the discriminant
b? — 4ac is positive, then the general solution of Eq. (1) is

y =cre" + cre™. 3)

Suppose now that b> — 4ac is negative. Then the roots of Eq. (2) are conjugate
complexnumbers; we denote them by

rn=r+iu, rn=A—Iiu, (4)
where A and p are real. The corresponding expressions for y are
yi®) =expl(A + )], y2(1) = exp[(r — ip)t]. ®)

Our first task is to explore what is meant by these expressions, which involve evaluat-
ing the exponential function for a complex exponent. For example, if
A= —1,u=2,and ¢t = 3, then from Eq. (5),

NG =e (6)
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What does it mean to raise the number e to a complex power? The answer is provided
by an important relation known as Euler’s formula.

Euler’s Formula. To assign a meaning to the expressions in Egs. (5), we need to give
a definition of the complex exponential function. Of course, we want the definition
to reduce to the familiar real exponential function when the exponent is real. There
are several ways to discover how this extension of the exponential function should
be defined. Here we use a method based on infinite series; an alternative is outlined
in Problem 28.

Recall from calculus that the Taylor series for ¢/ about t = 0 is

oo

ti’l

I/l_! 5
n=0

t

e = —00 <t < 00. 7

If we now assume that we can substitute if for ¢ in Eq. (7), then we have

gt — =, (it)"
- s n!
B 0 (- 1)nt2n ( l)n 1t2n 1
_Z (2n)! @en-1! ®

n=1

3

where we have separated the sum into its real and imaginary parts, making use of the
fact that /> = —1,3 = —i,i* = 1, and so forth. The first series in Eq. (8) is precisely
the Taylor series for cos ¢ about ¢ = 0, and the second is the Taylor series for sin ¢
about ¢ = 0. Thus we have

e = cost 4 isint. 9)

Equation (9) is known as Euler’s formula and is an extremely important mathe-
matical relationship. Although our derivation of Eq. (9) is based on the unverified
assumption that the series (7) can be used for complex as well as real values of the
independent variable, our intention is to use this derivation only to make Eq. (9)
seem plausible. We now put matters on a firm foundation by adopting Eq. (9) as the
definition of ¢". In other words, whenever we write ¢, we mean the expression on
the right side of Eq. (9).

There are some variations of Euler’s formula that are also worth noting. If we
replace t by —¢ in Eq. (9) and recall that cos(—f) = cos¢ and sin(—¢) = —sin¢, then
we have

e ' = cost —isint. (10)

Further, if ¢ is replaced by ut in Eq. (9), then we obtain a generalized version of
Euler’s formula, namely,
= cos ut + isin ut. (11)

Next, we want to extend the definition of the exponential function to arbitrary com-
plex exponents of the form (A + iw)f. Since we want the usual properties of the expo-
nential function to hold for complex exponents, we certainly want
exp[(A + iu)t] to satisfy

e(A+iu)l _ e)»temt (12)
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EXAMPLE

1

Then, substituting for ¢/ from Eq. (11), we obtain

ePHI — oM (cos ut + isin ut)

= e cos ut + ie* sin put. (13)
We now take Eq. (13) as the definition of exp[(A + iu)t]. The value of the exponential
function with a complex exponent is a complex number whose real and imaginary
parts are given by the terms on the right side of Eq. (13). Observe that the real

and imaginary parts of exp[(A + iu)t] are expressed entirely in terms of elementary
real-valued functions. For example, the quantity in Eq. (6) has the value

e 30 — 3 cos6 + ie 3 sin 6 = 0.0478041 — 0.0139113i.

With the definitions (9) and (13) it is straightforward to show that the usual laws of
exponents are valid for the complex exponential function. You can also use Eq. (13)
to verify that the differentiation formula

d N it
E(e ) =re (14)

holds for complex values of r.

Find the general solution of the differential equation
Y +y +9.25y =0, (15)
Also find the solution that satisfies the initial conditions

yO =2, y(0) =8, (16)

and draw its graph.
The characteristic equation for Eq. (15) is

PP4+r+4925=0

S0 its roots are
1

n=-143i, n=-1-3i

Therefore two solutions of Eq. (15) are

yi(0) = exp[(—1 + 3i)1] = e™/*(cos 3t + i sin31) 17)
and

y2(t) = expl(—3 — 3i)1] = e”"*(cos 3t — i sin 31). (18)
You can verify that the Wronskian W (yy,y,)(t) = —6ie™*, which is not zero, so the general

solution of Eq. (15) can be expressed as a linear combination of y, (¢) and y,(¢) with arbitrary
coefficients.

However, rather than using the complex-valued solutions y; (¢) and y,(¢), let us seek instead
a fundamental set of solutions of Eq. (15) that are real-valued. From Theorem 3.2.2 we
know that any linear combination of two solutions is also a solution, so let us form the linear
combinations y; (t) + y»(¢) and y;(¢) — y,(¢). In this way we obtain from Egs. (17) and (18)

Y1) + y2(t) =27 cos3t,  yi(t) — y2(t) = 2ie”/* sin 3t.
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FIGURE 3.3.1 Solution of the initial value problem
Y +y +925y=0, y0) =2, y(0)=38

Dropping the multiplicative constants 2 and 2i for convenience, we are left with
u(t) = e? cos 3t, v(t) = e /?sin 3¢ (19)

as real-valued solutions of Eq. (15). [If you are not completely sure that u(f) and v(¢) are
solutions of the given differential equation, you should substitute these functions into Eq. (15)
and confirm that they satisfy it.] On calculating the Wronskian of u(¢) and v(¢), we find
that W (u,v)(f) = 3e™’; thus u(r) and v(¢) form a fundamental set of solutions and the general
solution of Eq. (15) can be written as

y = cru(t) + cav(t) = e *(c; cos 3t + ¢, sin 3¢), (20)

where c; and ¢, are arbitrary constants.

To satisfy the initial conditions (16), we first substitute t = 0 and y =2 in Eq. (20) with
the result that ¢; = 2. Then by differentiating Eq. (20), setting t = 0, and y’ = 8, we obtain
—3e1 4 3¢; = 8,50 that ¢; = 3. Thus the solution of the initial value problem (15), (16) is

y = e/*(2cos 3t + 3sin 31). (21)

The graph of this solution is shown in Figure 3.3.1.

From the graph we see that the solution of this problem is a decaying oscillation. The sine
and cosine factors control the oscillatory nature of the solution, while the negative exponential
factor in each term causes the magnitude of the oscillations to diminish as time increases.

Complex Roots; The General Case. The functions y;(t) and y,(¢), given by Egs. (5) and
with the meaning expressed by Eq. (13), are solutions of Eq. (1) when the roots
of the characteristic equation (2) are complex numbers A £ ip. Unfortunately, the
solutions y; and y, are complex-valued functions, whereas in general we would prefer
to have real-valued solutions, if possible, because the differential equation itself has
real coefficients. We can proceed just as in Example 1 to find a fundamental set of



3.3 Complex Roots of the Characteristic Equation 161

EXAMPLE

2

real-valued solutions. In particular, let us form the sum and then the difference of y;
and y,. We have

y1(t) + y2(t) = € (cos ut + isin ut) + e (cos put — isin ut)
= 2¢* cos ut
and
y1(t) — y2(t) = € (cos ut + isin ut) — e (cos jut — isin jut)
= 2ie sin ut.

Hence, neglecting the constant multipliers 2 and 2i, respectively, we have obtained a
pair of real-valued solutions

u(t) =eMcospt, () =€ sinput. (22)

Observe that u and v are simply the real and imaginary parts, respectively, of y;.
By direct computation you can show that the Wronskian of u and v is

W (u, v)(t) = ne*. (23)

Thus, as long as u # 0, the Wronskian W is not zero, so u and v form a fundamental
set of solutions. (Of course, if u = 0, then the roots are real and the discussion in this
section is not applicable.) Consequently, if the roots of the characteristic equation
are complex numbers A £ ip, with u # 0, then the general solution of Eq. (1) is

y = c1e* cos jut + cre sin ut, (24)

where ¢; and ¢, are arbitrary constants. Note that the solution (24) can be written
down as soon as the values of A and u are known. Let us now consider some further
examples.

Find the solution of the initial value problem
16y" — 8y" + 145y =0, y(©0)=-2, y(©0) =1 (25)

The characteristic equation is 16> — 87 + 145 = 0 and its roots are r = 1/4 4 3i. Thus the
general solution of the differential equation is

y = cre'’* cos 3t + c,e’* sin 3t. (26)
To apply the first initial condition, we set t = 0 in Eq. (26); this gives
y(0) =¢c; =-2.

For the second initial condition we must differentiate Eq. (26) and then set ¢ = 0. In this way
we find that

Y(0) =1 4+36 =1,
from which ¢, = 1/2. Using these values of ¢; and ¢, in Eq. (26), we obtain
y = —2¢"* cos 3t + Le* sin 3t (27)

as the solution of the initial value problem (25). The graph of this solution is shown in Fig-
ure 3.3.2.
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FIGURE 3.3.2 Solution of 16y” — 8y + 145y = 0, y(0) = —2, y'(0) = 1.

In this case we observe that the solution is a growing oscillation. Again the trigonometric
factors in Eq. (27) determine the oscillatory part of the solution, while the exponential factor
(with a positive exponent this time) causes the magnitude of the oscillation to increase with
time.

Find the general solution of
EXAMPLE Y +9y =0. (28)

3

The characteristic equation is 7> + 9 = 0 with the roots r = £3i;thus A = 0 and u = 3. The
general solution is
y = ¢1 cos 3t 4 ¢, sin 3¢, (29)

FIGURE 3.3.3 Two typical solutions of y” + 9y = 0.
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note that if the real part of the roots is zero, as in this example, then there is no exponential
factor in the solution. Figure 3.3.3 shows the graph of two typical solutions of Eq. (28). In each
case the solution is a pure oscillation whose amplitude is determined by the initial conditions.
Since there is no exponential factor in the solution (29), the amplitude of each oscillation
remains constant in time.

PROBLEMS In each of Problems 1 through 6 use Euler’s formula to write the given expression in the form

a+ib.
1. exp(1 + 2i) 2. exp(2 — 3i)
3. €7 4. 2=/2i
5. 2t 6. w2
In each of Problems 7 through 16 find the general solution of the given differential equation.
7.y =2y'+2y=0 8. y'=2y'+6y=0
9. y"+2y—8y=0 10. y"+2y' +2y =0
11. y" 4+ 6y’ + 13y =0 12. 4y" +9y =0
13. y"+2y' +1.25y =0 14. 9" 49y —4y =0
15. y"+y +125y =0 16. y" +4y' +6.25y =0

In each of Problems 17 through 22 find the solution of the given initial value problem. Sketch
the graph of the solution and describe its behavior for increasing ¢.

17.
18.
19.
20.
21.
22.
& 2.
& 24
& 2.

Y'+4y=0,  y0)=0, y©O=1

Y'+4y +5y=0,  yO =1, y(©0) =0
V=2 +5y =0, y@/2)=0, y(r/2)=2
Vi+y=0, y@/3)=2, y@@/3)=-4

Y +y +125y =0, y0) =3, YO0 =1
Y42y +2y=0,  y@/H =2, y@/4)=-2
Consider the initial value problem

3u" —u +2u=0, u =2, 0 =0.

(a) Find the solution u(#) of this problem.
(b) Fort > 0 find the first time at which |u(#)| = 10.

Consider the initial value problem
Su” 4+ 2u +Tu =0, ul0) =2, 0 =1.

(a) Find the solution u(f) of this problem.
(b) Find the smallest T such that |u(t)| < 0.1 forallz > T.

Consider the initial value problem
Y'+2y +6y=0, y0) =2, y@©0) =a>0.

(a) Find the solution y(¢) of this problem.
(b) Find « so that y = 0 when ¢ = 1.

(c) Find, as a function of «, the smallest positive value of ¢ for which y = 0.

(d) Determine the limit of the expression found in part (c) as « — oo.
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& 26.

217.
28.

29.

30.
31.

32.

33.

Consider the initial value problem
Y420 +@+1)y=0, y0) =1, y(©0) =0.

(a) Find the solution y(¢) of this problem.

(b) For a =1 find the smallest 7 such that |y(z)| < 0.1 fort > T.

(c) Repeat part (b) fora = 1/4,1/2,and 2.

(d) Using the results of parts (b) and (c), plot T versus a and describe the relation between
T and a.

Show that W (e* cos ut, e sin ut) = pe?.

In this problem we outline a different derivation of Euler’s formula.

(a) Show that y;(f) = cost and y,(t) =sint are a fundamental set of solutions of
y" +y = 0; that is, show that they are solutions and that their Wronskian is not zero.

(b) Show (formally) that y = e is also a solution of y” 4+ y = 0. Therefore
e = cjcost + ¢ sint @)

for some constants c¢; and c,. Why is this so?

(c) Sett=0in Eq. (i) to show that¢; = 1.

(d) Assuming that Eq. (14) is true, differentiate Eq. (i) and then set ¢ = 0 to conclude that
¢; = i. Use the values of ¢; and ¢; in Eq. (i) to arrive at Euler’s formula.

Using Euler’s formula, show that
cost = (e +e7)/2, sint = (e — e ") /2i.

If " is given by Eq. (13), show that e"1772) = ¢"e"! for any complex numbers r; and r,.
If ¢ is given by Eq. (13), show that

for any complex number r.

Let the real-valued functions p and g be continuous on the open interval /, and let
y = ¢(t) = u(t) + iv(¢) be a complex-valued solution of

Y +p@®y +q@)y =0, ()

where u and v are real-valued functions. Show that u and v are also solutions of Eq. (i).
Hint: Substitute y = ¢ (¢) in Eq. (i) and separate into real and imaginary parts.

If the functions y; and y, are a fundamental set of solutions of y” + p(t)y' + q(t)y =0,
show that between consecutive zeros of y; there is one and only one zero of y,. Note
that this result is illustrated by the solutions y; (#) = cost and y,(¢) = sint of the equation
y'+y=0.

Hint: Suppose that t; and ¢, are two zeros of y; between which there are no zeros of y,.
Apply Rolle’s theorem to y; /y, to reach a contradiction.

Change of Variables. Sometimes a differential equation with variable coefficients,

y' +p@®)y +q®y =0, ()

can be put in a more suitable form for finding a solution by making a change of the independent
variable. We explore these ideas in Problems 34 through 46. In particular, in Problem 34 we
show that a class of equations known as Euler equations can be transformed into equations
with constant coefficients by a simple change of the independent variable. Problems 35 through
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42 are examples of this type of equation. Problem 43 determines conditions under which the
more general Eq. (i) can be transformed into a differential equation with constant coefficients.
Problems 44 through 46 give specific applications of this procedure.

34. Euler Equations. An equation of the form

d&? dy

zd—g+at—+ﬂy_0 t>0, (i)
where « and 8 are real constants, is called an Euler equation.

(a) Letx = Int and calculate dy/dt and d*y/dt? in terms of dy/dx and d?y/dx>.

(b) Use the results of part (a) to transform Eq. (ii) into
2y
d2+(a—1)—+ﬁ (iii)

Observe that Eq. (iii) has constant coefficients. If y; (x) and y,(x) form a fundamental set
of solutions of Eq. (iii), then y;(In¢) and y,(In¢) form a fundamental set of solutions of

Eq. (ii).
In each of Problems 35 through 42 use the method of Problem 34 to solve the given equation
fort > 0.
35. 2y +ty +y=0 36. 2y +4ty' +2y =0
37. 2y"+3ty +125y =0 38. 2y" — 4ty — 6y =0
39. 2y’ — 4ty + 6y =0 40. tzy” —ty +5y=0
4. 2y’ +3ty =3y =0 2. 2y +7ty +10y =0

43. In this problem we determine conditions on p and g that enable Eq. (i) to be transformed
into an equation with constant coefficients by a change of the independent variable. Let
x = u(t) be the new independent variable, with the relation between x and ¢ to be specified
later.

(a) Show that
b _didy  dy_(d\'dy Exdy
dt ~ dt dx’ drr ~ \dt) dx®  de? dx’

(b) Show that the differential equation (i) becomes

dx\" &y d’x dy .
(E) a2 + (W + (t)*) T +q()y=0. (iv)

(c) In order for Eq. (iv) to have constant coefficients, the coefficients of d?y/dx* and of y
must be proportional. If g(¢) > 0, then we can choose the constant of proportionality to
be 1;hence

x=u() = / [q(0)]"? dt. ™)

(d) With x chosen as in part (c), show that the coefficient of dy/dx in Eq. (iv) is also a
constant, provided that the expression

40 +2p(1)g(0)
2lqP>
is a constant. Thus Eq. (i) can be transformed into an equation with constant coefficients

by a change of the independent variable, provided that the function (¢' + 2pq)/q*? is a
constant. How must this result be modified if g(¢) < 0?

(vi)
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In each of Problems 44 through 46 try to transform the given equation into one with constant
coefficients by the method of Problem 43. If this is possible, find the general solution of the
given equation.

44. y”—{—ty/—f-e“zy:O, —00 <t <00

45. y" + 3ty + 2y =0, —00 <t <0

46. ty" + (> — 1)y + 3y =0, 0<t<oo

3.4 Repeated Roots; Reduction of Order

EXAMPLE

1

In earlier sections we showed how to solve the equation
ay” + by +cy=0 (1)
when the roots of the characteristic equation
ar* +br+c=0 2)

either are real and different or are complex conjugates. Now we consider the third
possibility, namely, that the two roots r; and r, are equal. This case is transitional
between the other two and occurs when the discriminant b> — 4ac is zero. Then it
follows from the quadratic formula that

r=rn= —b/2a. (3)
The difficulty is immediately apparent; both roots yield the same solution
yi(e) = e )

of the differential equation (1), and it is not obvious how to find a second solution.

Solve the differential equation
V' +4y +4y =0. 5)

The characteristic equation is
P 4dr+4=0+27"=0,

sory, = r, = —2. Therefore one solution of Eq. (5) is y; (t) = e %. To find the general solution
of Eq. (5), we need a second solution that is not a multiple of y;. This second solution can
be found in several ways (see Problems 20 through 22); here we use a method originated by
D’Alembert’ in the eighteenth century. Recall that since y;(¢) is a solution of Eq. (1), so is
cy1(t) for any constant c. The basic idea is to generalize this observation by replacing ¢ by a

3Jean d’Alembert (1717-1783), a French mathematician, was a contemporary of Euler and Daniel
Bernoulli and is known primarily for his work in mechanics and differential equations. D’Alembert’s
principle in mechanics and d’Alembert’s paradox in hydrodynamics are named for him, and the wave
equation first appeared in his paper on vibrating strings in 1747. In his later years he devoted himself
primarily to philosophy and to his duties as science editor of Diderot’s Encyclopédie.
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function v(#) and then trying to determine v(¢) so that the product v(¢)y;(¢) is also a solution
of Eq. (1).

To carry out this program, we substitute y = v(#)y; (¢) in Eq. (5) and use the resulting equation
to find v(¢). Starting with

y = vy (t) = v(t)e ¥, (6)
we have
y =v e ¥ —2vt)e™ (7)
and
Yy =" (e — ' (e + dv(t)e . (8)

By substituting the expressions in Egs. (6), (7), and (8) in Eq. (5) and collecting terms, we
obtain
[ () — 40 (t) + 4v(t) + 40’ (1) — Sv(t) + 4v(t)]e ™ =0,

which simplifies to

v'(t) = 0. )
Therefore
V() =
and
() = cit + ¢, (10)

where ¢; and ¢, are arbitrary constants. Finally, substituting for v(¢) in Eq. (6), we obtain
y =cite™ + ce7 . (11)

The second term on the right side of Eq. (11) corresponds to the original solution
y1(t) = exp(—2t), but the first term arises from a second solution, namely, y,(¢) = t exp(—2¢).
We can verify that these two solutions form a fundamental set by calculating their Wronskian:

et te=2t
WOLy O =1_5 2 _2pe2

=¥ e £ 2e™H =M £0.

Therefore
i)y =e?,  y(0) =te (12)

form a fundamental set of solutions of Eq. (5), and the general solution of that equation is
given by Eq. (11). Note that both y,(¢) and y,(¢) tend to zero as t — oo; consequently, all
solutions of Eq. (5) behave in this way. The graph of a typical solution is shown in Figure 3.4.1.

\ | \ \
0.5 1 1.5 2 t

FIGURE 3.4.1 A typical solution of y” + 4y’ 4+ 4y = 0.
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The procedure used in Example 1 can be extended to a general equation whose
characteristic equation has repeated roots. That is, we assume that the coefficients
in Eq. (1) satisfy b*> — 4ac = 0, in which case

yi(e) = e P
is a solution. To find a second solution, we assume that
y = v@Oyi(0) = v(e " (13)

and substitute for y in Eq. (1) to determine v(¢). We have
b
y = v (H)e b2 — %U(t)e_b[/za (14)

and )
b b
y// — U//(t)e—bt/Za _ _U/(t)e—bt/2a 4 _v(t)e—bt/Za' (15)
a 4a?

Then, by substituting in Eq. (1), we obtain
2

{a [v”(t) — gv’(t) + f?v(t)} +b [v’(t) — 2b—av(t):| + cv(t)} e P2 =0, (16)

Canceling the factor exp(—bt/2a), which is nonzero, and rearranging the remaining
terms, we find that
2 b2

av” () + (=b + b)v'(t) + <b— - — + c) v(t) =0. 17)
da 2a

The term involving v'(¢) is obviously zero. Further, the coefficient of v(¢) is
¢ — (b*/4a), which is also zero because b*> — 4dac = 0 in the problem that we are
considering. Thus, just as in Example 1, Eq. (17) reduces to

v'(t) = 0;

therefore
v(t) = c1 + cat.

Hence, from Eq. (13), we have
y = cre P2 4 cypett?e, (18)

Thus y is a linear combination of the two solutions

yi@)y = e () = e (19)
The Wronskian of these two solutions is
e—bZ/Za te—bl/2a
WOLydO =\ b _py (| B b = e, (20)
2a 2a

Since W(y1,y2)(t) is never zero, the solutions y; and y, given by Eq. (19) are a
fundamental set of solutions. Further, Eq. (18) is the general solution of Eq. (1)
when the roots of the characteristic equation are equal. In other words, in this case
there is one exponential solution corresponding to the repeated root, and a second
solution that is obtained by multiplying the exponential solution by ¢.
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EXAMPLE

2

Find the solution of the initial value problem
Yy =y +025y=0, y0)=2 (0 =1 (21)

The characteristic equation is
P —r+025=0,

so the roots are r; = r, = 1/2. Thus the general solution of the differential equation is
y = c1e'’? + cte’?. (22)
The first initial condition requires that
y(0)=¢ =2.

To satisfy the second initial condition, we first differentiate Eq. (22) and then set t = 0. This
gives
YO) =j3c+6=1,

50 ¢, = —2/3. Thus the solution of the initial value problem is

12— gl (23)

y=2e

The graph of this solution is shown in Figure 3.4.2.

~ R

y'(0) = 2: y = 2! 4 tetl?

0) = L. a0t _ 24,2
y(O)—3.y—2e Ste

1

FIGURE 3.4.2 Solutions of y” —y 4+ 0.25y =0, y(0) =2,
with y'(0) = 1/3 and with y’(0) = 2, respectively.

Let us now modify the initial value problem (21) by changing the initial slope; to be specific,
let the second initial condition be y’(0) = 2. The solution of this modified problem is

y =27 +te'?,

and its graph is also shown in Figure 3.4.2. The graphs shown in this figure suggest that there is a
critical initial slope, with a value between % and 2, that separates solutions that grow positively
from those that ultimately grow negatively. In Problem 16 you are asked to determine this
critical initial slope.
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The geometrical behavior of solutions is similar in this case to that when the roots
are real and different. If the exponents are either positive or negative, then the
magnitude of the solution grows or decays accordingly; the linear factor ¢ has little
influence. A decaying solution is shown in Figure 3.4.1 and growing solutions in
Figure 3.4.2. However, if the repeated root is zero, then the differential equation is
y” = 0 and the general solution is a linear function of ¢.

