PRESSURE VESSEL DESIGN BY PVElite SOFTWARE COURSE BASED ON ASME SEC. VIII DIV. I

Instructed by: Hossein Sadeghi

Summer 2017

Email Address: <u>Sadeghi.hosseyn@outlook.com</u>

Mobile: +989125195694

The distance between your goal and reality is called action.

BAZEL ENERGY PARS

- What will we have during this course?
- 1. INTRODUCTION TO ASME CODE
- 2. GENERAL REQUIREMENTS
- 3. MATERIAL REQUIREMENTS
- 4. GENERAL DESIGN REQUIREMENTS
- 5. DESIGN FOR INTERNAL PRESSURE
- 6. DESIGN FOR BUCKLING
- 7. DESIGN OF FLAT HEADS & COVERS
- 8. DESIGN OF OPENINGS
- 9. DESIGN OF OTHER ATTACHMENTS (INCLUDING PRESSURE PART AND NON PRESSURE PARTS)
- 10. PVElite Software
- 11. Code calc Software
- 12. Nozzle Pro Software
- 13. EXAMPLE PROBLEMS

COMPARSION OF PRESSURE VESSEL CODES:

• Div. I UP TO 3000 PSI : DESIGN BY FORMULA

 Div. II UP TO 10000 PSI: Alternative Rules (BASED ON ANALYSIS)

 Div III FOR MORE THAN 10000 PSI: Alternative Rules for Construction of High Pressure Vessels (BASED ON ANALYSIS)

- Contents of ASME Section VIII, Div.1
 - Subsection A : General Requirements (UG)
 - Subsection B : Methods of Fabrication (UW, UF, UB)
 - Subsection C : Classes of Materials (UCS, UHA, ...) and Part UHX
 - Mandatory Appendices
 - Non-mandatory Appendices

- IMPORTANT NOTES :
- Code rules do not address deterioration due to Service
- Code is not a design handbook. Engineering judgment must be exercised
- Code does not address all aspects
- Code does not prohibit the use of computer programs
- Code does not deal with care and inspection
- Code does not approve or endorse proprietary items
- Revisions become mandatory six months after publication
- Code Cases become effective on approval

(a) Material subject to stress due to pressure shall conform

to one of the specifications given in <u>Section II, Part D</u>

SECTION I MATERIALS

 \bigcirc _ Л Ν σ S ゞ P m S S В 7 0 Р <Р e -S 0 S а b o

d

Р

Code

A

-

n I

P

E U

+

l e u o

P

Part D

Properties (Customary)

>E

Concession of the local division of the loca

THE STANDARD

Subpart 1	Stress Tables	1 1 2
Subpart 2	Physical Properties Tables	752 752
Subpart 3	Charts and Tables for Determining Shell Thickness of Components Un- der External Pressure	793
Mandatory Appendix 1	Basis for Establishing Stress Values in Tables 1A and 1B	922
Mandatory Appendix 2	Basis for Establishing Design Stress Intensity Values for Tables 2A, 2B, and 4, and Allowable Stress Values for Table 3	924
Mandatory Appendix 3	Basis for Establishing External Pressure Charts	927
Mandatory Appendix 5	Guidelines on the Approval of New Materials Under the ASME Boiler and Pressure Vessel Code	934
Mandatory Appendix 7	Guidelines on Multiple Marking of Materials	942
Mandatory Appendix 9	Standard Units for Use in Equations	944
Mandatory Appendix 10	Basis for Establishing Maximum Allowable Stress Values for Tables 5A and 5B	945
Nonmandatory Appendix A	Issues Associated With Materials Used in ASME Code Construction	947
Nonmandatory Appendix B	Developing Nominal Composition Designations for ASME Code Materials	967
Nonmandatory Appendix C	Guidance for the Use of U.S. Customary and SI Units in the ASME Boiler and Pressure Vessel Code	970
Nonmandatory Appendix D	Guidelines for Rounding Minimum Specified Tensile and Yield Strength Values and for Establishing Anchor Points for Tensile and Yield Strength Trend Curves in Tables 1A, 1B, 2A, 2B, 3, 4, 5A, 5B, U, U-2, and V-1	973
	anu 1-1	9/3