Summary. We can now summarize the results that we have obtained for second order
linear homogeneous equations with constant coefficients

ay” +by +cy=0. (1)
Let r; and r, be the roots of the corresponding characteristic polynomial
ar* + br+c=0. )

If r; and r, are real but not equal, then the general solution of the differential
equation (1) is
y =cre™ + cre™. 24)

If r; and r, are complex conjugates X £ iu, then the general solution is
y = c1e™ cos ut + cre™ sin put. (25)
If r; = rp, then the general solution is
y = cie" + cpte’. (26)
Reduction of Order. It is worth noting that the procedure used in this section for equa-

tions with constant coefficients is more generally applicable. Suppose that we know
one solution y;(¢), not everywhere zero, of

Y +p®y +q0y=0. 27)
To find a second solution, let
y=vOyi(0); (28)
then
Y =00y +v@)y )
and
Y =0"Oy10) + 20 @)y () + vy ().
Substituting for y,y’, and y” in Eq. (27) and collecting terms, we find that
y” + @yy +py)v + Of +pyi + qy)v = 0. (29)

Since y; is a solution of Eq. (27), the coefficient of v in Eq. (29) is zero, so that Eq. (29)
becomes

yiv" 4+ Qy| + py)v' = 0. (30)

Despite its appearance, Eq. (30) is actually a first order equation for the function v’
and can be solved either as a first order linear equation or as a separable equation.
Once v’ has been found, then v is obtained by an integration. Finally, y is determined
from Eq. (28). This procedure is called the method of reduction of order, because the
crucial step is the solution of a first order differential equation for v’ rather than the
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original second order equation for y. Although it is possible to write down a formula
for v(t), we will instead illustrate how this method works by an example.

Given that y;(t) = t~! is a solution of
EXAMPLE )
3 2ty + 3ty —y =0, t>0, (31)

find a fundamental set of solutions.
We set y = v(¢)t~!; then

y =vtt -2, Yy =0 =20 20,
Substituting for y, y’, and y” in Eq. (31) and collecting terms, we obtain
20" — 20 20 + 3 — v ) — ot !
=200 4+ (=4 +3)0v + @ =3 —
=2t —v' =0. (32)

Note that the coefficient of v is zero, as it should be; this provides a useful check on our algebra.
Separating the variables in Eq. (32) and solving for v'(¢), we find that

V(1) = ct'?

then
v(0) = e + k.

It follows that
y=2ca'?+ k™, (33)

where ¢ and k are arbitrary constants. The second term on the right side of Eq. (33) is a
multiple of y;(¢) and can be dropped, but the first term provides a new solution y,(f) = /2.
You can verify that the Wronskian of y; and y; is

Wy) () =377, t>0. (34)

Consequently, y; and y, form a fundamental set of solutions of Eq. (31).

PROBLEMS In each of Problems 1 through 10 find the general solution of the given differential equation.

1.y =2y +y=0 2.99"4+6y+y=0

3. 4y" -4y -3y =0 4. 4y" +12y' +9y =0
5.y =2y +10y=0 6.y —6y'+9y=0

7. 4"+ 17y +4y =0 8. 16y" +24y'+9y =0
9. 25y" —20y'+4y =0 10. 2y" +2y'+y =0

In each of Problems 11 through 14 solve the given initial value problem. Sketch the graph of
the solution and describe its behavior for increasing .

11. 9y — 12y’ 4+ 4y =0, y0) =2, y(©0)=-1
12. y" — 6y +9y =0, y0)=0, Y0 =2

13. 9y" + 6y’ + 82y =0, y0)=-1, y(©0) =2
14. y"+4y +4y =0, vy =2, y1H=1
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& 1s.

16.

& 1.

18.

19.

Consider the initial value problem
4" +12y' +9y =0, yO) =1, y(©O) =-4

(a) Solve the initial value problem and plot its solution for 0 < ¢ < 5.
(b) Determine where the solution has the value zero.
(c) Determine the coordinates (zy, yo) of the minimum point.

(d) Change the second initial condition to y'(0) = b and find the solution as a function
of b. Then find the critical value of b that separates solutions that always remain positive
from those that eventually become negative.

Consider the following modification of the initial value problem in Example 2:
y' =y +0.25y =0, y(0) =2, y'(0)=0h.
Find the solution as a function of b and then determine the critical value of b that separates

solutions that grow positively from those that eventually grow negatively.
Consider the initial value problem

4'+4y+y=0, yO) =1, yO) =2

(a) Solve the initial value problem and plot the solution.
(b) Determine the coordinates (fy, yy) of the maximum point.

(c) Change the second initial condition to y'(0) = b > 0 and find the solution as a function
of b.

(d) Find the coordinates (¢, yy) of the maximum point in terms of b. Describe the
dependence of ¢, and yy on b as b increases.

Consider the initial value problem
9y" + 12y +4y =0, y0)=a=>0, y(@0)=-1.

(a) Solve the initial value problem.

(b) Find the critical value of a that separates solutions that become negative from those
that are always positive.

If the roots of the characteristic equation are real, show that a solution of
ay” + by’ + cy = 0 is either everywhere zero or else can take on the value zero at most
once.

Problems 20 through 22 indicate other ways of finding the second solution when the charac-
teristic equation has repeated roots.

20.

21.

(a) Consider the equation y” 4 2ay’ 4+ a’y = 0. Show that the roots of the characteristic
equation are r; = r, = —a, so that one solution of the equation is e™.

(b) Use Abel’s formula [Eq. (22) of Section 3.2] to show that the Wronskian of any two
solutions of the given equation is

W) =y (t)y/z(z) —Yi(Oya(t) = Cle_z‘”,

where ¢, is a constant.

(c) Lety;(t) = e~ and use the result of part (b) to obtain a differential equation satisfied
by a second solution y;(¢). By solving this equation, show that y,(f) = te™*.

Suppose that r; and r, are roots of ar? + br 4+ c =0 and that r; # ry; then exp(rt)
and exp(r,t) are solutions of the differential equation ay” + by’ +cy = 0. Show that
@ (t;r1, 1) = [exp(rt) — exp(rt)]/(r, — rp) is also a solution of the equation for r, # ry.
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22.

Then think of r; as fixed and use L’Hospital’s rule to evaluate the limit of ¢ (¢;r,7,) as
r, — ry, thereby obtaining the second solution in the case of equal roots.

(a) If ar?> + br + ¢ = 0 has equal roots r{, show that
L[ert] — a(erz)// + b(err)/ + ce = a(r _ rl)Zert. (1)

Since the right side of Eq. (i) is zero when r = ry, it follows that exp(r;?) is a solution of
Llyl=ay"+ by +cy=0.

(b) Differentiate Eq. (i) with respect to r and interchange differentiation with respect to
r and with respect to ¢, thus showing that

0 0
EL[e”] =L [ae”} = L[te"] = ate”" (r — r)* + 2ae’' (r — 7). (ii)

Since the right side of Eq. (ii) is zero when r = r, conclude that t exp(r;¢) is also a solution
of L[y] =0.

In each of Problems 23 through 30 use the method of reduction of order to find a second
solution of the given differential equation.

23.
24.
25.
26.
27.
28.
29.
30.

31.

32.

gy’ —dty +6y=0, t>0; y()=r

t2y// + Zly/ — Zy = 0, > 0, yl(l) =1

2y +3ty +y=0, >0, y@)=t"

Py — 1t +2y + @ +2y=0, >0 yp@O =t

xy' —y +43y =0, x>0;  y(x)=sinx?

=Dy —xy'+y=0, x>1;  yx) =e

x%y’ — (x —0.1875)y =0, x>0; yi(x) = x!e2VE

Py xy + (2 =025y =0, x>0  y(x)=x""sinx

The differential equation

xy" = (x+N)y'+ Ny =0,
where N is a nonnegative integer, has been discussed by several authors.® One reason
why it is interesting is that it has an exponential solution and a polynomial solution.
(a) Verify that one solution is y; (x) = e*.
(b) Show that a second solution has the form y,(x) = ce* / xVe ™ dx. Calculate y,(x) for
N =1and N = 2; convince yourself that, with c = —1/N!,

PN x2 xN
yZ(X)— +1*!+27+"'+m.
Note that y,(x) is exactly the first N + 1 terms in the Taylor series about x = 0 for e*, that
is, for y; (x).
The differential equation
Y'+o(xy +y) =0

arises in the study of the turbulent flow of a uniform stream past a circular cylinder. Verify
that y; (x) = exp(—8x?/2) is one solution and then find the general solution in the form of
an integral.

°T. A. Newton, “On Using a Differential Equation to Generate Polynomials,” American Mathematical
Monthly 81 (1974), pp. 592-601. Also see the references given there.
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33. The method of Problem 20 can be extended to second order equations with variable
coefficients. If y; is a known nonvanishing solution of y” + p(t)y’ + q(¢)y = 0, show that
a second solution y; satisfies (y,/y1) = W (y; ,yz)/yf, where W (yy, y,) is the Wronskian of
y1 and y,. Then use Abel’s formula [Eq. (22) of Section 3.2] to determine y,.

In each of Problems 34 through 37 use the method of Problem 33 to find a second independent
solution of the given equation.

34, 2y"+3ty +y=0, t>0; yi(@t) =t

35. 19" —y +4y =0, > 0; y1(t) = sin(t?)

36. x—1)y"—xy'+y=0, x>1; yi(x) =e*

37. x% +xy 4+ x* —0.25)y =0, x> 0; y1(x) = x"2sinx

Behavior of Solutions as r — oo. Problems 38 through 40 are concerned with the behavior

of solutions as t — oo.

38. If a, b, and c are positive constants, show that all solutions of ay” + by’ + cy = 0 approach
Zero ast — oQ.

39. (a) Ifa > 0 and ¢ > 0,but b = 0, show that the result of Problem 38 is no longer true, but
that all solutions are bounded as t — oo.

(b) Ifa > 0and b > 0,but ¢ = 0, show that the result of Problem 38 is no longer true, but
that all solutions approach a constant that depends on the initial conditions as ¢ — oo.
Determine this constant for the initial conditions y(0) = yo,y'(0) = y;.

40. Show that y = sin¢ is a solution of
y" + (ksin® )y’ + (1 — kcostsinf)y = 0

for any value of the constant k. If 0 < k < 2,showthat1 — kcost¢sint > Oand k sin®z > 0.
Thus observe that even though the coefficients of this variable-coefficient differential equa-
tion are nonnegative (and the coefficient of y’ is zero only at the points t = 0,7,27,...),
it has a solution that does not approach zero as t — oco. Compare this situation with the
result of Problem 38. Thus we observe a not unusual situation in the study of differential
equations: equations that are apparently very similar can have quite different properties.

Euler Equations. In each of Problems 41 through 46 use the substitution introduced in Prob-
lem 34 in Section 3.3 to solve the given differential equation.

41. 2y" -3ty + 4y =0, t>0
42. 2y" + 2ty +0.25y =0, t>0
43. 22y" — 51y’ + 5y = 0, t>0
44. ?y" +3ty' +y =0, t>0

45. 42y" — 8ty +9y =0, >0
46. *y" + 51y’ + 13y = 0, t>0

3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

We now return to the nonhomogeneous equation

Lyl =y"+p@®)y +q@t)y =g, 1)

where p, g, and g are given (continuous) functions on the open interval /. The
equation
Liyl=y"+p@®y +qy =0, ()
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Theorem 3.5.1

Theorem 3.5.2

in which g(#) = 0 and p and ¢ are the same as in Eq. (1), is called the homogeneous
equation corresponding to Eq. (1). The following two results describe the structure
of solutions of the nonhomogeneous equation (1) and provide a basis for constructing
its general solution.

If Y7 and Y, are two solutions of the nonhomogeneous equation (1), then their
difference Y; — Y5 is a solution of the corresponding homogeneous equation (2).
If, in addition, y; and y, are a fundamental set of solutions of Eq. (2), then

Y1) — Y2(t) = c1y1(0) + coy2(2), (3)

where ¢ and ¢, are certain constants.

To prove this result, note that Y; and Y> satisfy the equations

L{Y11(®) = g(0), L[Y2](t) = g(). “4)
Subtracting the second of these equations from the first, we have
LIY1](®) — LIY>](t) = g(t) — g(1) = 0. 5)

However,
L[Y1] - L[Y>] = L[Y, - Y3],

so Eq. (5) becomes
LYy — Y5](t) =0. (6)

Equation (6) states that Y7 — Y, is a solution of Eq. (2). Finally, since all solutions of
Eq. (2) can be expressed as linear combinations of a fundamental set of solutions by
Theorem 3.2.4, it follows that the solution Y7 — Y, can be so written. Hence Eq. (3)
holds and the proof is complete.

The general solution of the nonhomogeneous equation (1) can be written in the
form

y =01 = c1y1(t) + c22(0) + Y (1), (7

where y; and y, are a fundamental set of solutions of the corresponding homoge-
neous equation (2), ¢; and ¢ are arbitrary constants, and Y is some specific solution
of the nonhomogeneous equation (1).

The proof of Theorem 3.5.2 follows quickly from the preceding theorem. Note
that Eq. (3) holds if we identify Y7 with an arbitrary solution ¢ of Eq. (1) and Y, with
the specific solution Y. From Eq. (3) we thereby obtain

o) — Y () = cry1(t) + cay2(0), ®)

which is equivalent to Eq. (7). Since ¢ is an arbitrary solution of Eq. (1), the expres-
sion on the right side of Eq. (7) includes all solutions of Eq. (1); thus it is natural to
call it the general solution of Eq. (1).
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EXAMPLE

1

In somewhat different words, Theorem 3.5.2 states that to solve the nonhomoge-
neous equation (1), we must do three things:

1. Find the general solution c1y;(¢) + c2y2(¢) of the corresponding homogeneous equation.
This solution is frequently called the complementary solution and may be denoted by y.(¢).

2. Find some single solution Y (¢) of the nonhomogeneous equation. Often this solution is
referred to as a particular solution.

3. Add together the functions found in the two preceding steps.

We have already discussed how to find y.(¢), at least when the homogeneous equa-
tion (2) has constant coefficients. Therefore, in the remainder of this section and in
the next, we will focus on finding a particular solution Y (¢) of the nonhomogeneous
equation (1). There are two methods that we wish to discuss. They are known as the
method of undetermined coefficients (discussed here) and the method of variation
of parameters (see Section 3.6), respectively. Each has some advantages and some
possible shortcomings.

Method of Undetermined Coefficients. The method of undetermined coefficients requires
us to make an initial assumption about the form of the particular solution Y (¢), but
with the coefficients left unspecified. We then substitute the assumed expression into
Eq. (1) and attempt to determine the coefficients so as to satisfy that equation. If we
are successful, then we have found a solution of the differential equation (1) and can
use it for the particular solution Y (¢). If we cannot determine the coefficients, then
this means that there is no solution of the form that we assumed. In this case we may
modify the initial assumption and try again.

The main advantage of the method of undetermined coefficients is that it is straight-
forward to execute once the assumption is made as to the form of Y (¢). Its major
limitation is that it is useful primarily for equations for which we can easily write
down the correct form of the particular solution in advance. For this reason, this
method is usually used only for problems in which the homogeneous equation has
constant coefficients and the nonhomogeneous term is restricted to a relatively small
class of functions. In particular, we consider only nonhomogeneous terms that con-
sist of polynomials, exponential functions, sines, and cosines. Despite this limitation,
the method of undetermined coefficients is useful for solving many problems that
have important applications. However, the algebraic details may become tedious,
and a computer algebra system can be very helpful in practical applications. We will
illustrate the method of undetermined coefficients by several simple examples and
then summarize some rules for using it.

Find a particular solution of

y' =3y —dy =3 )

We seek a function Y such that the combination Y”(f) — 3Y'(t) — 4Y (¢) is equal to 3e*.
Since the exponential function reproduces itself through differentiation, the most plausible
way to achieve the desired result is to assume that Y (¢) is some multiple of ¢%, that s,

Y(t) = A%,
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EXAMPLE

2

where the coefficient A is yet to be determined. To find A, we calculate
Y' (1) =246",  Y'(1) =4Ae”,
and substitute for y,y’, and y” in Eq. (9). We obtain
(4A — 6A — 4A)* = 3.
Hence —6A¢* must equal 3¢*,s0 A = —1/2. Thus a particular solution is

Y(t) = -1 (10)

Find a particular solution of
y" =3y —4y = 2sint. (11)

By analogy with Example 1, let us first assume that Y (f) = A sint, where A is a constant to
be determined. On substituting in Eq. (11) and rearranging the terms, we obtain

—5Asint —3Acost = 2sint,

(24 5A)sint +3Acost = 0. (12)

We want Eq. (12) to hold for all . Thus it must hold for two specific points, such as t = 0
and ¢ = /2. At these points Eq. (12) reduces to 34 = 0 and 2 + 54 = 0, respectively. These
contradictory requirements mean that there is no choice of the constant A that makes Eq. (12)
true fort = Oand¢ = 7 /2, much less for all z. Thus we conclude that our assumption concerning
Y (¢) is inadequate. The appearance of the cosine term in Eq. (12) suggests that we modify our
original assumption to include a cosine term in Y (¢); that is,

Y (t) = Asint + Bcost,
where A and B are to be determined. Then
Y'(t) = Acost — Bsint, Y"(t) = —Asint — Bcost.
By substituting these expressions for y, y’, and y” in Eq. (11) and collecting terms, we obtain
(—A+3B —4A)sint + (—B —3A —4B) cost = 2sint. (13)

To satisfy Eq. (13), we must match the coefficients of sin # and cos ¢ on each side of the equation;
thus A and B must satisfy the equations

—5A+3B=2, -3A-5B=0.
Hence A = —5/17 and B = 3/17, so a particular solution of Eq. (11) is

Y@ = —% sint + % cost.

The method illustrated in the preceding examples can also be used when the right
side of the equation is a polynomial. Thus, to find a particular solution of

y' =3y —dy =42 — 1, (14)

we initially assume that Y (¢) is a polynomial of the same degree as the nonhomoge-
neous term, that is, Y (t) = A> + Bt + C.
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EXAMPLE

3

EXAMPLE

4

To summarize our conclusions up to this point: if the nonhomogeneous term g ()
in Eq. (1) is an exponential function e*, then assume that Y (¢) is proportional to
the same exponential function; if g(¢) is sin B¢ or cos §t, then assume that Y (¢) is a
linear combination of sin 8¢ and cos t; if g(¢) is a polynomial, then assume that Y (¢)
is a polynomial of like degree. The same principle extends to the case where g(t) is
a product of any two, or all three, of these types of functions, as the next example
illustrates.

Find a particular solution of
y' =3y —4y = —8¢' cos2t. (15)

In this case we assume that Y (¢) is the product of ¢’ and a linear combination of cos 2¢ and
sin 2¢, that is,
Y (t) = Aé' cos 2t + Be' sin2t.

The algebra is more tedious in this example, but it follows that
Y'(t) = (A +2B)e' cos 2t + (—2A + B)e' sin2¢

and
Y’ (t) = (=3A + 4B)é' cos 2t + (—4A — 3B)e' sin2t.

By substituting these expressions in Eq. (15), we find that A and B must satisfy
10A +2B =8, 2A—-10B =0.
Hence A = 10/13 and B = 2/13; therefore a particular solution of Eq. (15) is
Y (1) = {3¢' cos 2t + e sin2t.

Now suppose that g(¢) is the sum of two terms, g(¢) = g1(f) + g2(f), and suppose
that Y7 and Y5 are solutions of the equations

ay” +by' +cy = g1(0) (16)
and

ay” +by' +cy = g(0), (17)
respectively. Then Y; + Y3 is a solution of the equation

ay” + by +cy = g(1). (18)

To prove this statement, substitute Y;(¢) + Y>(¢) for y in Eq. (18) and make use
of Egs. (16) and (17). A similar conclusion holds if g(¢) is the sum of any finite
number of terms. The practical significance of this result is that for an equation
whose nonhomogeneous function g(¢) can be expressed as a sum, one can consider
instead several simpler equations and then add the results together. The following
example is an illustration of this procedure.

Find a particular solution of
y" — 3y — 4y = 3¢* + 2sint — 8e' cos 2t. (19)
By splitting up the right side of Eq. (19), we obtain the three equations

y// _ 3yl _ 4y — 3€2t,
y' =3y —4y =2sint,
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EXAMPLE

5

and
y" =3y —4y = —8e¢' cos 2t.

Solutions of these three equations have been found in Examples 1, 2, and 3, respectively.
Therefore a particular solution of Eq. (19) is their sum, namely,

Y(t) =—1e* + Zcost — Zsint + 12¢' cos 2t + Ze' sin 2t

The procedure illustrated in these examples enables us to solve a fairly large class
of problems in a reasonably efficient manner. However, there is one difficulty that
sometimes occurs. The next example illustrates how it arises.

Find a particular solution of
y' =3y —dy =2e". (20)

Proceeding as in Example 1, we assume that Y (f) = Ae™’. By substituting in Eq. (20), we
then obtain

(A+3A—4A)e =2¢". (21)

Since the left side of Eq. (21) is zero, there is no choice of A that satisfies this equation.
Therefore, there is no particular solution of Eq. (20) of the assumed form. The reason for this
possibly unexpected result becomes clear if we solve the homogeneous equation

V' =3y —4y=0 (22)

that corresponds to Eq. (20). A fundamental set of solutions of Eq. (22) is y; () = e¢™' and

y2(t) = e*. Thus our assumed particular solution of Eq. (20) is actually a solution of the
homogeneous equation (22); consequently, it cannot possibly be a solution of the nonhomo-
geneous equation (20). To find a solution of Eq. (20), we must therefore consider functions of
a somewhat different form.

At this stage, we have several possible alternatives. One is simply to try to guess the proper
form of the particular solution of Eq. (20). Another is to solve this equation in some different
way and then to use the result to guide our assumptions if this situation arises again in the
future; see Problems 27 and 33 for other solution methods. Still another possibility is to
seek a simpler equation where this difficulty occurs and to use its solution to suggest how we
might proceed with Eq. (20). Adopting the latter approach, we look for a first order equation
analogous to Eq. (20). One possibility is the linear equation

Yy +y=2" (23)

t t

If we try to find a particular solution of Eq. (23) of the form Ae™, we will fail because e’ is
a solution of the homogeneous equation y’ +y = 0. However, from Section 2.1 we already
know how to solve Eq. (23). An integrating factor is u(¢) = €', and by multiplying by u(f) and
then integrating both sides, we obtain the solution

y=2te " +ce". (24)

The second term on the right side of Eq. (24) is the general solution of the homogeneous
equation y’ + y = 0, but the first term is a solution of the full nonhomogeneous equation (23).
Observe that it involves the exponential factor e~ multiplied by the factor ¢. This is the clue
that we were looking for.

We now return to Eq. (20) and assume a particular solution of the form Y (tf) = Ate™'. Then

Y'(t) = Ae™" — Ate™, Y'(t) = —2Ae™" + Are™". (25)
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Substituting these expressions for y,y’, and y” in Eq. (20), we obtain
(=2A = 3A)e™ + (A +3A —4A)te™ =2e".
Hence —5A = 2,s0 A = —2/5. Thus a particular solution of Eq. (20) is
Y(t)=—2te. (26)

The outcome of Example 5 suggests a modification of the principle stated pre-
viously: if the assumed form of the particular solution duplicates a solution of the
corresponding homogeneous equation, then modify the assumed particular solution
by multiplying it by z. Occasionally, this modification will be insufficient to remove
all duplication with the solutions of the homogeneous equation, in which case it is
necessary to multiply by ¢ a second time. For a second order equation, it will never
be necessary to carry the process further than this.

Summary. We now summarize the steps involved in finding the solution of an initial
value problem consisting of a nonhomogeneous equation of the form

ay” 4+ by +cy = g(1), (27)

where the coefficients a, b, and ¢ are constants, together with a given set of initial
conditions:

1. Find the general solution of the corresponding homogeneous equation.

2. Make sure that the function g(¢) in Eq. (27) belongs to the class of functions discussed
in this section; that is, be sure it involves nothing more than exponential functions, sines,
cosines, polynomials, or sums or products of such functions. If this is not the case, use the
method of variation of parameters (discussed in the next section).

3. Ifgt)y=g1(t) +- -+ gu(1), that is, if g(¢) is a sum of n terms, then form » subproblems,
each of which contains only one of the terms g (¢), ..., g,(¢). The ith subproblem consists
of the equation

ay" + Dby +cy =g,

where i runs from 1 to n.

4. For the ith subproblem assume a particular solution Y;(¢) consisting of the appropriate
exponential function, sine, cosine, polynomial, or combination thereof. If there is any
duplication in the assumed form of Y;(¢) with the solutions of the homogeneous equation
(found in step 1), then multiply Y;(¢) by ¢, or (if necessary) by ¢2, so as to remove the
duplication. See Table 3.5.1.

5. Find a particular solution Y;(¢) for each of the subproblems. Then the sum
Y1(t) + - - - 4+ Y, (¢) is a particular solution of the full nonhomogeneous equation (27).

6. Form the sum of the general solution of the homogeneous equation (step 1) and the
particular solution of the nonhomogeneous equation (step 5). This is the general solution
of the nonhomogeneous equation.

7. Use the initial conditions to determine the values of the arbitrary constants remaining in
the general solution.

For some problems this entire procedure is easy to carry out by hand, but in many
cases it requires considerable algebra. Once you understand clearly how the method
works, a computer algebra system can be of great assistance in executing the details.
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TABLE 3.5.1 The Particular Solution of ay” + by’ + cy = gi(t)

8&i(®) Yi(®)
P,(t) = apt" + a1t '+ - +a, A" + A+ -+ Ay
Py (t)e (A" + A" 4 Aye
sin St i
P,(t)e™ BI(Agt" + At + - 4+ A))e* cos Bt
cos Bt

+ (Bot" 4+ Bit" ' + ... + B,)e* sin pt]

Notes. Here s is the smallest nonnegative integer (s = 0, 1, or 2) that will ensure that no
term in Y;(¢) is a solution of the corresponding homogeneous equation. Equivalently,
for the three cases, s is the number of times 0 is a root of the characteristic equation, « is
aroot of the characteristic equation, and « + i$ is a root of the characteristic equation,
respectively.

The method of undetermined coefficients is self-correcting in the sense that if you
assume too little for Y (¢), then a contradiction is soon reached that usually points the
way to the modification that is needed in the assumed form. On the other hand, if you
assume too many terms, then some unnecessary work is done and some coefficients
turn out to be zero, but at least the correct answer is obtained.

Proof of the Method of Undetermined Coefficients. In the preceding discussion we have de-
scribed the method of undetermined coefficients on the basis of several examples.
To prove that the procedure always works as stated, we now give a general argu-
ment, in which we consider several cases corresponding to different forms for the
nonhomogeneous term g(¢).
g(t) = P,(t) = apt" + ayt" ' + - - - + a,. In this case Eq. (27) becomes
ay’ +by +cy=apt" + a;t" ' + - +ay. (28)
To obtain a particular solution, we assume that
Y(t) = Aot" + A" 4 Ay + Ayt + A, (29)
Substituting in Eq. (28), we obtain
aln(n — DA 2 + -+ 424, 5]+ b(nAgt" ' + -+ A,_)
+ c(Apt" + A"+ Ay = apt" + -+ ap (30)
Equating the coefficients of like powers of ¢ gives
cAp = ap,
cA1 +nbAy = ay,

CA, +bA,_1+2aA,_, = a,.

Provided that ¢ # 0, the solution of the first equation is Ap = ap/c, and the remaining
equations determine Ay, ..., A, successively. If c = 0 but b # 0, then the polynomial
on the left side of Eq. (30) is of degree n — 1, and we cannot satisfy Eq. (30). To be
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sure that aY”(¢) + bY'(¢) is a polynomial of degree n, we must choose Y (¢) to be a
polynomial of degree n + 1. Hence we assume that

Y () =t(Apt" + -+ Ap).

There is no constant term in this expression for Y (¢), but there is no need to include
such a term since a constant is a solution of the homogeneous equation when ¢ = 0.
Since b # 0, we have Ay = ap/b(n + 1), and the other coefficients Ay, ..., A, can be
determined similarly. If both c and b are zero, we assume that

Y(t) = 2(Apt" + -+ Ay).

The term aY”(¢) gives rise to a term of degree n, and we can proceed as before.
Again the constant and linear terms in Y (¢) are omitted, since in this case they are
both solutions of the homogeneous equation.

g(t) = e*' P,(t). The problem of determining a particular solution of
ay” + by’ +cy = e P,(t) (31)
can be reduced to the preceding case by a substitution. Let
Y () = e*u(t);

then
Y'(t) = e[t/ (1) + au(t)]

and
Y (t) = e [u’(t) 4+ 2au' (f) + *u(?)].

Substituting for y,y’, and y” in Eq. (31), canceling the factor ¢*/, and collecting terms,
we obtain
au’ (t) + Qaa + b)u'(t) + (aa® + ba + c)u(t) = P, (7). (32)

The determination of a particular solution of Eq. (32) is precisely the same problem,
except for the names of the constants, as solving Eq. (28). Therefore, if aa® + ba + ¢
is not zero, we assume that u(t) = Agt" 4+ --- + A,; hence a particular solution of
Eq. (31) is of the form

YY) = e (Agt" + A"+ -+ A)). (33)

On the other hand, if aa® 4+ ba + ¢ is zero but 2aa + b is not, we must take u(f)
to be of the form #(A¢t" +---+ A,). The corresponding form for Y (¢) is ¢ times
the expression on the right side of Eq. (33). Note that if aa? + ba + c is zero, then
e is a solution of the homogeneous equation. If both aa? + ba + ¢ and 2aa + b
are zero (and this implies that both ¢*' and te*’ are solutions of the homogeneous
equation), then the correct form for u(t) is t?(Aot" + - - - + A,). Hence Y (¢) is > times
the expression on the right side of Eq. (33).

g(t) = e*' P,(t) cos Bt or e*' P,(t) sin Bt. These two cases are similar, so we con-
sider only the latter. We can reduce this problem to the preceding one by noting that,
as a consequence of Euler’s formula, sin 8¢ = (e — e~#")/2i. Hence g(¢) is of the
form

e@HiB)t _ pla—ip)t

g = Py(0) oF ,
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and we should choose
Y () = e“ P A" + -+ Ay) + €PN Bot" + - + By),
or, equivalently,
Y () = e*(Apt" + - - - + A,) cos Bt + e (Bot" + - - - + B,) sin Bt.

Usually, the latter form is preferred. If o &+ if satisfy the characteristic equation
corresponding to the homogeneous equation, we must, of course, multiply each of
the polynomials by ¢ to increase their degrees by one.

If the nonhomogeneous function involves both cos ¢ and sin S, it is usually con-
venient to treat these terms together, since each one individually may give rise to the
same form for a particular solution. For example, if g(¢#) = ¢sint + 2 cost, the form
for Y (¢t) would be

Y(t) = (Aot + Ay)sint + (Bot + By) cost,

provided that sin ¢ and cos ¢ are not solutions of the homogeneous equation.

PROBLEMS

In each of Problems 1 through 12 find the general solution of the given differential equation.

1y —2y —3y =3¢ 2.y +2y +5y =3sin2t
3.y =2y — 3y =—3te! 4.y"+2y =3 +4sin2t
5. +9y =1 +6 6.y +2y' +y=2e"

7.2y" +3y +y=1>43sint 8.y’ +y=23sin2t +tcos2t
9. U’ + wiu = cos wt, 0* # 0} 10. u” + wju = cos wyt

11. y" +y + 4y = 2sinht Hint: sinht = (¢! —e™)/2
12. y" —y — 2y = cosh 2t Hint: cosht = (¢! +e7")/2

In each of Problems 13 through 18 find the solution of the given initial value problem.
13. y'+y —2y =21, y0) =0, y@©0) =1

14, y' + 4y =12 4 3¢, y(0) =0, y(©0) =2

15. y" =2y +y =te' + 4, y0) =1, y@©0) =1

16. y" —2y" — 3y = 3te¥, y0) =1, y©0)=0

17. y" + 4y = 3sin2t, y0) =2, y(0) =-1

18. y" + 2y + 5y = 4e~' cos2t, yO0) =1, y©0) =0

In each of Problems 19 through 26:

(a) Determine a suitable form for Y'(¢) if the method of undetermined coefficients is to be
used.

(b) Use a computer algebra system to find a particular solution of the given equation.

&2 19,y +3y =2t* + e ¥ +5sin3t

&2 20. y" +y=t(l+sint)

&0 21 y" — 5y + 6y = ' cos2t + ¥ (3t + 4) sint

@0 22,y +2y +2y =3¢ +2e ' cost + de ' sint
60 23,y —4y +4y =20 +4te* +tsin2t

.‘Q/ 24. y" + 4y = *sin 2t 4 (6t + 7) cos 2t

&0 25y +3y +2y = e (> + 1)sin2t + 3¢~ cost + de’
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& 26.
27.

28.

¢ 2.

&' 30.

V" +2y' + 5y = 3te™ cos 2t — 2te"% cost

Consider the equation
y' =3y —d4y =2e! (1)

from Example 5. Recall that y;(f) = e~ and y,(f) = ¢* are solutions of the corresponding
homogeneous equation. Adapting the method of reduction of order (Section 3.4),seek a
solution of the nonhomogeneous equation of the form Y (r) = v(¢)y; (t) = v(t)e”’, where
v(?) is to be determined.

(a) Substitute Y(¢), Y'(r), and Y”(¢) into Eq. (i) and show that v(f) must satisfy
v —5v =2.

(b) Let w(t) = v'(t) and show that w(r) must satisfy w’ — Sw = 2. Solve this equation
for w().

(c) Integrate w(t) to find v(¢) and then show that

Y() = —%teif + écle‘” + e

The first term on the right side is the desired particular solution of the nonhomogeneous
equation. Note that it is a product of  and e™".

Determine the general solution of

N
Y+ 2%y = Z a, sinmrt,

m=1

where A > Oand A # mx form=1,...,N.

In many physical problems the nonhomogeneous term may be specified by different for-
mulas in different time periods. As an example, determine the solution y = ¢ (¢) of

L, 0<t=<m,

el t>m,

W+y={
satisfying the initial conditions y(0) =0 and y’(0) = 1. Assume that y and y’ are also
continuous at¢ = 7. Plot the nonhomogeneous term and the solution as functions of time.
Hint: First solve the initial value problem for ¢ < 7; then solve for ¢ > 7, determining the
constants in the latter solution from the continuity conditions at t = .

Follow the instructions in Problem 29 to solve the differential equation

7 ’ 1, 0§t§n2,
y+b+w=h t>42

with the initial conditions y(0) = 0 and y'(0) = 0.

Behavior of Solutions as r — oo. In Problems 31 and 32 we continue the discussion started
with Problems 38 through 40 of Section 3.4. Consider the differential equation

ay" + by +cy =g, ()

where a, b, and c are positive.

31.

32.

If Y, (¢) and Y, (¢) are solutions of Eq. (i), show that Y;(f) — Y,>(t) — 0 as t — oo. Is this
result true if b = 0?

If g(t) = d, a constant, show that every solution of Eq. (i) approaches d/c ast — oco. What
happens if ¢ = 0? What if b = 0 also?
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33. In this problem we indicate an alternative procedure’ for solving the differential equation
y' +by +cy=(D*+bD +c)y =g(), (i)

where b and c are constants, and D denotes differentiation with respect to ¢. Let r; and r,
be the zeros of the characteristic polynomial of the corresponding homogeneous equation.
These roots may be real and different, real and equal, or conjugate complex numbers.

(a) Verify that Eq. (i) can be written in the factored form

(D —r)(D —r)y =g,

where ry +r, = —b and rir, =c.
(b) Letu = (D — rp)y. Then show that the solution of Eq (i) can be found by solving the
following two first order equations:

(D —rpu=g(@, (D —r)y = u().

In each of Problems 34 through 37 use the method of Problem 33 to solve the given differential
equation.

34. y' =3y’ —4y =3¢  (see Example 1)
35.2y" +3y +y=1>+3sint  (see Problem7)
36. y'+2y' +y=2e"  (see Problem 6)

37. y'+2y =3 +4sin2¢ (see Problem 4)

3.6 Variation of Parameters

EXAMPLE

1

In this section we describe another method of finding a particular solution of a non-
homogeneous equation. This method, known as variation of parameters, is due to
Lagrange and complements the method of undetermined coefficients rather well.
The main advantage of variation of parameters is that it is a general method; in
principle at least, it can be applied to any equation, and it requires no detailed as-
sumptions about the form of the solution. In fact, later in this section we use this
method to derive a formula for a particular solution of an arbitrary second order
linear nonhomogeneous differential equation. On the other hand, the method of
variation of parameters eventually requires us to evaluate certain integrals involving
the nonhomogeneous term in the differential equation, and this may present diffi-
culties. Before looking at this method in the general case, we illustrate its use in an
example.

Find a particular solution of
y' 4+ 4y =3csct. 1)

Observe that this problem is not a good candidate for the method of undetermined coeffi-
cients, as described in Section 3.5, because the nonhomogeneous term g(¢) = 3 csct involves

7R. S. Luthar, “Another Approach to a Standard Differential Equation,” Two Year College Mathematics
Journal 10 (1979), pp. 200-201; also see D. C. Sandell and F. M. Stein, “Factorization of Operators of
Second Order Linear Homogeneous Ordinary Differential Equations,” Two Year College Mathematics
Journal 8 (1977), pp. 132-141, for a more general discussion of factoring operators.
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a quotient (rather than a sum or a product) of sin¢ or cos¢. Therefore, we need a different
approach. Observe also that the homogeneous equation corresponding to Eq. (1) is

y'+4y =0, (@)
and that the general solution of Eq. (2) is
Ve(t) = ¢ cos 2t + ¢, sin 2t. 3)

The basic idea in the method of variation of parameters is to replace the constants ¢; and ¢,
in Eq. (3) by functions u; (f) and u,(z), respectively, and then to determine these functions so
that the resulting expression

v = uy(t) cos 2t + uy(t) sin 2t 4)

is a solution of the nonhomogeneous equation (1).

To determine u; and u, we need to substitute for y from Eq. (4) in Eq. (1). However, even
without carrying out this substitution, we can anticipate that the result will be a single equation
involving some combination of uy, u;, and their first two derivatives. Since there is only one
equation and two unknown functions, we can expect that there are many possible choices of
uy and u, that will meet our needs. Alternatively, we may be able to impose a second condition
of our own choosing, thereby obtaining two equations for the two unknown functions #; and
u,. We will soon show (following Lagrange) that it is possible to choose this second condition
in a way that makes the computation markedly more efficient.

Returning now to Eq. (4), we differentiate it and rearrange the terms, thereby obtaining

Y = —2uy (t) sin 2t + 2u, (t) cos 2t + uj (¢) cos 2t + u;y () sin 2t. (5)

Keeping in mind the possibility of choosing a second condition on u; and u,, let us require the
sum of the last two terms on the right side of Eq. (5) to be zero; that is, we require that

) (t) cos 2t + uy(t) sin2t = 0. (6)
It then follows from Eq. (5) that
V' = —2uy(¢) sin 2t + 2u,(¢) cos 2t. (7

Although the ultimate effect of the condition (6) isnot yet clear, at the very least it has simplified
the expression for y’. Further, by differentiating Eq. (7), we obtain

Y = —4uy (1) cos 2t — duy(¢) sin 2t — 2u (t) sin 2t + 2u, (t) cos 2t. 8)

Then, substituting for y and y” in Eq. (1) from Egs. (4) and (8), respectively, we find that i
and u, must satisfy
—2u(¢) sin 2t + 2u) (t) cos 2t = 3 csct. 9)

Summarizing our results to this point, we want to choose u; and u; so as to satisfy Egs. (6)
and (9). These equations can be viewed as a pair of linear algebraic equations for the two
unknown quantities «{ (¢) and u} (). Equations (6) and (9) can be solved in various ways. For
example, solving Eq. (6) for u)(t), we have

cos 2t
S = —uy (¢ . 10
1) ul()sinZZ (10)
Then, substituting for 5 (¢) in Eq. (9) and simplifying, we obtain
3csctsin2t
ui(t) = 2O 3cost. (11)

2
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Further, putting this expression for «/ (¢) back in Eq. (10) and using the double-angle formulas,
we find that

3costcos2t  3(1—2sin’f) 3 .
2 = = = —csct —3sint. 12
6 (0) sin 2t 2sint 2 ¢ s (12)

Having obtained u () and v} (¢), we next integrate so as to find u; (¢) and u,(¢). The result is

ui(t) = =3sint +¢; (13)

and
u (1) = %ln|csct—cott|+3003t+c2. (14)

On substituting these expressions in Eq. (4), we have
y = —3sintcos2t + %ln | csct — cott|sin2t + 3 costsin 2t
+ ¢1 cos 2t + ¢, sin 2t.
Finally, by using the double-angle formulas once more, we obtain
y=3sint+ 3 In|csct — cott]sin 2t + ¢1 cos 2t + ¢, sin 21. (15)

The terms in Eq. (15) involving the arbitrary constants ¢; and ¢, are the general solution of the
corresponding homogeneous equation, while the remaining terms are a particular solution of
the nonhomogeneous equation (1). Thus Eq. (15) is the general solution of Eq. (1).

In the preceding example the method of variation of parameters worked well in
determining a particular solution, and hence the general solution, of Eq. (1). The next
question is whether this method can be applied effectively to an arbitrary equation.
Therefore we consider

Y +p®y +q)y =g, (16)

where p, g, and g are given continuous functions. As a starting point, we assume that
we know the general solution

Ye(®) = c1y1(t) + c2y2(0) (17)
of the corresponding homogeneous equation
Y +p@®)y +q@y=0. (18)

This is a major assumption because so far we have shown how to solve Eq. (18) only if
it has constant coefficients. If Eq. (18) has coefficients that depend on ¢, then usually
the methods described in Chapter 5 must be used to obtain y.().

The crucial idea, as illustrated in Example 1, is to replace the constants ¢; and ¢,
in Eq. (17) by functions u; () and u;(t), respectively; this gives

y = w1 (O)y1(t) + uz2(0)y2(2). (19)

Then we try to determine 14 (¢) and u, (¢) so that the expression in Eq. (19) is a solution
of the nonhomogeneous equation (16) rather than the homogeneous equation (18).
Thus we differentiate Eq. (19), obtaining

Y = ui(Oy1(0) + ur ()Y () + us ) y2(t) + uz (1)y5(0). (20)

As in Example 1, we now set the terms involving ] (¥) and u} (¢) in Eq. (20) equal to
zero; that is, we require that

ui (Oy1(t) + uy(0)y2 (1) = 0. (21)
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Theorem 3.6.1

Then, from Eq. (20), we have

Y = w10y (0) + uz(0)y; (1) (22)
Further, by differentiating again, we obtain

Y = (0y1(0) + u (D] (0) + up ()5 (1) + uz (05 (0). (23)
Now we substitute for y, y/, and y” in Eq. (16) from Egs. (19), (22), and (23),

respectively. After rearranging the terms in the resulting equation, we find that

u (HY{(© + pO)yi () + g()y1(D)]
+ (O30 + p@)yy (1) + q0)y2(1)]

+ui Oy () + ur Oy (1) = g(0). (24)
Each of the expressions in square brackets in Eq. (24) is zero because both y; and y,

are solutions of the homogeneous equation (18). Therefore Eq. (24) reduces to
O (D) + w(0)Y5 (1) = g(0). (25)

Equations (21) and (25) form a system of two linear algebraic equations for the
derivatives u}(¢) and u)(¢) of the unknown functions. They correspond exactly to
Egs. (6) and (9) in Example 1.

By solving the system (21), (25) we obtain

y2(Dg(t) ity = 1080
W1,y (@)’ 2 W(y1,y2) ()’

where W (y1, y») is the Wronskian of y; and y,. Note that division by W is permissible
since y; and y; are a fundamental set of solutions, and therefore their Wronskian is
nonzero. By integrating Eqs. (26), we find the desired functions u;(¢) and u;(¢),
namely,

uy(t) = — (26)

y2(D)g (1) y1(0)g()
wmt)=— | == _dtte,  w)= | 4 dt+o. 27
Wy, y2) (@) Wy, y2) (@) @)
If the integrals in Egs. (27) can be evaluated in terms of elementary functions, then we
substitute the results in Eq. (19), thereby obtaining the general solution of Eq. (16).
More generally, the solution can always be expressed in terms of integrals, as stated
in the following theorem.

If the functions p, g, and g are continuous on an open interval /, and if the functions
y1 and y, are a fundamental set of solutions of the homogeneous equation (18)
corresponding to the nonhomogeneous equation (16)

Y +p@)y +q)y =g,

then a particular solution of Eq. (16) is

_2(9)8() ds + y>(6) / _Y1(9)g(s) (28)

Y - _ b
® = Y1(t)/ W1, 2)(s) W1, y2)(s) s



3.6 Variation of Parameters 189

where f is any conveniently chosen point in /. The general solution is
y = cy1(®) + ey (t) + Y (), (29)

as prescribed by Theorem 3.5.2.

By examining the expression (28) and reviewing the process by which we derived
it, we can see that there may be two major difficulties in using the method of variation
of parameters. As we have mentioned earlier, one is the determination of y;(¢) and
v2(t), a fundamental set of solutions of the homogeneous equation (18), when the
coefficients in that equation are not constants. The other possible difficulty lies in
the evaluation of the integrals appearing in Eq. (28). This depends entirely on the
nature of the functions yy, y», and g. In using Eq. (28), be sure that the differential
equation is exactly in the form (16); otherwise, the nonhomogeneous term g(¢) will
not be correctly identified.

A major advantage of the method of variation of parameters is that Eq. (28) pro-
vides an expression for the particular solution Y (¢) in terms of an arbitrary forcing
function g(¢). This expression is a good starting point if you wish to investigate the
effect of variations in the forcing function, or if you wish to analyze the response of
a system to a number of different forcing functions.

PROBLEMS

In each of Problems 1 through 4 use the method of variation of parameters to find a particular
solution of the given differential equation. Then check your answer by using the method of
undetermined coefficients.

1. y" =5y + 6y =2¢ 2.y —y =2y =2e"

3.y 42y +y=3e" 4. 4y" —4y' +y = 16¢"?
In each of Problems 5 through 12 find the general solution of the given differential equation.
In Problems 11 and 12, g is an arbitrary continuous function.

5. y' +y = tant, 0<t<m/2 6. y" +9y = 9sec?3t, 0<t<m/6
7.y +4y + 4y =127, t>0 8. y' +4y =3csc2t, 0<t<m/2
9. 4y" +y = 2sec(t/2), —T<t<m 10. y" =2y +y=e'/(1 +1?)