Section II, Part D

Table 1A (Cont'd)

Section I; Section III, Classes 2 and 3;* Section VIII, Division 1; and Section XII Maximum Allowable Stress Values S for Ferrous Materials (*See Maximum Temperature Limits for Restrictions on Class)

Line No.	Nominal Composition	Product Form	Spec. No.	Type/Grade	Alloy Desig./ UNS No.	Class/ Condition/ Temper	Size/Thickness, in.	P-No.	Group No.
1	Carbon steel	Wld. pipe	SA-134	A283C	K02401			1	1
2	Carbon steel	Plate	SA-283	С	K02401			1	1
3	Carbon steel	Plate	SA-285	С	K02801			1	1
4	Carbon steel	Smls. & wld. pipe	SA-333	1	K03008			1	1
5	Carbon steel	Smls. & wld. tube	SA-334	1	K03008			1	1
6	Carbon steel	Wld. tube	SA-334	1	K03008			1	1
7	Carbon steel	Plate	SA-516	55	K01800			1	1
8	Carbon steel	Smls. pipe	SA-524	II	K02104			1	1
9	Carbon steel	Wld. pipe	SA-671	CA55	K02801			1	1
10	Carbon steel	Wld. pipe	SA-671	CE55	K02202			1	1
11	Carbon steel	Wld. pipe	SA-672	A55	K02801			1	1
12	Carbon steel	Wld. pipe	SA-672	B55	K02001			1	1
13	Carbon steel	Wld. pipe	SA-672	C55	K01800			1	1
14	Carbon steel	Wld. pipe	SA-672	E55	K02202			1	1
15	Carbon steel	Sheet	SA-414	С	K02503			1	1
16	Carbon steel	Plate	SA/EN 10028-3	P275NH			≤2 ¹ / ₄	1	1
17	Carbon steel	Bar	SA-36		K02600			1	1

	Min.	Min.	Applio	cability and Max. Tem (NP = Not Permi (SPT = Supports				
Line No.	Tensile Strength, ksi	Yield Strength, <mark>k</mark> si	I	III	VIII-1	XII	External Pressure Chart No.	Notes
1	55	30	NP	300 (Cl. 3 only)	NP	NP	CS-2	W12
2	55	30	NP	300 (Cl. 3 only)	650	650	CS-2	
3	55	30	900	700	900	650	CS-2	G10, S1, T2
4	55	30	NP	700	650	650	CS-2	W12, W14
5	55	30	NP	700	650	650	CS-2	W12, W14
6	55	30	NP	NP	650	650	CS-2	G24, W6
7	55	30	850	700	1000	650	CS-2	G10, S1, T2
8	55	30	NP	NP	1000	650	CS-2	G10, T2
9	55	30	NP	700	NP	NP	CS-2	S6, W10, W12
10	55	30	NP	700	NP	NP	CS-2	S6, W10, W12
11	55	30	NP	700	NP	NP	CS-2	S6, W10, W12
12	55	30	NP	700	NP	NP	CS-2	S6, W10, W12
13	55	30	NP	700	NP	NP	CS-2	S6, W10, W12
14	55	30	NP	700	NP	NP	CS-2	S6, W10, W12
15	55	33	NP	700	900	650	CS-2	G10, T1
16	56.5		NP	NP	400	400	CS-2	G10, G18
17	58	36	650	650 (SPT)	900	650	CS-2	G10, G15, T1
18	58	36	NP	700	650	650	CS-2	G9, G10, T1