11. y" =5y + 6y =g() 12. y" 4+ 4y = g(t)

In each of Problems 13 through 20 verify that the given functions y; and y, satisfy the corre-
sponding homogeneous equation; then find a particular solution of the given nonhomogeneous
equation. In Problems 19 and 20, g is an arbitrary continuous function.

13. 2y" =2y =32 -1, t>0; =2, yp=t"
14, 2y" —t@t+2)y + (¢ +2)y =26, t>0; yi@) =t, y@t) =te
15. " — A+ 0y +y=1%%, t>0; yi®) =1+t y(t)=¢
16. A=ty +ty —y=20t—-1%", 0<t<l; yit) =¢e, y@) =t
17. ¥*y" —=3xy' + 4y =x*Inx, x> 0; yi@) =x%, y(x) =x*Inx
18. xX2y" +xy + (x* — 0.25)y = 3x*?sinx, x> 0;
y1(x) =x2sinx, y,(x) =x""?cosx
19. A —x)y"+xy —y=gkx), 0<x<l, yix) =€, y2(x) =x
20. xX*y" 4+ xy + (x> = 0.25)y = g(x), x> 0; y1(x) =x2sinx, y,(x) =x""2cosx
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21.

22.

23.

24.

25.

26.

Show that the solution of the initial value problem

Liyl=y"+p@®y +q@)y =g, y(to) =yo, Y (o) =y, ]

can be written as y = u(t) + v(¢), where u and v are solutions of the two initial value
problems

L[I/l] = 07 l/l([()) = Yo, LL/([()) = y()’ (11)
Lv] =g, v(t)) =0, v'(t) =0, (iii)

respectively. In other words, the nonhomogeneities in the differential equation and in
the initial conditions can be dealt with separately. Observe that u is easy to find if a
fundamental set of solutions of L[u] = 0 is known.

By choosing the lower limit of integration in Eq. (28) in the text as the initial point ¢,
show that Y (¢) becomes

Y = / y1(®)y2(8) — y1@)ya(s) 2(s) ds

, Y1(8)Y5(8) — Y1 ($)ya(s)
Show that Y (¢) is a solution of the initial value problem
Liyl=g®, yt) =0, Y(t)=0.

Thus Y can be identified with v in Problem 21.

(a) Use the result of Problem 22 to show that the solution of the initial value problem
YVi+y=g0, yt)=0, yt)=0 (i)
is

y= / sin(t — $)g(s) ds. (ii)

)
(b) Use the result of Problem 21 to find the solution of the initial value problem
Y'+y=g®, yO) =yo, Y0 =y
Use the result of Problem 22 to find the solution of the initial value problem

Liyl= D —a)(D —b)y = g(1), y(to) =0, y'(t0) =0,

where a and b are real numbers with a # b.
Use the result of Problem 22 to find the solution of the initial value problem

Llyl = [D* =2AD + A* + 1)y =gt),  y(to) =0, y(t) =0.

Note that the roots of the characteristic equation are A £ iju.
Use the result of Problem 22 to find the solution of the initial value problem

Liyl=D —a’y=g1t), yl) =0, y(t) =0,

where a is any real number.
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27. By combining the results of Problems 24 through 26, show that the solution of the initial
value problem

Lyl = (D*+bD +c)y=gt), yto) =0, y(t) =0,

where b and c¢ are constants, has the form
t
V=) = f K(t — )g(s) ds. (i)
[}

The function K depends only on the solutions y; and y, of the corresponding homogeneous
equation and is independent of the nonhomogeneous term. Once K is determined, all
nonhomogeneous problems involving the same differential operator L are reduced to the
evaluation of an integral. Note also that although K depends on both ¢ and s, only the
combination ¢ — s appears, so K is actually a function of a single variable. When we think
of g() as the input to the problem and of ¢ (¢) as the output, it follows from Eq. (i) that the
output depends on the input over the entire interval from the initial point #, to the current
value ¢. The integral in Eq. (i) is called the convolution of K and g, and K is referred to as
the kernel.

28. The method of reduction of order (Section 3.4) can also be used for the nonhomogeneous
equation

Y +p®y +q)y =g, ()

provided one solution y; of the corresponding homogeneous equation is known. Let
y = v(t)y1(t) and show that y satisfies Eq. (i) if v is a solution of

yiOv" + [2y1(0) + pO)y1 (D] = g (). (ii)

Equation (ii) is a first order linear equation for v’. Solving this equation, integrating the
result, and then multiplying by y;(¢) lead to the general solution of Eq. (i).

In each of Problems 29 through 32 use the method outlined in Problem 28 to solve the given
differential equation.

29. 2y" =2ty +2y =42, >0 yi@t) =t

30. 2y"+ 7ty +5y=t, t>0; yi(t) =t

3Ly — A4y +y=r2¥, t>0 yi@t) =1+t (see Problem 15)

32. A—t)y'+ty —y=20t—-1?%", 0<t<l; yi(t) =¢ (see Problem 16)

3.7 Mechanical and Electrical Vibrations

One of the reasons why second order linear equations with constant coefficients
are worth studying is that they serve as mathematical models of some important
physical processes. Two important areas of application are the fields of mechanical
and electrical oscillations. For example, the motion of a mass on a vibrating spring,
the torsional oscillations of a shaft with a flywheel, the flow of electric current in
a simple series circuit, and many other physical problems are all described by the
solution of an initial value problem of the form

ay’ +by +cy=g@®, yO0) =y, YO =y ey
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This illustrates a fundamental relationship between mathematics and physics:
many physical problems may have the same mathematical model. Thus, once we
know how to solve the initial value problem (1), it is only necessary to make appro-
priate interpretations of the constants a, b, and c, and of the functions y and g, to
obtain solutions of different physical problems.

We will study the motion of a mass on a spring in detail because an understanding
of the behavior of this simple system is the first step in the investigation of more
complex vibrating systems. Further, the principles involved are common to many
problems. Consider a mass m hanging on the end of a vertical spring of original
length [/, as shown in Figure 3.7.1. The mass causes an elongation L of the spring in
the downward (positive) direction. There are two forces acting at the point where
the mass is attached to the spring; see Figure 3.7.2. The gravitational force, or weight
of the mass, acts downward and has magnitude mg, where g is the acceleration due to
gravity. There is also a force Fj, due to the spring, that acts upward. If we assume that
the elongation L of the spring is small, the spring force is very nearly proportional
to L; this is known as Hooke’s® law. Thus we write F, = —kL, where the constant of
proportionality k is called the spring constant, and the minus sign is due to the fact
that the spring force acts in the upward (negative) direction. Since the mass is in
equilibrium, the two forces balance each other, which means that

mg — kL = 0. (2)

For a given weight w = mg, one can measure L and then use Eq. (2) to determine &.
Note that k has the units of force/length.

L
L
T

FIGURE 3.7.1 A spring—mass system.

In the corresponding dynamic problem, we are interested in studying the motion
of the mass when it is acted on by an external force or is initially displaced. Let
u(t), measured positive downward, denote the displacement of the mass from its
equilibrium position at time ¢; see Figure 3.7.1. Then u(¢) is related to the forces
acting on the mass through Newton’s law of motion

mu’(t) = f (1), (3)

8Robert Hooke (1635-1703) was an English scientist with wide-ranging interests. His most important
book, Micrographia, was published in 1665 and described a variety of microscopical observations. Hooke
first published his law of elastic behavior in 1676 as ceiiinosssttuv; in 1678 he gave the interpretation ut
tensio sic vis, which means, roughly, “as the force so is the displacement.”
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F,=-kL

w=mg
FIGURE 3.7.2 Force diagram for a spring—mass system.

where u” is the acceleration of the mass and f is the net force acting on the mass.
Observe that both u and f are functions of time. In determining f there are four
separate forces that must be considered:

1.
2.

The weight w = mg of the mass always acts downward.

The spring force F; is assumed to be proportional to the total elongation L + u of the
spring and always acts to restore the spring to its natural position. If L + u > 0, then the
spring is extended, and the spring force is directed upward. In this case

F, = —k(L + ). 4)

On the other hand, if L + u < 0, then the spring is compressed a distance |L + u|, and
the spring force, which is now directed downward, is given by F; = k|L + u|. However,
when L + u < 0, it follows that |L + u| = —(L + u), so Fj is again given by Eq. (4). Thus,
regardless of the position of the mass, the force exerted by the spring is always expressed
by Eq. (4).
The damping or resistive force F; always acts in the direction opposite to the direction of
motion of the mass. This force may arise from several sources: resistance from the air or
other medium in which the mass moves, internal energy dissipation due to the extension or
compression of the spring, friction between the mass and the guides (if any) that constrain
its motion to one dimension, or a mechanical device (dashpot) that imparts a resistive
force to the mass. In any case, we assume that the resistive force is proportional to the
speed |du/dt| of the mass; this is usually referred to as viscous damping. If du/dt > 0,then
u is increasing, so the mass is moving downward. Then F is directed upward and is given
by

Fy(t) = —yu' (1), (5)

where y is a positive constant of proportionality known as the damping constant. On
the other hand, if du/dt < 0, then u is decreasing, the mass is moving upward, and F; is
directed downward. In this case, F; = y|u/(¢)[; since |u/(¢)| = —u/(2), it follows that F,(¢)
is again given by Eq. (5). Thus, regardless of the direction of motion of the mass, the
damping force is always expressed by Eq. (5).

The damping force may be rather complicated, and the assumption that it is modeled

adequately by Eq. (5) may be open to question. Some dashpots do behave as Eq. (5)
states, and if the other sources of dissipation are small, it may be possible to neglect
them altogether or to adjust the damping constant y to approximate them. An important
benefit of the assumption (5) is that it leads to a linear (rather than a nonlinear) differential
equation. In turn, this means that a thorough analysis of the system is straightforward, as
we will show in this section and the next.
An applied external force F(¢) is directed downward or upward as F(f) is positive or
negative. This could be a force due to the motion of the mount to which the spring is
attached, or it could be a force applied directly to the mass. Often the external force is
periodic.
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1

Taking account of these forces, we can now rewrite Newton’s law (3) as

mu (t) = mg + Fs(t) + Fq(t) + F(t)

=mg — k[L +u(@®)] — yu'(t) + F(1). (6)

Since mg — kL = 0 by Eq. (2), it follows that the equation of motion of the mass is
mu” () + yu' () + ku@®) = F(@), @)
where the constants m, y, and k are positive. Note that Eq. (7) has the same form as

Eq. (1).

It is important to understand that Eq. (7) is only an approximate equation for
the displacement u(¢). In particular, both Egs. (4) and (5) should be viewed as
approximations for the spring force and the damping force, respectively. In our
derivation we have also neglected the mass of the spring in comparison with the
mass of the attached body.

The complete formulation of the vibration problem requires that we specify two
initial conditions, namely, the initial position uy and the initial velocity vy of the mass:

u(0) = uy, u'(0) = vy. ®)

It follows from Theorem 3.2.1 that these conditions give a mathematical problem that
has a unique solution. This is consistent with our physical intuition that if the mass is
set in motion with a given initial displacement and velocity, then its position will be
determined uniquely at all future times. The position of the mass is given (approxi-
mately) by the solution of Eq. (7) subject to the prescribed initial conditions (8).

A mass weighing 4 1b stretches a spring 2 in. Suppose that the mass is displaced an additional
6 in. in the positive direction and then released. The mass is in a medium that exerts a viscous
resistance of 6 Ib when the mass has a velocity of 3 ft/s. Under the assumptions discussed in
this section, formulate the initial value problem that governs the motion of the mass.

The required initial value problem consists of the differential equation (7) and initial condi-
tions (8), so our task is to determine the various constants that appear in these equations. The
first step is to choose the units of measurement. Based on the statement of the problem, it is
natural to use the English rather than the metric system of units. The only time unit mentioned
is the second, so we will measure ¢ in seconds. On the other hand, both the foot and the inch
appear in the statement as units of length. It is immaterial which one we use, but having made
a choice, we must be consistent. To be definite, let us measure the displacement « in feet.

Since nothing is said in the statement of the problem about an external force, we assume
that F(¢) = 0. To determine m, note that

w 41b 1 Ib-s?

T g RS 8 ft
The damping coefficient y is determined from the statement that yu’ is equal to 6 Ib when «’

is 3 ft/s. Therefore
61b 5 Ib-s

- 3ft/s TR

The spring constant k is found from the statement that the mass stretches the spring by 2 in.,
or 1/6 ft. Thus

4

41b Ib
T 166 s
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Consequently, Eq. (7) becomes
éu” +2u' 4+ 24u =0,

u” + 160 +192u = 0. )

The initial conditions are
w0 =1, WO =0. (10)

The second initial condition is implied by the word “released” in the statement of the problem,
which we interpret to mean that the mass is set in motion with no initial velocity.

Undamped Free Vibrations. If there is no external force, then F(r) = 0 in Eq. (7). Let
us also suppose that there is no damping, so that y = 0; this is an idealized config-
uration of the system, seldom (if ever) completely attainable in practice. However,
if the actual damping is very small, then the assumption of no damping may yield
satisfactory results over short to moderate time intervals. In this case the equation
of motion (7) reduces to

mu” + ku = 0. (11)
The general solution of Eq. (11) is
u = A cos wyt + B sin wyt, (12)
where
wy = k/m. (13)

The arbitrary constants A and B can be determined if initial conditions of the form
(8) are given.
In discussing the solution of Eq. (11), it is convenient to rewrite Eq. (12) in the

form
u = Rcos(wpt — 93), (14)
or
u = R cos 3§ cos wyt + R sin § sin wyt. 15)
By comparing Eq. (15) with Eq. (12), we find that A, B, R, and § are related by the
equations
A = Rcos3$, B = Rsing. (16)
Thus
R=+A%+ B?, tand = B/A. 17)

In calculating §, we must take care to choose the correct quadrant; this can be done
by checking the signs of cos § and sin § in Egs. (16).

The graph of Eq. (14),or the equivalent Eq. (12), for a typical set of initial conditions
isshown in Figure 3.7.3. The graph is a displaced cosine wave that describes a periodic,
or simple harmonic, motion of the mass. The period of the motion is

T=—=2m

wQ

k

2w <m>1/2 . (18)

The circular frequency wy = +/k/m, measured in radians per unit time, is called the
natural frequency of the vibration. The maximum displacement R of the mass from
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2

equilibrium is the amplitude of the motion. The dimensionless parameter § is called
the phase, or phase angle, and measures the displacement of the wave from its normal
position corresponding to § = 0.

u
R 777777777777777777777777
R cos 6 /\ ‘ /\
T o o+m o+ 2m ot
R N~

FIGURE 3.7.3 Simple harmonic motion; u = R cos(wpt — §).

Note that the motion described by Eq. (14) has a constant amplitude that does not
diminish with time. This reflects the fact that, in the absence of damping, there is no
way for the system to dissipate the energy imparted to it by the initial displacement
and velocity. Further, for a given mass m and spring constant k, the system always
vibrates at the same frequency wy, regardless of the initial conditions. However, the
initial conditions do help to determine the amplitude of the motion. Finally, observe
from Eq. (18) that T increases as m increases, so larger masses vibrate more slowly.
On the other hand, T decreases as k increases, which means that stiffer springs cause
the system to vibrate more rapidly.

Suppose that a mass weighing 101b stretches a spring 2 in. If the massis displaced an additional
2 in. and is then set in motion with an initial upward velocity of 1 ft/s, determine the position
of the mass at any later time. Also determine the period, amplitude, and phase of the motion.

The spring constant is £ = 10 1b/2 in.= 60 1b/ft, and the mass is m = w/g = 10/32 1b-s? /ft.
Hence the equation of motion reduces to

W' +192u =0, (19)
and the general solution is
u = Acos(8v/3t) + Bsin(8v/31).

The solution satisfying the initial conditions u(0) = 1/6 ft and /(0) = —1 ft/s is

u= %cos(&@t) - 8% sin(8+/31). (20)

The natural frequency is wy = /192 = 13.856 rad/s, so the period is T = 27 /wy = 0.45345 s.
The amplitude R and phase § are found from Egs. (17). We have
, 1 1 19
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The second of Egs. (17) yields tan § = —+/3/4. There are two solutions of this equation, one
in the second quadrant and one in the fourth. In the present problem cosd > 0 and siné < 0,
so § is in the fourth quadrant, namely,

8§ = —arctan(v/3/4) = —0.40864 rad.

The graph of the solution (20) is shown in Figure 3.7.4.

R=0.182 u =0.182 cos(8V3 ¢ + 0.409)

\mﬂﬂﬂ
VIRV,

—0.2/—

0.2

T =0.453
S

FIGURE 3.7.4 An undamped free vibration; u” + 192u =0, u(0) =1/6, «'(0) = —

Damped Free Vibrations. If we include the effect of damping, the differential equation
governing the motion of the mass is

mu” + yu' + ku = 0. (21)

We are especially interested in examining the effect of variations in the damping
coefficient y for given values of the mass m and spring constant k. The roots of the
corresponding characteristic equation are

—y+./2—4a 4
rr = Y EVYIZdkm (| dkm) 22)
2m ~ 2m y2

Depending on the sign of y? — 4km, the solution u has one of the following forms:

y?—dkm >0,  u=Ac" + Be™; (23)
y? —4km=0,  u=(A+Bne """ (24)

(4km _ ]/2)1/2

y2—4km <0, wu=e """ (Acosut+ Bsinut), p= 5
m

> 0. (25)
Since m, y, and k are positive, y> —4km is always less than y2. Hence, if
y? —4km > 0, then the values of r; and r, given by Eq. (22) are negative. 1f
y? — 4km < 0, then the values of r; and r, are complex, but with negative real part.
Thus, in all cases, the solution u tends to zero as ¢t — oo; this occurs regardless of the
values of the arbitrary constants A and B, that is, regardless of the initial conditions.
This confirms our intuitive expectation, namely, that damping gradually dissipates
the energy initially imparted to the system, and consequently the motion dies out
with increasing time.
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The most important case is the third one, which occurs when the damping is small.
If we let A = Rcos$ and B = Rsind in Eq. (25), then we obtain

u= Re " cos(ut — §). (26)

The displacement u lies between the curves u = £Re~7/>"; hence it resembles a
cosine wave whose amplitude decreases as t increases. A typical example is sketched
in Figure 3.7.5. The motion is called a damped oscillation or a damped vibration.
The amplitude factor R depends on m, y, k, and the initial conditions.

AN
S S+r S+ 2m \Q?)/TL’ ut

T \_Re—n/zm

FIGURE 3.7.5 Damped vibration; u = Re™""/?" cos(ut — §).

Although the motion is not periodic, the parameter . determines the frequency
with which the mass oscillates back and forth; consequently, u is called the quasi
frequency. By comparing p with the frequency wy of undamped motion, we find that

wo_ Ghm—yPam (o NP @
wy Jk/m - 4km - 8km’

The last approximation is valid when y?/4km is small; we refer to this situation as
“small damping.” Thus the effect of small damping is to reduce slightly the frequency
of the oscillation. By analogy with Eq. (18), the quantity 7; = 27/u is called the
quasi period. It is the time between successive maxima or successive minima of
the position of the mass, or between successive passages of the mass through its
equilibrium position while going in the same direction. The relation between 7,; and
T is given by

—-1/2 2
Tq o v 14
L@ _ (1Y) =14 2
T u ( 4km * Skm ) 28)

where again the last approximation is valid when y2/4km is small. Thus small damp-
ing increases the quasi period.

Equations (27) and (28) reinforce the significance of the dimensionless ratio
y?/4km. 1t is not the magnitude of y alone that determines whether damping is
large or small, but the magnitude of y? compared to 4km. When y?/4km is small,
then damping has a small effect on the quasi frequency and quasi period of the mo-
tion. On the other hand, if we want to study the detailed motion of the mass for all
time, then we can never neglect the damping force, no matter how small.
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As y?/4km increases, the quasi frequency u decreases and the quasi period Ty
increases. Infact,u — 0and Ty — ocoasy — 2+km. Asindicated by Egs. (23), (24),
and (25), the nature of the solution changes as y passes through the value 2v/km.
This value is known as critical damping, while for larger values of y the motion is said
to be overdamped. In these cases, given by Egs. (24) and (23), respectively, the mass
creeps back to its equilibrium position but does not oscillate about it, as for small y.
Two typical examples of critically damped motion are shown in Figure 3.7.6, and the
situation is discussed further in Problems 21 and 22.

w0 =1 w0)=1
u= (5 4 2t) et/2

-1
FIGURE 3.7.6 Critically damped motions: u” +u' + 0.25u = 0; u = (A + Bt)e /2.

The motion of a certain spring—mass system is governed by the differential equation
' 401254 +u =0, (29)

where u is measured in feet and ¢ in seconds. If #(0) = 2 and u/(0) = 0, determine the position
of the mass at any time. Find the quasi frequency and the quasi period, as well as the time
at which the mass first passes through its equilibrium position. Also find the time t such that
lu(t)| < 0.1 forallz > 7.

The solution of Eq. (29) is

V255 V255
u:e"/16|:Acos 16 l+Bsinmt].

To satisfy the initial conditions, we must choose A =2 and B = 2/+/255; hence the solution of
the initial value problem is

u=e""2cos 255t + 2 sin 2551
- 16 V255 16
= ie”/l"’ cos ﬁt -3 (30)
V255 16 '

where tan§ = 1/+/255,s0 § = 0.06254. The displacement of the mass as a function of time is
shown in Figure 3.7.7. For purposes of comparison, we also show the motion if the damping
term is neglected.

The quasi frequency is u = +/255/16 = 0.998 and the quasi period is Ty = 27/ = 6.295 s.
These values differ only slightly from the corresponding values (1 and 2, respectively) for
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u'+u=0
u0)=2, v 0)=0
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FIGURE 3.7.7 Vibration with small damping (solid curve) and with no damping (dashed

curve).
u
0.1 /\ u=0.1
u= 2 e*Mocos (“f—? ‘- o.06254)
0.05
T
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FIGURE 3.7.8 Solution of Example 3; determination of t.

the undamped oscillation. This is evident also from the graphs in Figure 3.7.7, which rise
and fall almost together. The damping coefficient is small in this example, only one-sixteenth
of the critical value, in fact. Nevertheless, the amplitude of the oscillation is reduced rather
rapidly. Figure 3.7.8 shows the graph of the solution for 40 < ¢ < 60, together with the graphs
of u = £0.1. From the graph it appears that t is about 47.5, and by a more precise calculation
we find that t = 47.5149 s.

To find the time at which the mass first passes through its equilibrium position, we refer to
Eq. (30) and set +/255¢/16 — § equal to /2, the smallest positive zero of the cosine function.
Then, by solving for ¢, we obtain
16 /« N

(5 +9)=1637s

t= —

255
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Electric Circuits. A second example of the occurrence of second order linear differen-
tial equations with constant coefficients is their use as a model of the flow of electric
current in the simple series circuit shown in Figure 3.7.9. The current /, measured in
amperes (A), is a function of time ¢. The resistance R in ohms (£2), the capacitance
C in farads (F), and the inductance L in henrys (H) are all positive and are assumed
to be known constants. The impressed voltage E in volts (V) is a given function of
time. Another physical quantity that enters the discussion is the total charge Q in
coulombs (C) on the capacitor at time ¢. The relation between charge Q and cur-

rent [ is
[ =dQydt. (31)
Resistance R Capacitance C
AWV /¢
(1 Inductance L

Impressed voltage E(t)
FIGURE 3.7.9 A simple electric circuit.

The flow of current in the circuit is governed by Kirchhoff’s” second law: In a
closed circuit the impressed voltage is equal to the sum of the voltage drops in the rest
of the circuit.

According to the elementary laws of electricity, we know that

The voltage drop across the resistor is /R.
The voltage drop across the capacitor is Q/C.
The voltage drop across the inductor is LdI/dt.