	-20													
Line	to													
No.	100	150	200	250	300	400	500	600	650	700	750	800	850	900
1	15.7		15.7		15.7									
2	15.7	15.7	15.7		15.7	15.7	15.7	15.3	14.8					
3	15.7	15.7	15.7		15.7	15.7	15.7	15.3	14.8	14.3	13.0	10.8	8.7	5.9
4	15.7		15.7		15.7	15.7	15.7	15.3	14.8	14.3				
5	15.7		15.7		15.7	15.7	15.7	15.3	14.8	14.3				
6	13.4	13.4	13.4		13.4	13.4	13.4	13.0	12.6					
7	15.7	15.7	15.7		15.7	15.7	15.7	15.3	14.8	14.3	13.0	10.8	8.7	5.9
8	15.7	15.7	15.7		15.7	15.7	15.7	15.3	14.8	14.3	13.0	10.8	8.7	5.9
9	15.7		15.7		15.7	15.7	15.7	15.3	14.8	14.3				
10	15.7		15.7		15.7	15.7	15.7	15.3	14.8	14.3				
11	15.7		15.7		15.7	15.7	15.7	15.3	14.8	14.3				
12	15.7		15.7		15.7	15.7	15.7	15.3	14.8	14.3				
13	15.7		15.7		15.7	15.7	15.7	15.3	14.8	14.3				
14	15.7		15.7		15.7	15.7	15.7	15.3	14.8	14.3				
15	15.7	15.7	15.7		15.7	15.7	15.7	15.7	15.7	15.6	13.0	10.8	8.7	5.9
16	16.1	16.1	16.1		16.1	16.1								
17	16.6	16.6	16.6		16.6	16.6	16.6	16.6	16.6	15.6	13.0	10.8	8.7	5.9
18	16.6		16.6		16.6	16.6	16.6	16.6	16.6	15.6				
19	16.6	16.6	16.6		16.6	16.6	16.6	16.6	16.6	15.6				
20	17.0		17.0		17.0	17.0	17.0	17.0	16.5					
21	17.0		17.0		17.0	17.0	17.0	17.0	16.5					
22	17.0		17.0		17.0	17.0	17.0	17.0	16.5					

Maximum Allowable Stress, ksi (Multiply by 1000 to Obtain psi), for Metal Temperature, °F, Not Exceeding

UG-4 Materials

PRESSURE PARTS or NON PRESSURE PARTS

UG-4 Materials

<u>Pi ≠ Po :</u>

(b) Material for nonpressure parts, such as skirts, supports, baffles, lugs, clips,

and extended heat transfer surfaces, need not conform to the

specifications for the material to which they are attached or to a material

specification permitted in this Division, but if attached to the vessel by

welding shall be of weldable quality

The allowable stress values for material not identified in accordance with

<u>UG-93</u> shall not exceed <u>80%</u> of the maximum allowable stress value

permitted for similar material in Subsection C.

UG-4 Materials

- IMPORTANT NOTES :
- Code rules do not address deterioration due to Service
- Code is not a design handbook. Engineering judgment must be exercised
- Code does not address all aspects
- Code does not prohibit the use of computer programs
- Code does not deal with care and inspection
- Code does not approve or endorse proprietary items
- Revisions become mandatory six months after publication
- Code Cases become effective on approval

(a) Material subject to stress due to pressure shall conform

to one of the specifications given in <u>Section II, Part D</u>

(d) Materials other than those allowed by the rules of this Division shall not be used.

- (e) Materials outside the limits of size and/or thickness given in the title or scope clause of the specifications given in Section II, and permitted by the applicable part of Subsection C, may be used if the material is in compliance with the other requirements of the specification,6 and no size or thickness limitation is given in the stress tables. In those specifications in which chemical composition or mechanical properties vary with size or thickness, materials outside the range shall be required to conform to the composition and mechanical properties shown for the nearest specified range.
- (f) Service requirements to be considered by designer (corrosion, erosion, oxidation, and other deterioration during their intended service life)- See Section II, Part D, Non-mandatory Appendix A

Notes:

- 1. The minimum thickness does not apply to heat transfer plates of plate-type heat exchangers
- 2. this minimum thickness does not apply to the inner pipe of double pipe heat exchangers nor to pipes and tubes that are enclosed and protected from mechanical damage by a shell, casing, or ducting, where such pipes or tubes are NPS 6 (DN 150) and less.
- 3. This minimum thickness does not apply to the tubes in air cooled and cooling tower heat exchangers if all the following provisions are met:
- (- a)Tubes shall not be used for lethal service applications
- (- b)The Tubes shall be protected by fins or other mechanical means
- (-c) the tube outside diameter shall be a minimum of 3/8 in. (10 mm) and a maximum of 11/2 in. (38 mm)
- (-d) the minimum thickness used shall not be less than that calculated by the formulas given in UG-27 or 1-1 and in no case less than 0.022 in. (0.5 mm).

(C) Mill Under tolerance:

1- Plate material shall be ordered not thinner than the design thickness

Pipe Material= 12.5 % of Nominal Thickness (Minimum Thickness = Nominal Pipe thickness × 0.875)

(e) Corrosion Allowance in Design Formulas:

Corrosion allowance to be added to all formulas

- According to AWS A2.4 we have following type of welds:
- 1. GROOVE WELD (جوش شيارى)
- 2. Fillet WELD (جوش نبشى)
- 3. PLUG OR SLOT WELDS (جوش هاى دكمه اى)
- 4. STUD WELDS (جوش های زائده ای)
- 5. SPOT OR PROJECTION WELDS (جوش های نقطه ای)
- 6. SEAM WELDS (جوش های نواری)
- 7. BACK OR BACKING WELDS (جوش های پشت بند)
- 8. SURFACING WELDS (جوش هاى سطحى)
- جوش های لبه ای) EDGE WELDS (جوش های البه ای)

Hossein Sadeghi

TYPE OF JOINTS:

- 1. Butt joint (لب به لب)
- 2. Corner joint (گوشه ای)
- 3. T-joint (سپری)
- 4. Lap joint (لبه روى هم)
- 5. Edge joint (لبه اى)

TYPE OF GROOVE:

Butt joint

Hossein Sadeghi
Your partner in sustainable, efficient and cost-effective oil and gas industry.

Value Engineering Process Units Design Construction Consulting Static Equipment Design Static Equipment Fabrication Fabrication & Shop Drawings Preparation Our process and mechanical team comprises experts with a strong foundation in process and mechanical engineering, as well as functional and industry-specific domain knowledge and standards ready to reduce your project cost with an excellent qualified and optimum design.

In addition to process design, conceptual and basic engineering, and project management services, we offer consulting services such as plant or project audits, process troubleshooting, value engineering facilitation and participation, risk and HAZOP studies, and design reviews.

Office: Unit 4, No.24, Fereshteh Ave, Sazman barnameh St. Tehran, Iran.

Factory: Eshtehard Industrial Estate.

Web site: www.bep-co.com

Email: info@bep-co.com

Tel: +98-921-4411 03 09

Hossein Sadeghi PRESSURE VESSEL COURSE

Hossein Sadeghi

UG-18 (HAZ)

ناحیه متأثر از حرارت (Heat Affected Zone: HAZ) قسمتی از فلز جوش است که در آن اگر چه فلز پایه ذوب نشده است اما ساختار و دانه بندی آن در اثر حرارت ناشی از جوشکاری تغییر یافته است. در پایان فرآیندهای جوشکاری به دلیل سرعت بالای سرد شدن، ساختارهای مارتنزیتی تشکیل میگردد. این نواحی مستعد ایجاد ترک در قطعه جوشکاری شده هستند. وقتی فلزات و ألیاژ هایی که استحاله چند شکلی ندارند مانند مس، نیکل، ألومینیوم، جوش داده مد*ش*وند، ریز ساختار در HAZتغییر نمیکند با این وجود که ممکن است تبلور مجدد یا رشد دانه در آن اتفاق بيفتد. اين در حاليست كه در فلزات و آلياژ هايى كه استحاله چند شكلى دارند)مانند فولادها(تغييرات ريز ساختارى قابل ملاحظه ای در ناحیه متاثر از حرارت رخ میدهد که این تغییرات خواص مکانیکی و رفتار عملی اتصال جوش را تحت تأثير قرار ميدهد .