Hence, by Kirchhoff’s law,

dl 1
L= +RI+ =0 =EQ. (32)

The units have been chosen so that 1 volt = 1 ohm - 1 ampere = 1 coulomb/1 farad
=1 henry - 1 ampere/1 second.
Substituting for I from Eq. (31), we obtain the differential equation

1
LO"+ RQ + EQ =E®@) (33)
for the charge Q. The initial conditions are
O(ty) = Qo, Q' (to) = I (to) = Io. (34)

9Gustav Kirchhoff (1824-1887), professor at Breslau, Heidelberg, and Berlin, was one of the leading
physicists of the nineteenth century. He discovered the basic laws of electric circuits about 1845 while
still a student at Konigsberg. He is also famous for fundamental work in electromagnetic absorption and
emission and was one of the founders of spectroscopy.
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Thus we must know the charge on the capacitor and the current in the circuit at some
initial time f,.

Alternatively, we can obtain a differential equation for the current / by differenti-
ating Eq. (33) with respect to ¢, and then substituting for dQ/dt from Eq. (31). The
result is

1
LI" +RI' + EI =FE'(1), (35)
with the initial conditions
I(t) =1, I'(t) =1 (36)
From Eq. (32) it follows that

E(ty) — Rlp — (1/C)Qo
T )

Hence 1 is also determined by the initial charge and current, which are physically
measurable quantities.

The most important conclusion from this discussion is that the flow of current in
the circuit is described by an initial value problem of precisely the same form as
the one that describes the motion of a spring—mass system. This is a good example
of the unifying role of mathematics: Once you know how to solve second order
linear equations with constant coefficients, you can interpret the results in terms of
mechanical vibrations, electric circuits, or any other physical situation that leads to
the same problem.

Iy =

(37)

PROBLEMS

In each of Problems 1 through 4 determine wy, R, and § so as to write the given expression in
the form u = R cos(wot — §).

1. u=3cos2t+ 4sin2t 2. u=—cost++/3sint
3. u=4cos3t—2sin3t 4, u = —2cosmt —3sinmt

.‘Q, 5. A mass weighing 2 b stretches a spring 6 in. If the mass is pulled down an additional 3 in.

and then released, and if there is no damping, determine the position u of the mass at any
time . Plot u versus ¢. Find the frequency, period, and amplitude of the motion.

6. A massof 100 gstretches aspring 5 cm. If the massis setin motion from its equilibrium posi-
tion with a downward velocity of 10 cm/s, and if there is no damping, determine the position
u of the mass at any time . When does the mass first return to its equilibrium position?

7. A mass weighing 3 1b stretches a spring 3 in. If the mass is pushed upward, contracting
the spring a distance of 1 in., and then set in motion with a downward velocity of 2 ft/s,
and if there is no damping, find the position u of the mass at any time ¢. Determine the
frequency, period, amplitude, and phase of the motion.

8. A series circuit has a capacitor of 0.25 x 10~° F and an inductor of 1 H. If the initial charge
on the capacitor is 107° C and there is no initial current, find the charge Q on the capacitor
at any time ¢.

.'Q, 9. A mass of 20 g stretches a spring 5 cm. Suppose that the mass is also attached to a vis-

cous damper with a damping constant of 400 dyn-s/cm. If the mass is pulled down an
additional 2 cm and then released, find its position « at any time ¢. Plot u versus ¢. Deter-
mine the quasi frequency and the quasi period. Determine the ratio of the quasi period
to the period of the corresponding undamped motion. Also find the time t such that
lu(®)| < 0.05 cm forall ¢ > t.
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&2 10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A mass weighing 16 1b stretches a spring 3 in. The mass is attached to a viscous damper
with a damping constant of 2 Ib-s/ft. If the mass is set in motion from its equilibrium
position with a downward velocity of 3 in/s, find its position u at any time ¢. Plot u versus
t. Determine when the mass first returns to its equilibrium position. Also find the time ©
such that |u(t)| < 0.01 in for all r > 7.

A spring is stretched 10 cm by a force of 3 N. A mass of 2 kg is hung from the spring and
is also attached to a viscous damper that exerts a force of 3 N when the velocity of the
mass is 5 m/s. If the mass is pulled down 5 cm below its equilibrium position and given an
initial downward velocity of 10 cm/s, determine its position « at any time ¢. Find the quasi
frequency p and the ratio of p to the natural frequency of the corresponding undamped
motion.

A series circuit has a capacitor of 10~ F, a resistor of 3 x 10? , and an inductor of 0.2 H.
The initial charge on the capacitor is 10~¢ C and there is no initial current. Find the charge
O on the capacitor at any time ¢.

A certain vibrating system satisfies the equation #” + yu’' + u = 0. Find the value of the
damping coefficient y for which the quasi period of the damped motion is 50% greater
than the period of the corresponding undamped motion.

Show that the period of motion of an undamped vibration of a mass hanging from a ver-
tical spring is 27 ./L/g, where L is the elongation of the spring due to the mass and g is
the acceleration due to gravity.

Show that the solution of the initial value problem
mu" + yu' + ku =0, u(ty) = ug, u'(ty) = uy

can be expressed as the sum u =v+ w, where v satisfies the initial conditions
v(to) = up, v'(fp) = 0, w satisfies the initial conditions w(#) = 0, w'(#) = u;, and both v
and w satisfy the same differential equation as u. This is another instance of superposing
solutions of simpler problems to obtain the solution of a more general problem.

Show that A cos wyt + B sin wyt can be written in the form rsin(wgt — #). Determine r
and 0 in terms of A and B. If R cos(wyt — §) = rsin(wyt — 0), determine the relationship
among R, r,§,and 6.

A mass weighing 8 Ib stretches a spring 1.5 in. The mass is also attached to a damper with
coefficient y. Determine the value of y for which the system is critically damped; be sure
to give the units for y.

If a series circuit has a capacitor of C = 0.8 x 10~° F and an inductor of L = 0.2 H, find
the resistance R so that the circuit is critically damped.

Assume that the system described by the equation mu” 4+ yu’ + ku = 0 is either critically
damped or overdamped. Show that the mass can pass through the equilibrium position
at most once, regardless of the initial conditions.

Hint: Determine all possible values of ¢ for which u = 0.

Assume that the system described by the equation mu” + yu’ + ku = Oiscritically damped
and that the initial conditions are u(0) = ug,u'(0) = vy. If vog =0, show that u — 0 as
t — oo but that u is never zero. If u, is positive, determine a condition on v, that will
ensure that the mass passes through its equilibrium position after it is released.

Logarithmic Decrement. (a) For the damped oscillation described by Eq. (26), show
that the time between successive maxima is 7; = 27/ .

(b) Show that the ratio of the displacements at two successive maxima is given by
exp(yT;/2m). Observe that this ratio does not depend on which pair of maxima is
chosen. The natural logarithm of this ratio is called the logarithmic decrement and is
denoted by A.
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22.
23.

24.

& 2.
26.
27.

(c) Show that A = wy/mu. Since m, u,and A are quantities that can be measured easily
for a mechanical system, this result provides a convenient and practical method for de-
termining the damping constant of the system, which is more difficult to measure directly.
In particular, for the motion of a vibrating mass in a viscous fluid, the damping constant
depends on the viscosity of the fluid; for simple geometric shapes the form of this depen-
dence is known, and the preceding relation allows the experimental determination of the
viscosity. This is one of the most accurate ways of determining the viscosity of a gas at
high pressure.

Referring to Problem 21, find the logarithmic decrement of the system in Problem 10.

For the system in Problem 17 suppose that A =3 and 7, = 0.3 s. Referring to Problem
21, determine the value of the damping coefficient y.

The position of a certain spring—mass system satisfies the initial value problem
%u” +ku=0, u) =2, u0)=nv.

If the period and amplitude of the resulting motion are observed to be 7 and 3, respectively,
determine the values of k and v.

Consider the initial value problem

u +yu +u=0, u =2, 0 =0.
We wish to explore how long a time interval is required for the solution to become “neg-
ligible” and how this interval depends on the damping coefficient y. To be more precise,
let us seek the time t such that |u(t)| < 0.01 for all # > 7. Note that critical damping for
this problem occurs for y = 2.
(a) Let y =0.25 and determine 7, or at least estimate it fairly accurately from a plot of
the solution.

(b) Repeat part (a) for several other values of y in the interval 0 < y < 1.5. Note that ¢
steadily decreases as y increases for y in this range.

(c) Create a graph of t versus y by plotting the pairs of values found in parts (a) and (b).
Is the graph a smooth curve?

(d) Repeat part (b) for values of y between 1.5 and 2. Show that t continues to de-
crease until y reaches a certain critical value yy, after which 7 increases. Find y; and the
corresponding minimum value of  to two decimal places.

(e) Another way to proceed is to write the solution of the initial value problem in the
form (26). Neglect the cosine factor and consider only the exponential factor and the
amplitude R. Then find an expression for 7 as a function of y. Compare the approximate
results obtained in this way with the values determined in parts (a), (b), and (d).

Consider the initial value problem
mu” 4+ yu' +ku=0, u(0) = ug, u'(0) = vp.
Assume that y2 < 4km.
(a) Solve the initial value problem.
(b) Write the solution in the form u(¢) = Rexp(—yt/2m) cos(ut — §). Determine R in
terms of m, y, k, uy, and vy.

(c) Investigate the dependence of R on the damping coefficient y for fixed values of the
other parameters.

A cubic block of side / and mass density p per unit volume is floating in a fluid of mass
density py per unit volume, where py > p. If the block is slightly depressed and then re-
leased, it oscillates in the vertical direction. Assuming that the viscous damping of the
fluid and air can be neglected, derive the differential equation of motion and determine
the period of the motion.

Hint: Use Archimedes’s principle. An object that is completely or partially submerged in
a fluid is acted on by an upward (buoyant) force equal to the weight of the displaced fluid.
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&2 28.

&2 29.

30.

31.

& 3.

The position of a certain undamped spring—mass system satisfies the initial value problem
u' +2u=0, u) =0, 0 =2.

(a) Find the solution of this initial value problem.
(b) Plot u versus ¢ and u’ versus ¢ on the same axes.

(c) Plotu’ versus u;that is, plot u(¢) and u/(¢) parametrically with ¢ as the parameter. This
plot is known as a phase plot, and the uu/-plane is called the phase plane. Observe that
a closed curve in the phase plane corresponds to a periodic solution u(¢). What is the
direction of motion on the phase plot as ¢ increases?

The position of a certain spring-mass system satisfies the initial value problem
u’ + %u’ +2u =0, u =0, u0) =2.

(a) Find the solution of this initial value problem.

(b) Plot u versus ¢ and u’ versus ¢ on the same axes.

(c) Plotu’ versus u in the phase plane (see Problem 28). Identify several corresponding
points on the curves in parts (b) and (c). What is the direction of motion on the phase
plot as ¢ increases?

In the absence of damping the motion of a spring—mass system satisfies the initial value
problem

mu” + ku =0, u0) =a, u ) =>.

(a) Show that the kinetic energy initially imparted to the mass is mb?/2 and that the po-
tential energy initially stored in the spring is ka®/2, so that initially the total energy in the
system is (ka® + mb?)/2.

(b) Solve the given initial value problem.

(¢) Using the solution in part (b), determine the total energy in the system at any time ¢.
Your result should confirm the principle of conservation of energy for this system.

Suppose that a mass m slides without friction on a horizontal surface. The mass is at-
tached to a spring with spring constant k, as shown in Figure 3.7.10, and is also subject
to viscous air resistance with coefficient y. Show that the displacement u(f) of the mass
from its equilibrium position satisfies Eq. (21). How does the derivation of the equation
of motion in this case differ from the derivation given in the text?

FIGURE 3.7.10 A spring-mass system.

In the spring—mass system of Problem 31, suppose that the spring force is not given by
Hooke’s law but instead satisfies the relation

Fy = —(ku + eu),

where k > 0 and ¢ is small but may be of either sign. The spring is called a hardening
spring if € > 0 and a softening spring if ¢ < 0. Why are these terms appropriate?
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(a) Show that the displacement u(¢) of the mass from its equilibrium position satisfies the
differential equation
mu’ + yu' + ku + e’ = 0.

Suppose that the initial conditions are
u0) =0, w0 =1.

In the remainder of this problem assume thatm =1,k = 1,and y = 0.
(b) Find u(r) when € = 0 and also determine the amplitude and period of the motion.

(c) Lete = 0.1. Plot a numerical approximation to the solution. Does the motion appear
to be periodic? Estimate the amplitude and period.

(d) Repeat part (c) for e = 0.2 and € = 0.3.

(e) Plot your estimated values of the amplitude A and the period T versus €. Describe
the way in which A and T, respectively, depend on €.

(f) Repeat parts (c), (d), and (e) for negative values of €.

3.8 Forced Vibrations

EXAMPLE

1

We will now investigate the situation in which a periodic external force is applied
to a spring-mass system. The behavior of this simple system models that of many
oscillatory systems with an external force due, for example, to a motor attached to
the system. We will first consider the case in which damping is present and will look
later at the idealized special case in which there is assumed to be no damping.

Forced Vibrations with Damping. The algebraic calculations can be fairly complicated in
this kind of problem, so we will begin with a relatively simple example.

Suppose that the motion of a certain spring—mass system satisfies the differential equation
u”"+u' 4+ 1.25u = 3cost 1)

and the initial conditions
u(0) =2, u'(0) = 3. 2)

Find the solution of this initial value problem and describe the behavior of the solution for
large t.

The homogeneous equation corresponding to Eq. (1) has the characteristic equation
r* +r +1.25 = 0 with roots r = —0.5 £ i. Thus the general solution u.(¢) of this homogeneous
equation is

—1)2

u.(t) = cre™"? cost + c,e"?sin . 3)

A particular solution of Eq. (1) has the form U(¢) = Acost + Bsint, where A and B
are found by substituting U(¢) for u in Eq. (1). We have U’(t) = —Asint + Bcost and
U"(t) = —Acost — Bsint. Thus, from Eq. (1) we obtain

(0.25A + B)cost + (—A + 0.25B) sint = 3 cost.
Consequently, A and B must satisfy the equations

025A+B =3, —A+025B=0,
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with the result that A = 12/17 and B = 48/17. Therefore the particular solution is
12 48
U(t) = 15 cost + 3 sint, 4)
and the general solution of Eq. (1) is
u=u(t)+U(t)=cre*cost + ce”*sint + {2 cost + S sin 1. 5)

The remaining constants ¢; and ¢, are determined by the initial conditions (2). From Eq. (5)
we have

M(O):Cl-f—%zz’ u’(O):—%cl+c2+%=3,

so ¢; = 22/17 and ¢, = 14/17. Thus we finally obtain the solution of the given initial value
problem, namely,

_ 2,12 14,12 g 12 48
u= e '“cost+ 5e/“sint + 5 cost + 15 sint. (6)

The graph of the solution (6) is shown by the black curve in Figure 3.8.1.

full solution

steady state

transient

8 1 16 ¢

FIGURE 3.8.1 Solution of the initial value problem (1), (2).

It is important to note that the solution consists of two distinct parts. The first two terms on
the right side of Eq. (6) contain the exponential factor e/?; as a result they rapidly approach
zero. Itis customary to call these terms transient. The remaining terms in Eq. (6) involve only
sines and cosines, and therefore represent an oscillation that continues indefinitely. We refer to
them as a steady state. The solid and dashed blue curves in Figure 3.8.1 show the transient and
the steady state parts of the solution, respectively. The transient part comes from the solution
of the homogeneous equation corresponding to Eq. (1) and is needed to satisfy the initial
conditions. The steady state is the particular solution of the full nonhomogeneous equation.
After a fairly short time the transient is vanishingly small and the full solution is essentially
indistinguishable from the steady state.
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The equation of motion of a general spring-mass system subject to an external
force F(t) is [Eq. (7) in Section 3.7]

mu”(t) + yu'(t) + kut) = F(¢), 7

where m, y,and k are the mass,damping coefficient, and spring constant of the spring—
mass system. Suppose now that the external force is given by Fj cos wt, where Fy and
w are positive constants representing the amplitude and frequency, respectively, of
the force. Then Eq. (7) becomes

mu” + yu' + ku = Fycos wt. 8)

Solutions of Eq. (8) behave very much like the solution in the preceding example.
The general solution of Eq. (8) must have the form

u = ciu1(t) + couy(t) + Acoswt + Bsinwt = u.(t) + U(¢). 9)

The first two terms on the right side of Eq. (9) are the general solution u.(f) of
the homogeneous equation corresponding to Eq. (8), while the latter two terms
are a particular solution U(¢) of the full nonhomogeneous equation. The coeffi-
cients A and B can be found, as usual, by substituting these terms into the differ-
ential equation (8), while the arbitrary constants ¢; and ¢, are available to satisfy
initial conditions, if any are prescribed. The solutions u(f) and u,(¢) of the ho-
mogeneous equation depend on the roots r; and r, of the characteristic equation
mr* + yr+k = 0. Since m, y, and k are all positive, it follows that r; and r, either
are real and negative or are complex conjugates with negative real part. In either
case, both u; () and u;(¢) approach zero as t — oco. Since u.(t) dies out as ¢ increases,
it is called the transient solution. In many applications, it is of little importance and
(depending on the value of y) may well be undetectable after only a few seconds.

The remaining terms in Eq. (9), namely, U (t) = A cos wt + B sin wt, do not die out
as t increases but persist indefinitely, or as long as the external force is applied. They
represent a steady oscillation with the same frequency as the external force and
are called the steady state solution or the forced response. The transient solution
enables us to satisfy whatever initial conditions may be imposed; with increasing time,
the energy put into the system by the initial displacement and velocity is dissipated
through the damping force, and the motion then becomes the response of the system
to the external force. Without damping, the effect of the initial conditions would
persist for all time.

Itis convenient to express U (¢) as a single trigonometric term rather than as a sum
of two terms. Recall that we did this for other similar expressions in Section 3.7.
Thus we write

U(t) = Rcos(wt — §). (10)

The amplitude R and phase § depend directly on A and B and indirectly on the
parameters in the differential equation (8). It is possible to show, by straightforward
but somewhat lengthy algebraic computations, that

m(wf — »?)

F
R:—O, cosd = ,
A A

. yw
§="1- 11
sind = —-, (11)

where

A= \/mz(wé — )2 +y20? and ) =k/m. (12)
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Recall that o is the natural frequency of the unforced system in the absence of
damping.

We now investigate how the amplitude R of the steady state oscillation depends on
the frequency w of the external force. Substituting from Eq. (12) into the expression
for R in Eq. (11) and executing some algebraic manipulations, we find that

12
Rk ? 2 w?
— =1 1-—) +T'— , 13

where I' = y?/mk. Observe that the quantity Rk/Fy is the ratio of the amplitude R
of the forced response to Fy/k, the static displacement of the spring produced by a
force Fy.

For low frequency excitation, that is, as w — 0, it follows from Eq. (13) that
Rk/Fy — 1 or R — Fy/k. At the other extreme, for very high frequency excita-
tion, Eq. (13) implies that R — 0 as  — co. At an intermediate value of w the
amplitude may have a maximum. To find this maximum point, we can differentiate
R with respect to @ and set the result equal to zero. In this way we find that the
maximum amplitude occurs when w = wp,x, Where

2 2 v 2 y?
wmaxzwo—mzwo (1—m> (14)

Note that wmax < wy and that wy,y is close to wy when y is small. The maximum

value of R is
Iy ~

2
~ Fo (1 N V_> ,
ywo/1 — (y2/4mk)  v@o 8mk

where the last expression is an approximation for small y. If y2/mk > 2, then wmax
as given by Eq. (14) is imaginary; in this case the maximum value of R occurs for
o =0, and R is a monotone decreasing function of w. Recall that critical damping
occurs when y?/mk = 4.

For small y it follows from Eq. (15) that Ryax = Fy/y wo. Thus, for lightly damped
systems, the amplitude R of the forced response when w is near wy is quite large
even for relatively small external forces, and the smaller the value of y, the more
pronounced is this effect. This phenomenon is known as resonance, and it is often an
important design consideration. Resonance can be either good or bad, depending
on the circumstances. It must be taken very seriously in the design of structures,
such as buildings and bridges, where it can produce instabilities that might lead to
the catastrophic failure of the structure. On the other hand, resonance can be put
to good use in the design of instruments, such as seismographs, that are intended to
detect weak periodic incoming signals.

Figure 3.8.2 contains some representative graphs of Rk/Fy versus w/w, for several
values of I' = y?/mk. The graph corresponding to I' = 0.015625 is included because
this is the value of I' that occurs in Example 2 below. Note particularly the sharp
peak in the curve corresponding to I' = 0.015625 near w/wy = 1. The limiting case
as I' — 0 is also shown. It follows from Eq. (13), or from Egs. (11) and (12), that
R — F /m|a)% — w?| as y — 0 and hence Rk/F, is asymptotic to the vertical line
® = wy, as shown in the figure. As the damping in the system increases, the peak
response gradually diminishes.

Rimax = (15)
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FIGURE 3.8.2 Forced vibration with damping: amplitude of steady state response versus
frequency of driving force; " = y?/mk.
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FIGURE 3.8.3 Forced vibration with damping: phase of steady state response versus
frequency of driving force; I = y?/mk.

Figure 3.8.2 also illustrates the usefulness of dimensionless variables. You can
easily verify that each of the quantities Rk/Fy, w/wo, and I" is dimensionless. The
importance of this observation is that the number of significant parameters in the
problem has been reduced to three rather than the five that appear in Eq. (8). Thus
only one family of curves, of which a few are shown in Figure 3.8.2, is needed to
describe the response-versus-frequency behavior of all systems governed by Eq. (8).

The phase angle § also depends in an interesting way on w. For o near zero,
it follows from Eqs. (11) and (12) that cos§ =1 and sin§ = 0. Thus § =0, and
the response is nearly in phase with the excitation, meaning that they rise and fall
together and, in particular, assume their respective maxima nearly together and their
respective minima nearly together. For w = wy we find that cos§ = 0 and sind =1,
so § = /2. In this case the response lags behind the excitation by 7 /2; that is, the



3.8 Forced Vibrations 211

EXAMPLE

2

peaks of the response occur /2 later than the peaks of the excitation, and similarly
for the valleys. Finally,for w very large, we have cos§ = —1 andsiné = 0. Thus§ = 7,
so that the response is nearly out of phase with the excitation; this means that the
response is minimum when the excitation is maximum, and vice versa. Figure 3.8.3
shows the graphs of § versus w/wy for several values of I". For small damping, the
phase transition from near § = 0 to near § = & occurs rather abruptly, whereas for
larger values of the damping parameter, the transition takes place more gradually.

Consider the initial value problem
' +0.125u" + u =3 cos wt, u) =2, u'0)=0. (16)

Show plots of the solution for different values of the forcing frequency w, and compare them
with corresponding plots of the forcing function.

For this system we have wy = landI' = 1/64 = 0.015625. Its unforced motion was discussed
in Example 3 of Section 3.7, and Figure 3.7.7 shows the graph of the solution of the unforced
problem. Figures 3.8.4,3.8.5,and 3.8.6 show the solution of the forced problem (16) for w = 0.3,
o = 1,and w = 2, respectively. The graph of the corresponding forcing function is also shown
in each figure. In this example the static displacement, Fy/k, is equal to 3.

Solution Forcing function
FIGURE 3.8.4 A forced vibration with damping; solution of ©” + 0.125u’ + u = 3 cos 0.3¢,
u0) =2, u'0)=0.