- روش جوشکاری
- سرعت جوشکاری
- درجه حرارت پیشگرم
- تعداد پاس های جوشکاری
 - ابعاد قطعه
 - شکل طرح اتصال
 - · شکل حوضچه جوش

- روش جوشکاری در جوشکاری قوس الکتریکی دستی، وسعت ناحیه HAZ دارای کمترین مقدار است و به 2 تا 4.2 میلیمتر میرسد. در جوشکاری با الکترودهای پوششدار وسعت این ناحیه ۳ تا ۱۹ میلیمتر است در حالی که در جوشکاری گازی به 2۹ تا 2.4 میلیمتر میرسد. علت این است که در روشهای جوشکاری با قوس الکتریکی، امکان تمرکز حرارت در یک نقطه وجود داشته در حالی که در روشهای گازی، حرارت در سطح توزیع شده و در نواحی اطراف ناحیه متاثر از حرارت گسترش مییابد . جنس فلز پایه : در فلزاتی که ضریب انتقال حرارت)هدایت حرارتی (بالاتری دارند، ایجاد تمرکز حرارت غیرممکن است بنابراین منطقه TAZ در فلزات و آلیاژهای آلومینیوم و مس نسبت به فولادها از وسعت بیشتری برخوردارند. در بین فولادها نیز وسعت ناحیه متاثر از حرارت در فولادهای کربنی بیشتر از سایر فولادها میباشد.
 - سرعت جوشکاری : هر چقدر میزان سرعت جوشکاری بالاتر باشد، وسعت ناحیه متاثر از حرارت کوچکتر میگردد؛ زیرا حرارت تولیدی در ناحیه جوش فرصت انتقال به نواحی اطراف و پراکنده شدن را ندارد
- درجه حرارت پیشگرم : هر چه میزان دمای پیشگرم قطعه جوشکاری کمتر باشد، وسعت منطقه HAZکمتر خواهد شد؛ زیرا چنانچه فلز تا حد قابل ملاحظه ای پیشگرم شود، در واقع هنگام جوشکاری به گرمتر شدن نواحی اطراف جوش کمک شده است
 - تعداد پاس های جوشکاری : در جوش تک پاسی، به دلیل اعمال حرارت ورودی بیش از حد و طولانی شدن زمان جوشکاری و همچنین طولانی
 شدن زمان انجماد، وسعت ناحیه متاثر از حرارت افزایش می یابد

- ابعاد قطعه : قطعات ضخیم تر، قدرت جذب حرارت بیشتری داشته و سرعت سرد شدن جوش نیز افزایش می یابد . متغیرهای جوشکاری : متغیرهایی مانند شدت جریان، ولتاژ و قطر الکترود نیز بر وسعت ناحیه HAZ تاثیر میگذارد. زیرا با افزایش شدت جریان، ولتاژ و قطر الکترو د نیز بر وسعت ناحیه ولتاژ و قطر الکترود وسعت ناحیه HAZ تاثیر میگذارد. زیرا با افزایش شدت جریان، ولتاژ و قطر الکترو د نیز بر وسعت ناحیه حاصل میگذارد. زیرا با افزایش می یابد .
- شکل طرح اتصال : بطور مثال با مقایسه بین جوش نبشی و جوش لبه ای در صورتی که ضخامت ورق در محل هر دو نوع اتصال با هم
 - برابر باشد، به دلیل سرعت سرد شدن بالاتر در جوش نبشی، وسعت ناحیه متاثر از حرارت در آن کوچکتر از جوش لبه ای میگردد .
- · شکل حوضچه جوش: همچنین در دو نوع یکسان جوش نبشی چنانچه گرده جوش در یکی از اتصالات به شکل محدب باشد، سطح

تماس جوش با فلز پایه بیشتر شده و در نتیجه حرارت را سریعتر به محیط اطراف منتقل میکند. این امر سبب می شود که وسعت

ناحیه HAZنسبت به گرده مقعر جوش، بیشتر گردد.