Figure 3.8.4 shows the low frequency case, w/wy = 0.3. After the initial transient response is
substantially damped out, the remaining steady state response is essentially in phase with the
excitation, and the amplitude of the response is somewhat larger than the static displacement.
To be specific, R = 3.2939 and § = 0.041185.

The resonant case, w/wy = 1, is shown in Figure 3.8.5. Here the amplitude of the steady
state response is eight times the static displacement, and the figure also shows the predicted
phase lag of /2 relative to the external force.

The case of comparatively high frequency excitation is shown in Figure 3.8.6. Observe that
the amplitude of the steady forced response is approximately one-third the static displacement
and that the phase difference between the excitation and response is approximately 7. More
precisely, we find that R = 0.99655 and that § = 3.0585.
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10

-10

-20

Forcing function Solution
FIGURE 3.8.5 A forced vibration with damping; solution of «” + 0.125¢’ + u = 3 cost¢,
u0) =2, u'0) =0.

Forcing function Solution
FIGURE 3.8.6 A forced vibration with damping; solution of u” 4+ 0.125¢' + u = 3 cos 2t,
u@0) =2, u'©) =0.

Forced Vibrations Without Damping. We now assume that y = 0 in Eq. (8), thereby ob-
taining the equation of motion of an undamped forced oscillator

mu” + ku = Fycos wt. 17

The form of the general solution of Eq. (17) is different, depending on whether the
forcing frequency w is different from or equal to the natural frequency wy = \/k/m

of the unforced system. First consider the case w # wy; then the general solution of
Eq. (17) is

. F
U = c1 cos wot + ¢ sin wopt + 2—0 cos wt. (18)
m(wj — ®?)
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EXAMPLE

3

The constants ¢; and c; are determined by the initial conditions. The resulting motion
is, in general, the sum of two periodic motions of different frequencies (wy and )
and different amplitudes as well.

It is particularly interesting to suppose that the mass is initially at rest, so that the
initial conditions are u(0) = 0 and u/(0) = 0. Then the energy driving the system
comes entirely from the external force, with no contribution from the initial con-
ditions. In this case it turns out that the constants ¢; and ¢, in Eq. (18) are given
by

Fy

b —0, 19
@ — ) 1) (19)

1 =

and the solution of Eq. (17) is

Fo
u=—————(coswt — coswyt). 20
m(w(z)—a)z)( ) wot) (20)

This is the sum of two periodic functions of different periods but the same amplitude.
Making use of the trigonometric identities for cos(A £ B) with A = (wp + w)t/2 and
B = (wy — w)t/2, we can write Eq. (20) in the form
|: 2F, . (g — a))ti| . (wo + w)t
u= sin .

m(a)(z) — w?) st 2 2

1)

If |wp — w| is small, then wy + w is much greater than |wy — w|. Consequently,
sin(wp + w)t/2 is a rapidly oscillating function compared to sin(wy — w)t/2. Thus
the motion is a rapid oscillation with frequency (wy + w)/2 but with a slowly varying
sinusoidal amplitude

2Fy sin (wy — w)t
m|w} — 2| 2 '

This type of motion, possessing a periodic variation of amplitude, exhibits what is
called a beat. For example, such a phenomenon occurs in acoustics when two tuning
forks of nearly equal frequency are excited simultaneously. In this case the peri-
odic variation of amplitude is quite apparent to the unaided ear. In electronics, the
variation of the amplitude with time is called amplitude modulation.

Solve the initial value problem
u +u=0.5cos0.8¢, u) =0, 0 =0, (22)

and plot the solution.
In this case wy = 1,0 = 0.8,and F, = 0.5,s0 from Eq. (21) the solution of the given problem
is
u = 2.77778(sin 0.1¢)(sin 0.9¢). (23)

A graph of this solution is shown in Figure 3.8.7. The amplitude variation has a slow frequency
of 0.1 and a corresponding slow period of 20r. Note that a half-period of 10 corresponds to
a single cycle of increasing and then decreasing amplitude. The displacement of the spring—
mass system oscillates with a relatively fast frequency of 0.9, which is only slightly less than
the natural frequency wy.
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u
u=2.77778sin 0.1¢
3+ / u=2.77778 sin 0.1¢ sin 0.9¢
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FIGURE 3.8.7 A beat; solution of #” + u = 0.5 cos 0.8¢,

u0) =0, u(0) =0,

u = 2.77778(sin 0.1¢)(sin 0.9¢).

Now imagine that the forcing frequency w is further increased, say, to @ = 0.9. Then the
slow frequency is halved to 0.05, and the corresponding slow half-period is doubled to 20z.
The multiplier 2.7778 also increases substantially, to 5.2632. However, the fast frequency is
only marginally increased, to 0.95. Can you visualize what happens as w takes on values closer
and closer to the natural frequency wy = 1?
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FIGURE 3.8.8 Resonance; solution of #” + u = 0.5cos¢,
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Now let us return to Eq. (17) and consider the case of resonance, where w = wy;
thatis, the frequency of the forcing function is the same as the natural frequency of the
system. Then the nonhomogeneous term F; cos wt is a solution of the homogeneous
equation. In this case the solution of Eq. (17) is

Fy

U = ¢ cos wot + ¢, sin wot + > t sin wot. (24)

maw

Because of the term ¢ sin wyt, the solution (24) predicts that the motion will become
unbounded as t — oo regardless of the values of ¢; and ¢;; see Figure 3.8.8 for a
typical example. Of course, in reality, unbounded oscillations do not occur. As soon
as u becomes large, the mathematical model on which Eq. (17) is based is no longer
valid, since the assumption that the spring force depends linearly on the displacement
requires that u be small. As we have seen, if damping is included in the model, the
predicted motion remains bounded; however, the response to the input function
Fy cos wt may be quite large if the damping is small and w is close to wy.

PROBLEMS

In each of Problems 1 through 4 write the given expression as a product of two trigonometric
functions of different frequencies.

1. cos9t — cos 7t 2. sin7t — sin 6¢
3. cosmt + cos2mt 4. sin 3t + sin 4t

5. A mass weighing 4 Ib stretches a spring 1.5 in. The mass is displaced 2 in. in the positive
direction from its equilibrium position and released with no initial velocity. Assuming
that there is no damping and that the mass is acted on by an external force of 2 cos 3¢ 1b,
formulate the initial value problem describing the motion of the mass.

6. A mass of 5 kg stretches a spring 10 cm. The mass is acted on by an external force of
10sin(¢/2) N (newtons) and moves in a medium that imparts a viscous force of 2 N when
the speed of the mass is 4 cm/s. If the mass is set in motion from its equilibrium position
with an initial velocity of 3 cm/s, formulate the initial value problem describing the motion
of the mass.

.‘Q 7. (a) Find the solution of Problem 5.

(b) Plot the graph of the solution.

(c) If the given external force is replaced by a force 4 sin wt of frequency w, find the value
of w for which resonance occurs.

‘Q, 8. (a) Find the solution of the initial value problem in Problem 6.

(b) Identify the transient and steady state parts of the solution.
(c) Plot the graph of the steady state solution.

(d) If the given external force is replaced by a force of 2 cos wt of frequency w, find the
value of w for which the amplitude of the forced response is maximum.

9. If an undamped spring-mass system with a mass that weighs 6 Ib and a spring constant
1 1b/in is suddenly set in motion at ¢ = 0 by an external force of 4 cos 7¢ 1b, determine the
position of the mass at any time and draw a graph of the displacement versus ¢.

10. A mass that weighs 8 1b stretches a spring 6 in. The system is acted on by an external force
of 8sin 8¢ 1b. If the mass is pulled down 3 in and then released, determine the position of
the mass at any time. Determine the first four times at which the velocity of the mass is
Zero.
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11.
12.
13.
14.
15.
16.
& 1.
¢ 18

A spring is stretched 6 in by a mass that weighs 8 1b. The mass is attached to a dashpot
mechanism that has a damping constant of 0.25 Ib-s/ft and is acted on by an external force
of 4 cos 2t 1b.

(a) Determine the steady state response of this system.

(b) If the given mass is replaced by a mass m, determine the value of m for which the
amplitude of the steady state response is maximum.

A spring—-mass system has a spring constant of 3 N/m. A mass of 2 kg is attached to the
spring, and the motion takes place in a viscous fluid that offers a resistance numerically
equal to the magnitude of the instantaneous velocity. If the system is driven by an external
force of (3 cos 3t — 2sin3¢) N, determine the steady state response. Express your answer
in the form R cos(wt — §).

In this problem we ask you to supply some of the details in the analysis of a forced damped
oscillator.

(a) Derive Egs. (10), (11), and (12) for the steady state solution of Eq. (8).

(b) Derive the expression in Eq. (13) for Rk/F.

(c) Show that w?__ and Ry, are given by Eqgs. (14) and (15), respectively.

max

Find the velocity of the steady state response given by Eq. (10). Then show that the
velocity is maximum when o = wy.

Find the solution of the initial value problem

U +u=F(@), u =0, 0 =0,

where
Fot, 0<t=<m,
Fit)y=3{FQ@r—-1t), =m<t<2n,
0, 2 < t.

Hint: Treat each time interval separately, and match the solutions in the different intervals
by requiring « and «’ to be continuous functions of ¢.

A series circuit has a capacitor of 0.25 x 107°F, a resistor of 5 x 10° 2, and an inductor
of 1 H. The initial charge on the capacitor is zero. If a 12-volt battery is connected to the
circuit and the circuitis closed at ¢ = 0,determine the charge on the capacitorats = 0.001 s,
att = 0.01 s, and at any time ¢. Also determine the limiting charge as t — oo.

Consider a vibrating system described by the initial value problem
W'+ +2u=2coswt,  u(0) =0, u'(0)=2.

(a) Determine the steady state part of the solution of this problem.

(b) Find the amplitude A of the steady state solution in terms of w.

(c) Plot A versus w.

(d) Find the maximum value of A and the frequency w for which it occurs.

Consider the forced but undamped system described by the initial value problem
u +u=3coswt, u0) =0, 0 =0.

(a) Find the solution u(t) for w # 1.

(b) Plot the solution u(¢) versus ¢ for @ = 0.7, ® = 0.8, and w = 0.9. Describe how the
response u(t) changes as w varies in this interval. What happens as » takes on values
closer and closer to 1?7 Note that the natural frequency of the unforced system is wy = 1.
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.‘Q 19. Consider the vibrating system described by the initial value problem

u' +u=3coswt, u0)=1, ') =1.

(a) Find the solution for w # 1.

(b) Plot the solution u(z) versus ¢ for w = 0.7, » = 0.8, and w = 0.9. Compare the results
with those of Problem 18; that is, describe the effect of the nonzero initial conditions.

."?, 20. For the initial value problem in Problem 18 plot &’ versus u for v = 0.7, = 0.8, and

o = 0.9. Such a plot is called a phase plot. Use a ¢ interval that is long enough so that the
phase plot appears as a closed curve. Mark your curve with arrows to show the direction
in which it is traversed as ¢ increases.

Problems 21 through 23 deal with the initial value problem
u’ +0.125u" +4u = F(1), u0) =2, ') =0.

In each of these problems:

(a) Plot the given forcing function F(¢) versus ¢, and also plot the solution u(¢) versus ¢ on the
same set of axes. Use a ¢ interval that is long enough so the initial transients are substantially
eliminated. Observe the relation between the amplitude and phase of the forcing term and
the amplitude and phase of the response. Note that wy = \/k/m = 2.

(b) Draw the phase plot of the solution; that is, plot «’ versus u.

&0 21. F(t) = 3cos(t/4)

&0 22. F(t) =3cos2t

&0 23. F(t) = 3cos6t

."?, 24. A spring-mass system with a hardening spring (Problem 32 of Section 3.7) is acted on by

a periodic external force. In the absence of damping, suppose that the displacement of
the mass satisfies the initial value problem

W+ u+ i = cosor, w(0)=0, ') =0.

(a) Let w =1 and plot a computer-generated solution of the given problem. Does the
system exhibit a beat?
(b) Plot the solution for several values of w between 1/2 and 2. Describe how the solution
changes as w increases.

"?, 25. Suppose that the system of Problem 24 is modified to include a damping term and that
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4

Higher Order Linear

F.quations

The theoretical structure and methods of solution developed in the preceding chapter
for second order linear equations extend directly to linear equations of third and
higher order. In this chapter we briefly review this generalization, taking particular
note of those instances where new phenomena may appear, because of the greater
variety of situations that can occur for equations of higher order.

4.1 General Theory of nth Order Linear Equations

An nth order linear differential equation is an equation of the form

dny dn—1y dy
Po(t Pi(t) ——= o+ P — 4+ P,()y = G(1). 1
D + PIOZt + o+ Paci (02 + Palt)y = GO) (1)
We assume that the functions Py, . .., P,,and G are continuous real-valued functions

on some interval I: o <t < f, and that Py is nowhere zero in this interval. Then,
dividing Eq. (1) by Py(¢), we obtain
n

d'y dly
pm +p1(0) o

The linear differential operator L of order n defined by Eq. (2) is similar to the second
order operator introduced in Chapter 3. The mathematical theory associated with
Eq. (2) is completely analogous to that for the second order linear equation; for this
reason we simply state the results for the nth order problem. The proofs of most of
the results are also similar to those for the second order equation and are usually left
as exercises.

d
Liyl = Pt (02 4 Pa)y = (0. @)

219
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Theorem 4.1.1

Since Eq. (2) involves the nth derivative of y with respect to ¢, it will, so to speak,
require 7 integrations to solve Eq. (2). Each of these integrations introduces an
arbitrary constant. Hence we can expect that, to obtain a unique solution, it is
necessary to specify # initial conditions

y(t)) =vo, Y (W) =yp ..n Y V@) =yi, 3)

where 1y may be any point in the interval / and yo, y;, . . ., yé"il) is any set of prescribed

real constants. The following theorem, which is similar to Theorem 3.2.1, guarantees
that the initial value problem (2), (3) has a solution and that it is unique.

If the functions p1, p»,...,p,, and g are continuous on the open interval 7,
then there exists exactly one solution y = ¢ (¢) of the differential equation (2)
that also satisfies the initial conditions (3). This solution exists throughout the
interval I.

We will not give a proof of this theorem here. However, if the coefficients p1,...,p,
are constants, then we can construct the solution of the initial value problem (2), (3)
much as in Chapter 3; see Sections 4.2 through 4.4. Even though we may find a
solution in this case, we do not know that it is unique without the use of Theo-
rem4.1.1. A proof of the theorem can be found in Ince (Section 3.32) or Coddington
(Chapter 6).

The Homogeneous Equation. As in the corresponding second order problem, we first
discuss the homogeneous equation

LIyl = y™ + p1()y™ D + - 4 pp 1 ()Y + pu(®)y = 0. 4)

If the functions y1, y»,. .., y, are solutions of Eq. (4), then it follows by direct com-
putation that the linear combination

y=cyi®) + cy2(t) + -+ cayn(t), )

where ¢y, ..., ¢, are arbitrary constants, is also a solution of Eq. (4). It is then natural
to ask whether every solution of Eq. (4) can be expressed as a linear combination
of y1,...,y,. This will be true if, regardless of the initial conditions (3) that are pre-
scribed, it is possible to choose the constants cy, . . ., ¢, so that the linear combination
(5) satisfies the initial conditions. That is, for any choice of the point ¢ in I, and for
any choice of yo, yg, ..., y(()"fl), we must be able to determine cy,...,c, so that the
equations

cy1(to) + -+ - + cpyn(to) = yo
c1yi(fo) + -+ cny, (to) = y; ©)

ey V) + -+ ey V() =y

are satisfied. Equations (6) can be solved uniquely for the constants cy,...,cy,,
provided that the determinant of coefficients is not zero. On the other hand, if



4.1 General Theory of nth Order Linear Equations 221

Theorem 4.1.2

EXAMPLE

1

the determinant of coefficients is zero, then it is always possible to choose values

of yo, yg, - - y(()"_l) so that Egs. (6) do not have a solution. Hence a necessary and

sufficient condition for the existence of a solution of Egs. (6) for arbitrary values of

Y0s Vs« - - y(()"fl) is that the Wronskian

1 Y2 e Yn
Vi Ys o Vn
W(yla'--syn): . . . (7)
(n—1) (n—1) _
Y1n yZn T ygl b
is not zero at t = fy. Since fy can be any point in the interval /, it is necessary and
sufficient that W (y1,y»,...,y,) be nonzero at every point in the interval. Just as for
the second order linear equation, it can be shown that if yq, y»,...,y, are solutions

of Eq. (4), then W(y1,y2,...,y,) either is zero for every ¢ in the interval I or else is
never zero there; see Problem 20. Hence we have the following theorem.

If the functions pi, pa,...,p, are continuous on the open interval /, if the
functions y1, y2,...,y, are solutions of Eq. (4), and if W(y1,y2,...,y.) (@) # 0 for
at least one point in /, then every solution of Eq. (4) can be expressed as a linear
combination of the solutions y1, y2, ..., V-

A set of solutions y1,...,y, of Eq. (4) whose Wronskian is nonzero is referred to
as a fundamental set of solutions. The existence of a fundamental set of solutions can
be demonstrated in precisely the same way as for the second order linear equation
(see Theorem 3.2.5). Since all solutions of Eq. (4) are of the form (5), we use the
term general solution to refer to an arbitrary linear combination of any fundamental
set of solutions of Eq. (4).

Linear Dependence and Independence. We now explore the relationship between funda-
mental sets of solutions and the concept of linear independence, a central idea in the
study of linear algebra. The functions fi,f3,...,f, are said to be linearly dependent
on an interval [/ if there exists a set of constants k1, k», . . ., k,,, not all zero, such that

kifi(t) + kofo(t) + -+ + knfu(t) =0 ®)

for all ¢ in /. The functions fi, ..., f, are said to be linearly independent on / if they
are not linearly dependent there.

Determine whether the functions fi(¢) = 1,f;(t) = t,and f3(¢) = ¢* are linearly independent or
dependent on the interval / : —oo <t < oo.
Form the linear combination

kifi@) + kafa(0) + ksf3(t) = ki + kat + kst?,
and set it equal to zero to obtain

ki + kot + kst> = 0. 9)
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EXAMPLE

2

If Eq. (9) is to hold for all 7 in 7, then it must certainly be true at any three distinct points in /.
Any three points will serve our purpose, but it is convenient to choose t = 0, = 1,and t = —1.
Evaluating Eq. (9) at each of these points, we obtain the system of equations

ky =0,
ki+ky+ks=0, (10)
ki —ky +k; =0.

From the first of Egs. (10) we note that k; = 0; then from the other two equations it follows
that k, = k3 = 0 as well. Therefore there is no set of constants k1, k,, k3, not all zero, for which
Eq. (9) holds even at the three chosen points, much less throughout /. Thus the given functions
are not linearly dependent on /,so they must be linearly independent. Indeed, they are linearly
independent on any interval. This can be established just as in this example, possibly using a
different set of three points.

Determine whether the functions fi(t)=1, f()=2+1t, fr(t)=3—1¢* and
f1(t) = 4t + ¢ are linearly independent or dependent on any interval /.
Form the linear combination

kifi() + kafo(0) + kafs () + kafa(t) = ki + ka2 + 1) + k33 — %) + ka(4t + %)
= (k1 4 2ky + 3k3) + (ka + 4kt + (k3 + ko). (11)

This expression is zero throughout an interval provided that
ki +2ky+3ks; =0, ky+4ks =0, —ks+ks=0.

These three equations, with four unknowns, have many solutions. For instance, if k4 = 1, then
ks =1,k, = —4,and k; = 5. Thus the given functions are linearly dependent on every interval.

The concept of linear independence provides an alternative characterization of
fundamental sets of solutions of the homogeneous equation (4). Suppose that the
functions y1, . .., y, are solutions of Eq. (4) on an interval / and consider the equation

kiyi(@) + -+ + knyn(t) = 0. (12)
By differentiating Eq. (12) repeatedly, we obtain the additional n — 1 equations

kiyi(t) + -+ + kny, (1) = 0,

: 13)
Ky V() + -+ kay V(1) = 0.
The system consisting of Eqgs. (12) and (13) is a system of z linear algebraic equations

for the n unknowns k1, . .., k,. The determinant of coefficients for this system is the
Wronskian W (y1,...,y,)(t) of y1,...,y,. This leads to the following theorem.
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Theorem 4.1.3

If y1(0),. .., yn(t) is a fundamental set of solutions of Eq. (4)

Lyl =y +pi0y" "+ + pp1()y + pa®)y =0

on an interval 7, then y;(¢),...,y,(¢) are linearly independent on /. Conversely, if
y1(®),...,yn(t) are linearly independent solutions of Eq. (4) on /, then they form a
fundamental set of solutions on /.

To prove this theorem, first suppose that y;(¢),...,y,(t) is a fundamental set of
solutions of Eq. (4) on /. Then the Wronskian W (y1,...,y,)(t) # 0 for every ¢ in 1.
Hence the system (12), (13) has only the solution k; = --- = k, = 0 for every ¢ in I.
Thus y; (t), . .., y,(t) cannot be linearly dependent on / and must therefore be linearly
independent there.

To demonstrate the converse, let y;(¢),...,y,(t) be linearly independent on /. To
show that they form a fundamental set of solutions, we need to show that their
Wronskian is never zero in I. Suppose that this is not true; then there is at least
one point ) where the Wronskian is zero. At this point the system (12), (13) has a

nonzero solution; let us denote it by k{, ..., k. Now form the linear combination
¢ (0) = kiyi(®) + - + kyya(0). (14)
Then ¢ (¢) satisfies the initial value problem
Llyl=0, yto)=0, y(t)=0, ..., y"P)=0. (15)

The function ¢ satisfies the differential equation because it is a linear combination of
solutions; it satisfies the initial conditions because these are just the equations in the
system (12), (13) evaluated at fy. However, the function y(¢) = 0 for all ¢ in [ is also
a solution of this initial value problem and, by Theorem 4.1.1, the solution is unique.
Thus ¢ (¢#) =0 for all ¢ in I. Consequently, y;(t),...,y,(t) are linearly dependent on
1, which is a contradiction. Hence the assumption that there is a point where the
‘Wronskian is zero is untenable. Therefore the Wronskian is never zero on I, as was
to be proved.

Note that for a set of functions fi, . .., f, that are not solutions of Eq. (4) the con-
verse part of Theorem 4.1.3 is not necessarily true. They may be linearly independent
on / even though the Wronskian is zero at some points, or even every point, but with
different sets of constants k1, ..., k, at different points. See Problem 25 for an ex-
ample.

The Nonhomogeneous Equation. Now consider the nonhomogeneous equation (2)

LIyl = y™ + p1()y™ ™D + - 4 pa(0)y = g(0).

If Y7 and Y, are any two solutions of Eq. (2), then it follows immediately from the
linearity of the operator L that

LYy = Y>1(1) = LIY11(1) — LIY2](1) = g(1) —g(®) = 0.

Hence the difference of any two solutions of the nonhomogeneous equation (2) is a
solution of the homogeneous equation (4). Since any solution of the homogeneous
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equation can be expressed as a linear combination of a fundamental set of solutions
Y1,---,¥n, it follows that any solution of Eq. (2) can be written as

y =ciyi(®) + caya(t) + -+ + cpyn(t) + Y (1), (16)

where Y is some particular solution of the nonhomogeneous equation (2). The linear
combination (16) is called the general solution of the nonhomogeneous equation (2).

Thus the primary problem is to determine a fundamental set of solutions y1, ..., y,
of the homogeneous equation (4). If the coefficients are constants, this is a fairly
simple problem;it is discussed in the next section. If the coefficients are not constants,
it is usually necessary to use numerical methods such as those in Chapter 8 or series
methods similar to those in Chapter 5. These tend to become more cumbersome as
the order of the equation increases.

The method of reduction of order (Section 3.4) also applies to nth order linear
equations. If y; is one solution of Eq. (4), then the substitution y = v()y; (¢) leads to
a linear differential equation of order n — 1 for v’ (see Problem 26 for the case when
n = 3). However, if n > 3, the reduced equation is itself at least of second order, and
only rarely will it be significantly simpler than the original equation. Thus, in practice,
reduction of order is seldom useful for equations of higher than second order.

PROBLEMS

In each of Problems 1 through 6 determine intervals in which solutions are sure to exist.

1. y(4) + 4ym + 3y =t 2. tyw + (sint)y” + 3y — cost
3. [([ — 1)y(4) + ety// + 4t2y =0 4. y/” —+ [y/’ —+ [zy/ —+ [3y =Int
5. x = Dy® + (x +1)y" + (tanx)y =0 6. (2 —4)y® +x2y" 49y =0

In each of Problems 7 through 10 determine whether the given set of functions is linearly
dependent or linearly independent. If they are linearly dependent, find a linear relation
among them.

7. i) =2t -3, O =2+1, fs() =202t

8. fi)y=2t-3, L) =2024+1, f3(t) =32+t

9. i) =2t =3, L =+1, fz()=22—t, i) = +t+1
10. fi) =2t -3, Hh(O)=P+1, fr)=22—t, i) =2 +1t+1

In each of Problems 11 through 16 verify that the given functions are solutions of the differential
equation, and determine their Wronskian.

11. y" +y =0; 1, cost, sint

12. y® +y" =0; 1, ¢, cost, sint

13. y" 4+2y" —y —2y = 0; e, e!, e

14, y® £ 2y" 4 y" = 0; 1, t, e, te!

15. xy”" —y”" =0; 1, x, x°

16. X3y + x2y" — 2xy’ +2y = 0; x, x%, 1/x

17. Show that W (5,sin’t,cos2t) = 0 for all . Can you establish this result without direct
evaluation of the Wronskian?

18. Verify that the differential operator defined by

Lyl =y +p1@0y" ™" + -+ pa()y



4.1 General Theory of nth Order Linear Equations 225

19.

20.

is a linear differential operator. That is, show that

Llciy1 + c2y2] = 1 Ly1] + 2 L[y-],

where y; and y, are n times differentiable functions and ¢; and ¢, are arbitrary constants.
Hence, show that if y, y»,...,y, are solutions of L[y] = 0, then the linear combination
c1y1 + -+ + ¢,y is also a solution of L[y] = 0.

Let the linear differential operator L be defined by
L[y] — aoy(”) + aly("*l) + -+ a,y,
where ay,a,, . ..,a, are real constants.
(a) Find L[t"].
(b) Find L[e"].

(c) Determine four solutions of the equation y — 5y” 4+ 4y = 0. Do you think the four
solutions form a fundamental set of solutions? Why?

In this problem we show how to generalize Theorem 3.2.6 (Abel’s theorem) to higher
order equations. We first outline the procedure for the third order equation

Y+ p1®)y" + p2(0)y + p3t)y = 0.

Let y1, 2, and y3 be solutions of this equation on an interval /.
(a) If W = W(y1, y2,y3), show that

V1 Y2 y3
W=y ¥, Yl
yiooyyoWy

Hint: The derivative of a 3-by-3 determinant is the sum of three 3-by-3 determinants
obtained by differentiating the first, second, and third rows, respectively.

i

(b) Substitute for y{’,y5’, and y5’ from the differential equation; multiply the first row by
p3, multiply the second row by p,, and add these to the last row to obtain

W =—pi()W.
(c) Show that
W(Yla}’b)’})(f) = cexXp [_[pl(t) dtj| .

It follows that W is either always zero or nowhere zero on /.
(d) Generalize this argument to the nth order equation

YU 4pi@y" U 4+ pa()y =0
with solutions y, ..., y,. That is, establish Abel’s formula

W1,...,yn)() = cexp [— /Pl ® df:|

for this case.

In each of Problems 21 through 24 use Abel’s formula (Problem 20) to find the Wronskian of
a fundamental set of solutions of the given differential equation.

21.
23.

y///+2y//_y/_3y:0 22 y(4)+y:0
' +2y —y +1y=0 24. 2y 1y +y' —4y =0
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25. (a) Show that the functions f(¢) =*|t| and g(¢) = are linearly dependent on
O<t<landon—-1<t<0.

(b) Show that f(r) and g(¢) are linearly independent on —1 < ¢ < 1.
(c) Show that W(f,g)(t)iszero forallrin —1 <t < 1.

26. Show that if y; is a solution of
Y+ 10y +p2()y + p3t)y =0,
then the substitution y = y; (t)v(¢) leads to the following second order equation for v':

nv” + Gy + puy)v” + Gy + 2p1y| + pay)v’ = 0.

In each of Problems 27 and 28 use the method of reduction of order (Problem 26) to solve the
given differential equation.

27. 2—=t)y"+ 2t =3y —ty +y=0, t<2; yi(t) = ¢
28. 2t +3)y” =3tt+2)y" +6(1+1)y —6y=0, t>0; @) =12, yt) =1

4.2 Homogeneous Equations with Constant Coefficients

Consider the nth order linear homogeneous differential equation
Liy] = apy™ + aly(”_]) + -+ a1y +ay =0, (1)

where ay,ay,...,a, are real constants. From our knowledge of second order linear
equations with constant coefficients, it is natural to anticipate that y = e is a solution
of Eq. (1) for suitable values of r. Indeed,

Lle™ = e (agr" + arr" ' + -+ ap_ar + a,) = " Z(r) 2)

for all r, where
Zr)=apr" + " + -+ an_ir + ay. 3)

For those values of r for which Z(r) = 0, it follows that L[e”"] =0 and y = ¢" is a
solution of Eq. (1). The polynomial Z(r) is called the characteristic polynomial, and
the equation Z(r) = 0 is the characteristic equation of the differential equation (1).

A polynomial of degree n has n zeros,! say, r1,7s, . .., r,,some of which may be equal;
hence we can write the characteristic polynomial in the form
Z(r) =ao(r —r))(r —r)---(r —ry). 4)

1 An important question in mathematics for more than 200 years was whether every polynomial equation
has at least one root. The affirmative answer to this question, the fundamental theorem of algebra, was
given by Carl Friedrich Gauss (1777-1855) in his doctoral dissertation in 1799, although his proof does
not meet modern standards of rigor. Several other proofs have been discovered since, including three
by Gauss himself. Today, students often meet the fundamental theorem of algebra in a first course on
complex variables, where it can be established as a consequence of some of the basic properties of complex
analytic functions.
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EXAMPLE

1

Real and Unequal Roots. If the roots of the characteristic equation are real and no two
are equal, then we have n distinct solutions e, e, ..., e™" of Eq. (1). If these
functions are linearly independent, then the general solution of Eq. (1) is

y=cre™ + e 4+ -+ ce™. 5)

One way to establish the linear independence of e"!,e’”, ..., e is to evaluate their
Wronskian determinant. Another way is outlined in Problem 40.

Find the general solution of

y(4) +y/// _ 7y// _y/ + 6y —0. (6)
Also find the solution that satisfies the initial conditions
yO =1, YO)=0, YO =-2, YO =-1 (7
and plot its graph.
Assuming that y = ¢”, we must determine r by solving the polynomial equation
P+ -7 —r+6=0. 8)
The roots of this equation are r; =1, r, = —1, r; = 2, and ry = —3. Therefore the general
solution of Eq. (6) is
y =cie' + e + c3¢? + cue. 9)
The initial conditions (7) require that ¢y, .. ., ¢4 satisfy the four equations

a+a+ g+ a= 1,

C1 —C2+2C3— 3C4: O,

ci+c+4cs+ 9y = -2, (10)
c1— ¢y +8cz3 —27¢c4 = —1.
By solving this system of four linear algebraic equations, we find that
c1=%, Cz=1%, C3=—%, C4=—%-
Therefore the solution of the initial value problem is
y= 18—163’ + 15—26" — %62’ — %6_3’. (11)

The graph of the solution is shown in Figure 4.2.1.

0.5 1 t

1+

FIGURE 4.2.1 Solution of the initial value problem of Example 1.
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As Example 1 illustrates, the procedure for solving an nth order linear differential
equation with constant coefficients depends on finding the roots of a corresponding
nth degree polynomial equation. If initial conditions are prescribed, then a system
of n linear algebraic equations must be solved to determine the proper values of the
constantscy, . . ., c,. Although each of these tasks becomes much more complicated as
nincreases, they can often be handled without difficulty with a calculator or computer.

For third and fourth degree polynomials there are formulas? analogous to the
formula for quadratic equations but more complicated, that give exact expressions for
the roots. Root-finding algorithms are readily available on calculators and computers.
Sometimes they are included in the differential equation solver, so that the process of
factoring the characteristic polynomial is hidden and the solution of the differential
equation is produced automatically.

If you are faced with the need to factor the characteristic polynomial by hand, here
is one result that is sometimes helpful. Suppose that the polynomial

agr" + a4 a,r+a,=0 12)

has integer coefficients. If » = p/q is a rational root, where p and g have no common
factors, then p must be a factor of a,, and g must be a factor of ay. For example, in
Eq. (8) the factors of @y are 1 and the factors of a, are +£1, +2, +£3, and £6. Thus
the only possible rational roots of this equation are 1, £2, +3, and £6. By testing
these possible roots, we find that 1, —1,2, and —3 are actual roots. In this case there
are no other roots, since the polynomial is of fourth degree. If some of the roots are
irrational or complex, as is usually the case, then this process will not find them, but
at least the degree of the polynomial can be reduced by dividing the polynomial by
the factors corresponding to the rational roots.

If the roots of the characteristic equation are real and different, we have seen that
the general solution (5) is simply a sum of exponential functions. For large values of ¢
the solution is dominated by the term corresponding to the algebraically largest root.
If this root is positive, then solutions become exponentially unbounded, whereas if
it is negative, then solutions tend exponentially to zero. Finally, if the largest root
is zero, then solutions approach a nonzero constant as ¢t becomes large. Of course,
for certain initial conditions, the coefficient of the otherwise dominant term may be
zero; then the nature of the solution for large ¢ is determined by the next largest root.

Complex Roots. If the characteristic equation has complex roots, they must occur in
conjugate pairs, A = ip, since the coefficients ay,...,a, are real numbers. Provided
that none of the roots is repeated, the general solution of Eq. (1) is still of the form
(5). However, just as for the second order equation (Section 3.3), we can replace the

>The method for solving the cubic equation was apparently discovered by Scipione dal Ferro (1465-
1526) about 1500, although it was first published in 1545 by Girolamo Cardano (1501-1576) in his Ars
Magna. This book also contains a method for solving quartic equations that Cardano attributes to his
pupil Ludovico Ferrari (1522-1565). The question of whether analogous formulas exist for the roots of
higher degree equations remained open for more than two centuries, until 1826, when Niels Abel showed
that no general solution formulas can exist for polynomial equations of degree five or higher. A more
general theory was developed by Evariste Galois (1811-1832) in 1831, but unfortunately it did not become
widely known for several decades.
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EXAMPLE

2

complex-valued solutions e*+*)! and e*~* by the real-valued solutions
e cos ut, e sin ut (13)

obtained as the real and imaginary parts of e**", Thus, even though some of the
roots of the characteristic equation are complex, it is still possible to express the
general solution of Eq. (1) as a linear combination of real-valued solutions.

Find the general solution of

@ _y=0. (14)
Also find the solution that satisfies the initial conditions
y(©0) =7/2, y'(0) = —4, y'(0)=5/2, y'(0) =-2 15)

and draw its graph.
Substituting e’ for y, we find that the characteristic equation is

F-1=0r-D0r"+1=0.
Therefore the roots are r = 1, —1, i, —i, and the general solution of Eq. (14) is
y =cie + e + c3cost + cysint.
If we impose the initial conditions (15), we find that
¢ =0, c =3, c;=1/2, cy =—1;
thus the solution of the given initial value problem is
y =3¢+ Jcost—sint. (16)

The graph of this solution is shown in Figure 4.2.2.

Observe that the initial conditions (15) cause the coefficient ¢; of the exponentially growing
term in the general solution to be zero. Therefore this term is absent in the solution (16),
which describes an exponential decay to a steady oscillation, as Figure 4.2.2 shows. However,
if the initial conditions are changed slightly, then ¢; is likely to be nonzero, and the nature of
the solution changes enormously. For example, if the first three initial conditions remain the
same, but the value of y”'(0) is changed from —2 to —15/8, then the solution of the initial value
problem becomes

y =3¢+ 35e" +1cost — {Lsint. (17)

The coefficients in Eq. (17) differ only slightly from those in Eq. (16), but the exponentially
growing term, even with the relatively small coefficient of 1/32, completely dominates the
solution by the time ¢ is larger than about 4 or 5. This is clearly seen in Figure 4.2.3, which
shows the graphs of the two solutions (16) and (17).
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EXAMPLE

3
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FIGURE 4.2.2 A plot of the solution (16).

N ,Z\
S 4 6 ¢

FIGURE 4.2.3 Plots of the solutions (16) (light curve) and (17) (heavy curve).
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Repeated Roots. If the roots of the characteristic equation are not distinct—that is,
if some of the roots are repeated—then the solution (5) is clearly not the general
solution of Eq. (1). Recall that if r; is a repeated root for the second order linear
equation apy” + a1y’ + apy = 0, then two linearly independent solutions are ¢ and
te"!. For an equation of order n, if a root of Z(r) = 0, say r = ry, has multiplicity s
(where s < n), then

ent, tet, e, ..., Tl (18)

are corresponding solutions of Eq. (1); see Problem 41 for a proof of this statement.

If a complex root A + iy is repeated s times, the complex conjugate A —iu is
also repeated s times. Corresponding to these 2s complex-valued solutions, we can
find 2s real-valued solutions by noting that the real and imaginary parts of e+,
te@ it 1@ HiI gre also linearly independent solutions:

eMcosput, esinut, tecosut, te*sinput,

t5~leM cos ut, 5 eM sin ut.

Hence the general solution of Eq. (1) can always be expressed as a linear combination
of n real-valued solutions. Consider the following example.

Find the general solution of
y@ 42y +y=0. (19)

The characteristic equation is
A2 1=+ D +1) =0.
The roots are r = i,i, —i, —i, and the general solution of Eq. (19) is

Yy =cpcost+ cysint + c3tcost + ¢yt sint.
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EXAMPLE

4

In determining the roots of the characteristic equation, it may be necessary to
compute the cube roots, the fourth roots, or even higher roots of a (possibly com-
plex) number. This can usually be done most conveniently by using Euler’s formula
e = cost +isint and the algebraic laws given in Section 3.3. This is illustrated in
the following example.

Find the general solution of
yP +y=0. (20)

The characteristic equation is
r+1=0.

To solve the equation, we must compute the fourth roots of —1. Now —1, thought of as a
complex number, is —1 + 0i. It has magnitude 1 and polar angle 7. Thus

—1=cosm +isinm =e™.
Moreover, the angle is determined only up to a multiple of 2. Thus
—1 = cos(zr + 2mm) + isin(x + 2mmw) = T

where m is zero or any positive or negative integer. Thus
(=) = l/Hma/2) — cos (% + n;—ﬂ) +isin (% + %) .
The four fourth roots of —1 are obtained by setting m = 0, 1,2, and 3; they are
1+i —1+i —1—i 1—i
Itis easy to verify that, for any other value of m, we obtain one of these four roots. For example,
corresponding to m = 4, we obtain (1 4 i)/+/2. The general solution of Eq. (20) is

t t t t
= /2 <c €os — + ¢, sin —) +e V2 (c €OSs — + ¢4 sin —) 21
y 1 \/f 2 «/f 3 \/i 4 ﬁ (21)

In conclusion, we note that the problem of finding all the roots of a polynomial
equation may not be entirely straightforward, even with computer assistance. For
instance, it may be difficult to determine whether two roots are equal or merely
very close together. Recall that the form of the general solution is different in these
two cases.

If the constants ag, a1, . . . ,a, in Eq. (1) are complex numbers, the solution of Eq. (1)
is still of the form (4). In this case, however, the roots of the characteristic equation
are, in general, complex numbers, and it is no longer true that the complex conjugate
of a root is also a root. The corresponding solutions are complex-valued.

PROBLEMS

In each of Problems 1 through 6 express the given complex number in the form
R(cosf +isinf) = Re".

Lo1+i 2. —1+/3i

3. -3 4. —i

5.3 6. —1—i
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In each of Problems 7 through 10 follow the procedure illustrated in Example 4 to determine
the indicated roots of the given complex number.

7. 113 8. (11—l
9. 11/ 10. [2(cos /3 + isinm/3)]/?
In each of Problems 11 through 28 find the general solution of the given differential equation.
11. y" =y" =y +y=0 12. y" =3y" +3y' =y =0
13. 2y" —4y" =2y +4y =0 14. y® —4y” +4y" =0
15. y9 +y=0 16. y® —5y"+4y =0
17. y© —3y® 4+ 3y" —y =0 18. y® —y" =0
19. y® —3y® 4+ 3y" —3y" +2y' =0 20. y® -8y =0
21, y® +8y® +16y =0 22,y +2y"+y=0
23 y" =5y"+3y +y=0 24, y" 4+ 5y"+ 6y +2y =0
¢ 25 18y" +21y" + 14y +4y =0 &0 26. yH —Ty" +6y" +30y — 36y =0
@0 27 1299431y + 75y + 3Ty + 5y =0 g0 28. y@ +6y" +17y" +22y' + 14y =0

In each of Problems 29 through 36 find the solution of the given initial value problem, and
plot its graph. How does the solution behave as t — co?

& 29.
&' 30.
¢ 3L
& 32
¢ 3.

¢ 34
¢ 3.
&' 36.

37.

38.

39.

y'+y =0 yO=0, y@O)=1 "0 =2

yW+y=0,  y0)=0, y©0) =0, y'©0)=-1, y"(0)=0
yW—dy"+4y"=0;  yl=-1, y)=2, y'H=0, y"1)=0
yV'=y'+y -y=0  yO0)=2, yO)=-1, y"(0)=-2

2yW =y =9y + 4y +4y=0;  yO)=-2, yO) =0, y'(0)=-2
y'(0) =0

" +y +5y=0, yO =2, yO=1, y0)=-1

" +5"+y =0, yO)=-2, yO0)=2, y(0)=0

y@ +6y” +17y" + 22y + 14y = 0; yO =1 y©O=-2, y'(0)=0,
y"(0) =3

Show that the general solution of y® — y = 0 can be written as

y =c1cost+ cysint + c3cosht + ¢4 sinht.

Determine the solution satisfying the initial conditions y(0) =0, y'(0) =0, y"(0) =1,
y”(0) =1. Why is it convenient to use the solutions cosh ¢ and sinh ¢ rather than e’
and e'?

Consider the equation y® —y = 0.

(a) Use Abel’s formula [Problem 20(d) of Section 4.1] to find the Wronskian of a funda-
mental set of solutions of the given equation.

(b) Determine the Wronskian of the solutions e, e™*, cos ¢, and sin t.
(c) Determine the Wronskian of the solutions cosh, sinh, cos ¢, and sin ¢.
Consider the spring-mass system, shown in Figure 4.2.4, consisting of two unit masses

suspended from springs with spring constants 3 and 2, respectively. Assume that there is
no damping in the system.

(a) Show that the displacements u; and u, of the masses from their respective equilibrium
positions satisfy the equations

u] + 5u; = 2uy, Uy + 2uy = 2uy. i)
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40.

FIGURE 4.2.4 A two-spring, two-mass system.

(b) Solve the first of Eqgs. (i) for u, and substitute into the second equation, thereby
obtaining the following fourth order equation for u:

ul® + 7w + 6uy =0. (i)

Find the general solution of Eq. (ii).
(c) Suppose that the initial conditions are

u (0) =1, u;(0) =0, u(0) =2, uy(0) = 0. (iii)

"

Use the first of Egs. (i) and the initial conditions (iii) to obtain values for «{(0) and u}’(0).
Then show that the solution of Eq. (ii) that satisfies the four initial conditions on u; is
uy (t) = cost. Show that the corresponding solution u; is u, (t) = 2 cost.

(d) Now suppose that the initial conditions are
u1(0) = =2, u;(0) =0, u(0) =1, uy(0) = 0. (iv)

Proceed as in part (c) to show that the corresponding solutions are u;(f) = —2cosv/6¢
and u,(t) = cos /61

(e) Observe that the solutions obtained in parts (c) and (d) describe two distinct modes
of vibration. In the first, the frequency of the motion is 1, and the two masses move in
phase, both moving up or down together; the second mass moves twice as far as the first.
The second motion has frequency +/6, and the masses move out of phase with each other,
one moving down while the other is moving up, and vice versa. In this mode the first mass
moves twice as far as the second. For other initial conditions, not proportional to either
of Egs. (iii) or (iv), the motion of the masses is a combination of these two modes.

In this problem we outline one way to show thatifr,...,r, are all real and different, then
e’ ..., e™" are linearly independent on —oco < t < oco. To do this, we consider the linear
relation

cre + -+ e =0, —00 <t < 00 (i)

and show that all the constants are zero.
(a) Multiply Eq. (i) by e™"t* and differentiate with respect to ¢, thereby obtaining

() — rl)e(rzfrl)t +t ey — rl)e(rn—rl)t —0.
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41.

(b) Multiply the result of part (a) by e~"2~"1" and differentiate with respect to ¢ to obtain
c3(rs = 1) (rs — 1) ™ o4 0y (ry — 1) (1 — 1) = 0,
(c) Continue the procedure from parts (a) and (b), eventually obtaining
Cnrn = Toe1) == (1 — r)e™ 00 = 0.

Hence ¢, = 0, and therefore
cre' + -+ 1@t = 0.

(d) Repeat the preceding argument to show that ¢,,_; = 0. In a similar way it follows that
Cnp = --+- = c; = 0. Thus the functions "/, ..., e are linearly independent.

In this problem we indicate one way to show that if r = r; is a root of multiplicity s of the
characteristic polynomial Z(r), then ", te"’,..., t*~le"’ are solutions of Eq. (1). This
problem extends to nth order equations the method for second order equations given in
Problem 22 of Section 3.4. We start from Eq. (2) in the text

Lle"1=e"Z(r) (i)

and differentiate repeatedly with respect to r, setting r = r; after each differentiation.
(a) Observe that if ry is a root of multiplicity s, then Z(r) = (r — r)*q(r), where q(r) is
a polynomial of degree n — s and q(r;) # 0. Show that Z(ry), Z'(ry), ..., Z% D (r)) are all
zero,but Z® (ry) # 0.

(b) By differentiating Eq. (i) repeatedly with respect to r, show that

a Fty 8 | rt
aL[e ]_L[are :|_L[te 1,

s—1

arS71 L[ert] — L[ts—len‘].

(c) Show that e, te"", ... t*~1en" are solutions of Eq. (1).

4.3 The Method of Undetermined Coefficients

A particular solution Y of the nonhomogeneous nth order linear equation with con-

stant coefficients

Llyl = apy™ +aiy" " + -+ ap1y + any = g(0) 1

can be obtained by the method of undetermined coefficients, provided that g(z) is of
an appropriate form. Although the method of undetermined coefficients is not as
general as the method of variation of parameters described in the next section, it is
usually much easier to use when it is applicable.
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EXAMPLE

2

Just as for the second order linear equation, when the constant coefficient linear
differential operator L is applied to a polynomial Agt™ + Ayt ! + ... 4+ A,,, an ex-
ponential function e*, a sine function sin 8¢, or a cosine function cos ft, the result
is a polynomial, an exponential function, or a linear combination of sine and cosine
functions, respectively. Hence, if g(¢) is a sum of polynomials, exponentials, sines, and
cosines, or products of such functions, we can expect that it is possible to find Y (¢)
by choosing a suitable combination of polynomials, exponentials, and so forth, mul-
tiplied by a number of undetermined constants. The constants are then determined
by substituting the assumed expression into Eq. (1).