منبع: مرکز پژوهش و مهندسی جوش ایران ، ساختار متالور ژیکی مقاطع جوشکاری شده

Design Pressure (UG-21)

Hossein Sadeghi

Design Pressure (UG-21)

 Operating Pressure: Operating pressure is a normal pressure which we will expect in normal operation condition.

Design Pressure : The most severe condition of coincident pressure (including coincident static head in the operating position) and temperature expected in normal operation.

As per Megysey Handbook: Design Pressure = Max. (OP×1.1 or OP+30 Psi)

- MAWP :Maximum Allowable Working Pressure (corroded and in service condition)
- * MAWPn&c (MAPn&c): Maximum Allowable Working Pressure New and Cold

Design Pressure (UG-21)

- Minor Parts : Parts such as Nozzle, Flange, Reinforcement pad, etc.
- Major Parts: Parts such as Shell, head, body flange, etc.
- Note based on Design specifications:

<u>«MAWP shall not governed by a Minor parts of pressure vessels»</u>

MAWP

MAWP (EXAMPLE)

✓ IMPORTANT NOTE:

The MDMT marked on the nameplate shall correspond to a coincident

pressure equal to the MAWP.

But, What does it mean??!

- ✓ What is MDMT?
- ✓ MDMT is minimum design metal temperature.
- ✓ The MDMT which was defined by <u>Process</u> is a minimum design required temperature based on MMT.
- ✓ The MDMT that will computed by <u>Mechanical</u> is allowed minimum temperature which vessel could be suffer without any fail.

3. Thickness has direct effect on vessel's MDMT and it should be calculated by Mechanical calculation in accordance to UCS-66

Hossein Sadeghi

UG-20 (f)

• (1) Material is limited to P-No.1 Gr. No.1 or 2 and the thicknesses don't exceed the following:

(-a) 13 mm for materials listed in Curve A of Figure UCS-66;

- (-b) 25 mm for materials listed in Curve B, C, or D of Figure UCS-66.
- (2) The completed vessel shall be hydrostatically tested.
- (3) Design temperature is no warmer than 345°C nor colder than -29°C.
- (4) The thermal or mechanical shock loadings are not a controlling design requirement.
- (5) Cyclical loading is not a controlling design requirement.

- Toughness: Toughness is, broadly, a measure of the amount of energy required to cause an item - a test piece or a bridge or a pressure vessel - to fracture and fail. The more energy that is required then the tougher the material. So, The ability of a material to withstand an impact blow is referred to as notch toughness.
- context of an impact test: a measure of the metal's resistance to brittle or fast fracture in the presence of a flaw or notch and fast loading conditions
- There are two main forms of impact test, the Izod and the Charpy test. Both involve striking a standard specimen with a controlled weight pendulum travelling at a set speed. The amount of energy absorbed in fracturing the test piece is measured and this gives an indication of the notch toughness of the test material.

- * These tests show that metals can be classified as being either 'brittle' or
 - 'ductile'. A brittle metal will <u>absorb a small amount of energy</u> when impact tested, a <u>tough ductile metal a large amount of energy</u>.

The energy absorbed is the difference in height between initial and final position of the hammer. The material fractures at the notch and the structure of the cracked surface will help indicate whether it was a brittle or ductile fracture.