The main difference in using this method for higher order equations stems from
the fact that roots of the characteristic polynomial equation may have multiplicity
greater than 2. Consequently, terms proposed for the nonhomogeneous part of the
solution may need to be multiplied by higher powers of ¢ to make them different from
terms in the solution of the corresponding homogeneous equation. The following
examples illustrate this. In these examples we have omitted numerous straightfor-
ward algebraic steps, because our main goal is to show how to arrive at the correct
form for the assumed solution.

Find the general solution of
y///_3y//+3y/_y=4et. (2)

The characteristic polynomial for the homogeneous equation corresponding to Eq. (2) is
rP=3r4+3r—1=@-1)>
so the general solution of the homogeneous equation is
Ve(t) = cre' + cyte' + cat’e'. 3)

To find a particular solution Y (¢) of Eq. (2), we start by assuming that Y (t) = Ae'. However,
since ¢', tef, and t?¢' are all solutions of the homogeneous equation, we must multiply this
initial choice by 3. Thus our final assumption is that Y (t) = Ar’¢!, where A is an undeter-
mined coefficient. To find the correct value for A, we differentiate Y () three times, substitute
for y and its derivatives in Eq. (2), and collect terms in the resulting equation. In this way
we obtain

6Ae' = 4e'.

Thus A = % and the particular solution is
Y(t) = 2re. 4)
The general solution of Eq. (2) is the sum of y () from Eq. (3) and Y (¢) from Eq. (4), that is,

y = cie' + cate' + c3t’e’ + §t3e‘.

Find a particular solution of the equation
y® 42y" +y =3sint — Scost. 5)
The general solution of the homogeneous equation was found in Example 3 of Section 4.2;
itis
Ve(t) = ¢y cost + ¢y sint + c3t cost + ¢yt sint, (6)
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EXAMPLE

3

corresponding to the roots r =i, i, —i, and —i of the characteristic equation. Our initial
assumption for a particular solutionis Y (t) = A sin¢ + B cos ¢, but we must multiply this choice
by ¢ to make it different from all solutions of the homogeneous equation. Thus our final
assumption is

Y () = A’ sint + Bt? cost.

Next, we differentiate Y (r) four times, substitute into the differential equation (4), and collect
terms, obtaining finally
—8Assint — 8B cost = 3sint — 5cost.

Thus A = —%, B= %, and the particular solution of Eq. (4) is

Y(t) = =3 sint + 3¢% cost. (7)

If g(¢) is a sum of several terms, it may be easier in practice to compute separately
the particular solution corresponding to each term in g(¢). As for the second order
equation, the particular solution of the complete problem is the sum of the particular
solutions of the individual component problems. This is illustrated in the following
example.

Find a particular solution of
y" —4y' =t +3cost +e . (8)
First we solve the homogeneous equation. The characteristic equation is > — 4r = 0, and

the roots are r = 0, +2; hence

Ve(t) = ¢ + c2e¥ + cze7?.

We can write a particular solution of Eq. (8) as the sum of particular solutions of the differential

equations
t

y/// _ 4y/ =1, y/// _ 4y/ = 3cos f, yw _ 4y/ — e—Z .

Our initial choice for a particular solution Y7 (¢) of the first equation is Agt + A1, but a constant
is a solution of the homogeneous equation, so we multiply by ¢. Thus

Y1(t) = t(Aot + Ay).
For the second equation we choose
Y>(t) = Bcost + Csint,

and there is no need to modify this initial choice since sin¢ and cos¢ are not solutions of
the homogeneous equation. Finally, for the third equation, since e is a solution of the
homogeneous equation, we assume that

Ys(t) = Ete™.

The constants are determined by substituting into the individual differential equations; they
are Ay = —é, A1 =0, B=0, C= —%, and E = é Hence a particular solution of Eq. (8) is

Y(t) = —4* — 2sint + jre. )

You should keep in mind that the amount of algebra required to calculate the
coefficients may be quite substantial for higher order equations, especially if the
nonhomogeneous term is even moderately complicated. A computer algebra system
can be extremely helpful in executing these algebraic calculations.
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The method of undetermined coefficients can be used whenever it is possible to
guess the correct form for Y (r). However, this is usually impossible for differential
equations not having constant coefficients, or for nonhomogeneous terms other than
the type described previously. For more complicated problems we can use the method
of variation of parameters, which is discussed in the next section.

PROBLEMS

In each of Problems 1 through 8 determine the general solution of the given differential
equation.

1L.y"—y —y +y=2e"+3 2.y —y =3t +cost

3.y +y +y +y=e'+4 4. y" =y =2sint

Sy 4y = e 6. y® +2y" 4y =3+ cos2t
7. 9O 4y = 8. y® +y” =sin2t

In each of Problems 9 through 12 find the solution of the given initial value problem. Then
plot a graph of the solution.

9. y"+4y'=1;,  yO0)=y0) =0, y(@©0)=1
10. y® +2y" +y =3t + 4; y0) =y (0)=0, y'0)=y"0)=1
11. y" =3y +2y =t +e¢; yO =1, yO=-1 y©0=-3
12. y® +2y" +y" + 8y — 12y = 12sint —e™;  y(0) =3, y'(0) =0,
Y =-1, y"(0)=2
In each of Problems 13 through 18 determine a suitable form for Y (¢) if the method of unde-
termined coefficients is to be used. Do not evaluate the constants.

13, y" =2y" +y =0 +2¢ 14. y" —y' =te™" +2cost
15. y® —2y" +y = ¢' +sint 16. y® +4y” =sin2t +te' + 4
17. y® —y" —y" +y =2 + 4+ tsint 18. y® +2y” +2y" =3¢ +2te™" + ¢ sint

19. Consider the nonhomogeneous nth order linear differential equation
aoy™ +ary" ™V + -+ ayy = g(0), (i)
where ay, . . .,a, are constants. Verify that if g(¢) is of the form
e (bot™ + - - + by,
then the substitution y = e*u(t) reduces Eq. (i) to the form
kou™ + ku Y + o 4 kyu = bot™ + - - + by, (ii)

where ky,...,k, are constants. Determine k, and k, in terms of the a’s and «. Thus
the problem of determining a particular solution of the original equation is reduced to
the simpler problem of determining a particular solution of an equation with constant
coefficients and a polynomial for the nonhomogeneous term.

Method of Annihilators. InProblems20 through22 we consider another way of arriving at the
proper form of Y (¢) for use in the method of undetermined coefficients. The procedure is based
on the observation that exponential, polynomial, or sinusoidal terms (or sums and products of
such terms) can be viewed as solutions of certain linear homogeneous differential equations
with constant coefficients. It is convenient to use the symbol D for d/dt. Then, for example,e™
is a solution of (D + 1)y = 0; the differential operator D + 1 is said to annihilate, or to be an
annihilator of,e™". Similarly, D?> + 4is an annihilator of sin 2¢ or cos 2¢,(D — 3)> = D> — 6D +9
is an annihilator of e* or te*, and so forth.
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20. Show that linear differential operators with constant coefficients obey the commutative
law. That is, show that

(D —a)(D - b)f =(D —b)(D —a)f

for any twice differentiable function f and any constants a and b. The result extends at
once to any finite number of factors.

21. Consider the problem of finding the form of a particular solution Y (¢) of
(D—=23D+1)Y =3e* —te™, @)
where the left side of the equation is written in a form corresponding to the factorization

of the characteristic polynomial.

(a) Show that D — 2 and (D + 1), respectively, are annihilators of the terms on the right
side of Eq. (i), and that the combined operator (D — 2)(D + 1)? annihilates both terms on
the right side of Eq. (i) simultaneously.

(b) Apply the operator (D — 2)(D + 1)? to Eq. (i) and use the result of Problem 20 to
obtain

(D —-2*D + 1Y =0. (ii)
Thus Y is a solution of the homogeneous equation (ii). By solving Eq. (ii), show that
Y () = c1€® + cate® + 3t + cat’e® + cse” 4+ cote™ + cot’e, (iii)

where ¢y, ..., c7 are constants, as yet undetermined.

(c) Observe that €%, te*, t2¢*, and e~ are solutions of the homogeneous equation cor-
responding to Eq. (i); hence these terms are not useful in solving the nonhomogeneous
equation. Therefore, choose ¢, ¢, ¢3, and ¢5 to be zero in Eq. (iii), so that

Y(t) = cat’e® + cote™ + cot’e ™. (iv)

This is the form of the particular solution Y of Eq. (i). The values of the coefficients c4, ¢,
and ¢; can be found by substituting from Eq. (iv) in the differential equation (i).

Summary. Suppose that
L(D)y = g(1), ™)

where L(D) is a linear differential operator with constant coefficients, and g(¢) is a sum or
product of exponential, polynomial, or sinusoidal terms. To find the form of a particular
solution of Eq. (v), you can proceed as follows:

(a) Find a differential operator H (D) with constant coefficients that annihilates g(z), that is,
an operator such that H(D)g(t) = 0.

(b) Apply H (D) to Eq. (v), obtaining
H(D)LMD)y =0, (vi)

which is a homogeneous equation of higher order.

(c) Solve Eq. (vi).

(d) Eliminate from the solution found in step (c) the terms that also appear in the solution of
L(D)y = 0. The remaining terms constitute the correct form of a particular solution of Eq. (V).

22. Use the method of annihilators to find the form of a particular solution Y (¢) for each of
the equations in Problems 13 through 18. Do not evaluate the coefficients.
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4.4 The Method of Variation of Parameters

The method of variation of parameters for determining a particular solution of the
nonhomogeneous nth order linear differential equation

Llyl =y® +pi(0)y"™ " + -+ + pu1 Y + pa(t)y = (1) 1)

is a direct extension of the method for the second order differential equation (see
Section 3.6). As before, to use the method of variation of parameters, it is first nec-
essary to solve the corresponding homogeneous differential equation. In general,
this may be difficult unless the coefficients are constants. However, the method of
variation of parameters is still more general than the method of undetermined coef-
ficients in that it leads to an expression for the particular solution for any continuous
function g, whereas the method of undetermined coefficients is restricted in practice
to a limited class of functions g.

Suppose then that we know a fundamental set of solutions yy, y2,...,y, of the
homogeneous equation. Then the general solution of the homogeneous equation is

Ye(®) = ciy1(®) + coy2(8) + - - - + cuyn(D). (2)

The method of variation of parameters for determining a particular solution of Eq. (1)
rests on the possibility of determining »n functions u1, uy, . . ., u, such that Y (¢) is of
the form

Y(0) = urOy1(0) + up(0y2(0) + -+ + un(Oyn 1) ®)
Since we have n functions to determine, we will have to specify n conditions. One
of these is clearly that Y satisfy Eq. (1). The other n — 1 conditions are chosen
so as to make the calculations as simple as possible. Since we can hardly expect a
simplification in determining Y if we must solve high order differential equations for

ui,...,Uy,, it is natural to impose conditions to suppress the terms that lead to higher
derivatives of u1,...,u,. From Eq. (3) we obtain

Y' = (wy) +wys + - +upy,) + @y +upys + -+ upyn), (4)

where we have omitted the independent variable ¢ on which each function in Eq. (4)
depends. Thus the first condition that we impose is that

Uyt +upyr + -+ upy, =0. (5)

Continuing this process in a similar manner through n — 1 derivatives of Y gives

Y = iy 4wy 4+ uy™, o m=0,1,2,...,n—1, (6)
and the following n — 1 conditions on the functions uy, ..., u,:
Wiy D by 4l ymh =, m=12,....n—1. 7

The nth derivative of Y is

ym — (u1yi”) o uy ) + (u’lyin_l) 4wy by, (8)
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Finally, we impose the condition that Y must be a solution of Eq. (1). On substi-
tuting for the derivatives of Y from Egs. (6) and (8), collecting terms, and making
use of the fact that L[y;] =0, i =1,2,...,n, we obtain

1 ’ 1 /
wiy!" Y +uyd Y byt = 9)

Equation (9), coupled with the n — 1 equations (7), gives n simultaneous linear non-

homogeneous algebraic equations for u},u), ..., u;:

yiuy + youty + - - - + yuu,, =0,
yiuy + yauh + - 4y, =0,

Y1y +yauy + -+ yuu, =0, (10)
ygn 1) /_I_ +y(n 1)u/ —g.

The system (10) is a linear algebraic system for the unknown quantities u}, . .., uj,.
By solving this system and then integrating the resulting expressions, you can obtain
the coefficients uq, . . ., u,. A sufficient condition for the existence of a solution of the
system of equations (10) is that the determinant of coefficients is nonzero for each
value of t. However, the determinant of coefficients is precisely W(y1,y2,...,Va),
and it is nowhere zero since yy,...,V, is a fundamental set of solutions of the ho-
mogeneous equation. Hence it is possible to determine u}, .. .,u,. Using Cramer’s®
rule, we can write the solution of the system of equations (10) in the form

8OWn (1)
u, (t) = 2—=——, =12,...,n. 11
w0 = £ (an

Here W) = W(y1,y2,...,y.) (), and W, is the determinant obtained from W by
replacing the mth column by the column (0,0, . . ., 0, 1). With this notation a particular
solution of Eq. (1) is given by

EOWn(s) ,
vo=3 M{ﬂ s, (12)

where 1 is arbitrary. Although the procedure is straightforward, the algebraic com-
putations involved in determining Y (¢) from Eq. (12) become more and more com-
plicated as n increases. In some cases the calculations may be simplified to some
extent by using Abel’s identity (Problem 20 of Section 4.1)

W) = Whi,....yn)®) = cexp [— /m(t) dt} -
The constant ¢ can be determined by evaluating W at some convenient point.
3Cramer’s rule is credited to Gabriel Cramer (1704-1752), professor at the Académie de Calvin in Geneva,

who published it in a general form (but without proof) in 1750. For small systems the result had been
known earlier.
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Given that y;(t) = €', y,(t) = te', and y;(¢) = e are solutions of the homogeneous equation
EXAMPLE corresponding to

1 y/// _y// _y/ +y — g(t), (13)

determine a particular solution of Eq. (13) in terms of an integral.
We use Eq. (12). First, we have

! ! —t

e te
W) =W, te,et)=|e! (¢+1De —e .

e (t+2)e e’

e

Factoring ¢’ from each of the first two columns and e~ from the third column, we obtain

1 t 1
W) =é'|1 t+1 —-1).
1 t+2 1

Then, by subtracting the first row from the second and third rows, we have

1 t 1
W =e€l0 1 -2|.

0 2 0
Finally, evaluating the latter determinant by minors associated with the first column, we find
that

W(t) = 4e'.
Next,
0 te! e’

Wi = |0 (t+De' —e™'|.
1 t+2)e e’

Using minors associated with the first column, we obtain

t e*[
Wi@) = =-2t—1.
1) (t+1De —e!
In a similar way
e e’
¢ e’
Wy(t) = |e' 0 —e'|=-— =2,
t —t el —et
e e
and
e te' 0 . o
e ¢
Wi =lef @+ 1e 0] = =
Ca4de 1 e (t+1e
e e

Substituting these results in Eq. (12), we have

! —1- ! t 25
Y@ = et/ M ds + te’/ 8()(2) ds + e*’/ g()e ds
to 4es " 4es o 4’

1

t
=7 / le =1 +2¢ — )] +e P} gs)ds.
fo
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PROBLEMS

Y
%
%
2

REFERENCES

In each of Problems 1 through 6 use the method of variation of parameters to determine the
general solution of the given differential equation.

1. y" +y' = tant, O<t<m 2. y"—y =t
3.y =2y —y 42y =¢e* 4. y" +y =sect, -2 <t<m/2
5. " —y' +y —y=e'sint 6. y® 42y" +y =sint

In each of Problems 7 and 8 find the general solution of the given differential equation. Leave
your answer in terms of one or more integrals.

7. y" =y ' +y —y=sect, —nm/2<t<m/2
8. y" —y =csct, O<t<m
In each of Problems 9 through 12 find the solution of the given initial value problem. Then
plot a graph of the solution.
9. y" 4+y =sect; yO) =2, yO0) =1, y"0)=-2
10. y9 +2y"+y=sint;  y0) =2, y(0) =0, y 0 =-1, y"(0) =1
11. y" —y" +y' —y =sect; yO0) =2, y@0)=-1, y'(0) =1
12. y" —y" =csct; y(m/2)y=2, Yy(@/2)=1, y'(n/2)=-1

13. Given that x,x?, and 1/x are solutions of the homogeneous equation corresponding to

3. 2.1

By 4+ x2y" = 2xy + 2y = 2x*, x>0,

determine a particular solution.
14. Find a formula involving integrals for a particular solution of the differential equation

Y' =y +y —y=g®.

15. Find a formula involving integrals for a particular solution of the differential equation

y —y=g0.

Hint: The functions sin ¢, cos ¢, sinh ¢, and cosh ¢ form a fundamental set of solutions of the
homogeneous equation.

16. Find a formula involving integrals for a particular solution of the differential equation

Y =3y 43y -y =gO.
If g(t) = t2¢', determine Y (¢).
17. Find a formula involving integrals for a particular solution of the differential equation

23y" = 3x%y" + 6xy’ — 6y = g(x), x> 0.

Hint: Verify that x,x?, and x> are solutions of the homogeneous equation.

Coddington, E. A., An Introduction to Ordinary Differential Equations (Englewood Cliffs, NJ: Prentice-
Hall, 1961; New York: Dover, 1989).

Ince, E. L., Ordinary Differential Equations (London: Longmans, Green, 1927; New York: Dover, 1953).



CHAPTER

5

Series Solutions
of Second Order

Linear Equations

Finding the general solution of a linear differential equation depends on determining
a fundamental set of solutions of the homogeneous equation. So far, we have given
a systematic procedure for constructing fundamental solutions only if the equation
has constant coefficients. To deal with the much larger class of equations that have
variable coefficients, it is necessary to extend our search for solutions beyond the
familiar elementary functions of calculus. The principal tool that we need is the
representation of a given function by a power series. The basic idea is similar to
that in the method of undetermined coefficients: we assume that the solutions of a
given differential equation have power series expansions, and then we attempt to
determine the coefficients so as to satisfy the differential equation.

5.1 Review of Power Series

In this chapter we discuss the use of power series to construct fundamental sets of
solutions of second order linear differential equations whose coefficients are func-
tions of the independent variable. We begin by summarizing very briefly the pertinent
results about power series that we need. Readers who are familiar with power series
may go on to Section 5.2. Those who need more details than are presented here
should consult a book on calculus.
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o0
1. A power series Y a,(x — xp)" is said to converge at a point x if
n=0

m
lim Z a,(x — xo)"
m— 00

=0
exists for that x. The series certainly converges for x = x; it may converge for all x, or it
may converge for some values of x and not for others.

o0
2. The series Y a,(x — xp)" is said to converge absolutely at a point x if the series

n=0
o0 o0
D lan = x0)"| =) laullx — xol"
n=0 n=0

converges. It can be shown that if the series converges absolutely, then the series also
converges; however, the converse is not necessarily true.

3. One of the most useful tests for the absolute convergence of a power series is the ratio
test. If a, # 0, and if, for a fixed value of x,

A (= x0)"* 1 i1

lim

n—oo

= |x — xo|L,

= |x — xo| lim ‘

n—oo

ay (x - xO)n n

then the power series converges absolutely at that value of x if |x — xy|L < 1 and diverges
if |x — xo|L > 1. If |x — x¢|L = 1, the test is inconclusive.

For which values of x does the power series
EXAMPLE

1 D =) —2)
n=1

converge?
To test for convergence, we use the ratio test. We have

lim

n—00

' (_1)n+2(n + 1)()( _ 2)n+1

.o on+1
(—1)™n(x — 2)" =2 im == = =2

According to statement 3, the series converges absolutely for |[x —2| < 1,0or 1 <x < 3, and
diverges for [x — 2| > 1. The values of x corresponding to |x — 2| = 1 arex = 1 and x = 3. The
series diverges for each of these values of x since the nth term of the series does not approach
ZETO as n — 0.

[o¢]
4. If the power series Y a,(x —x)" converges at x = xj, it converges absolutely for
n=0
|x — xo| < |x1 — xo|; and if it diverges at x = x, it diverges for |x — xo| > |x; — Xxg|.

5. There is a nonnegative number p, called the radius of convergence, such that
(o)
> a,(x — xp)" converges absolutely for [x — x| < p and diverges for |x — x¢| > p. For
n=0
a series that converges only at x,, we define p to be zero; for a series that converges for
all x, we say that p is infinite. If p > 0, then the interval [x — x| < p is called the interval
of convergence; it is indicated by the hatched lines in Figure 5.1.1. The series may either

converge or diverge when |x — xy| = p.
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EXAMPLE

2

Series Series Series
diverge converges diverge
8es absolutely 8es
\\\\\\\\\\\\\\\\\-/IHIIIII/IIHIHI‘
ARRARRRRRRRRRARNNNN AR
Xo—p X0 Xo+p x

\ Series may /

converge or diverge
FIGURE 5.1.1 The interval of convergence of a power series.

Determine the radius of convergence of the power series
n2n

n=1

We apply the ratio test:

(X + 1)n+l nn

im e+ im n |x+1]
n—co | (n+ 1)2m+ (x + D) | '

2 nsen4+1 2

Thus the series converges absolutely for [x+ 1] <2, or —3 <x <1, and diverges for
|x + 1] > 2. The radius of convergence of the power series is p = 2. Finally, we check the
endpoints of the interval of convergence. At x = 1 the series becomes the harmonic series

=1
2o

n=1

which diverges. Atx = —3 we have
(B4 N (=)
”2:1: o ; n’

which converges but does not converge absolutely. The series is said to converge conditionally
at x = —3. To summarize, the given power series converges for —3 <x < 1 and diverges
otherwise. It converges absolutely for —3 < x < 1 and has a radius of convergence 2.

Suppose that Y a,(x — x0)" and >_ b, (x — x)" converge to f(x) and g(x), respec-
n=0 n=0
tively, for |x — xg| < p, p > 0.

6. The series can be added or subtracted termwise, and

F) £ g() = (@ £ by)(x — x0)";

n=0

the resulting series converges at least for |x — xy| < p.
7. The series can be formally multiplied, and

fg) = [Z a,(x — xo)"} [Z by(x — xo)”} =) calx —x0)",
n=0 n=0 n=0

where ¢, = apb, +a1b,—1 +---+a,by. The resulting series converges at least for
|x — Xo| < p.
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Further, if g(xy) # 0, the series can be formally divided, and
® < "
UG,
n=0

g(x)
In most cases the coefficients d, can be most easily obtained by equating coefficients in
the equivalent relation

i a,(x —x)" = [i d,(x — xO)”} {i b,(x — xO)”}
n=0 n=0 n=0
= Z (Z dkbnk> (x — xp)".
n=0

k=0

In the case of division the radius of convergence of the resulting power series may be less
than p.

8. The function f is continuous and has derivatives of all orders for |x — xy| < p. Further, f’,

f”,...can be computed by differentiating the series termwise; that is,

f’(X) =al—|—2a2(x—x0)_|_...+nan(x_x0)n—1 4

[oe)
=) nay(x—x)"",

n=1

f"(x) = 2a; + 6az(x — xo) + - - + n(n — Da,(x —x)" 2

= nn—1Da,x —x)" 72,

n=2

and so forth, and each of the series converges absolutely for |x — xo| < p.

9. The value of a, is given by

1 (x0)
a, = ——.
n!

The series is c