<u>t</u> (mm)

	Alloy	Impact energy [J (ft·lb)]
1.	1040 carbon steel	180 (133)
2.	8630 low-alloy steel	55 (41)
3.	c. 410 stainless steel	34 (25)
4.	L2 tool steel	26 (19)
5.	Ferrous superalloy (410)	34 (25)
6.	a. Ductile iron, quench	9 (7)
7.	b. 2048, plate aluminum	10.3 (7.6)
8.	a. AZ31B magnesium	4.3 (3.2)
	b. AM100A casting magnesium	0.8(0.6)
9.	a. Ti-5Al-2.58n	23 (17)
10.	Aluminum bronze, 9% (copper alloy)	48 (35)
11.	Monel 400 (nickel alloy)	298 (220)
13.	50:50 solder (lead alloy)	21.6 (15.9)
14.	Nb-1 Zr (refractory metal)	174 (128)

Table 8.1

Impact Test (Charpy) Data for Some of the Alloys of Table 6.1.

Brittle Fracture

• Failure of Liberty ships in WW II - Low-carbon steels were ductile at RT tensile tests, they became brittle when exposed to lower-temperature ocean environmets. The ships were built and used in the Pacific Ocean but when they were employed in the Atlantic Ocean, which is colder, the ship's material underwent a ductile to brittle transition.

(1) Curve A applies to:

- (a) all carbon and all low alloy steel plates, structural shapes, and bars not listed in Curves B, C, and D below;
- (b)SA-216 Grades WCB and WCC if normalized and tempered or water-quenched and tempered; SA-217 Grade WC6 if normalized and tempered or water-quenched and tempered.

(2) Curve B applies to:

(a) see below:

SA-216 Grade WCA if normalized and tempered or water-quenched and tempered

- SA-216 Grades WCB and WCC for thicknesses not exceeding 2 in. (50 mm), if produced to fine grain practice and water-quenched and tempered
- SA-217 Grade WC9 if normalized and tempered

SA-285 Grades A and B

SA-414 Grade A

SA-515 Grade 60

SA-516 Grades 65 and 70 if not normalized

SA-612 if not normalized

SA-662 Grade B if not normalized

(2) Curve B applies to:

- SA/EN 10028-2 Grades P235GH, P265GH, P295GH, and P355GH as rolled SA/AS 1548 Grades PT430NR and PT460NR (b) except for cast steels, all materials of Curve A, if produced to fine grain practice and normalized, that are not listed in Curves C and D below;
- (c) all pipe, fittings, forgings and tubing not listed for Curves C and D below;
- (d) parts permitted under UG-11 shall be included in Curve B even when fabricated from plate that otherwise would be assigned to a different curve.

(3) Curve C applies to:

(a) see below:

- SA-182 Grades F21 and F22 if normalized and tempered SA-302 Grades C and D
- SA-336 F21 and F22 if normalized and tempered, or liquid quenched and tempered
- SA-387 Grades 21 and 22 if normalized and tempered, or liquid quenched and tempered
- SA-516 Grades 55 and 60 if not normalized
- SA-533 Types B and C Class 1
- SA-662 Grade A
- SA/EN 10028-2 Grade 10CrMo 9-10 if normalized and tempered

(b) all materials listed in 2(a) and 2(c) for Curve B if produced to fine grain practice and normalized, normalized and tempered, or liquid quenched and tempered as permitted in the material specification, and not listed for Curve D below.

(4) Curve D applies to:

- SA-203
- SA-508 Grade 1
- SA-516 if normalized or quenched and tempered
- SA-524 Classes 1 and 2
- SA-537 Classes 1, 2, and 3
- SA-612 if normalized
- SA-662 if normalized
- SA-738 Grade A
- SA-738 Grade A with Cb and V deliberately added in accordance with the provisions of the material specification, not colder than –20°F (–29°C)
- SA-738 Grade B not colder than -20°F (-29°C)
- SA/AS 1548 Grades PT430N and PT460N
- SA/EN 10028-2 Grades P235GH, P265GH, P295GH, and P355GH if normalized
- SA/EN 10028-3 Grade P275NH

<u>info@bep-co.com</u> <u>www.bep-co.com</u> + 98 21 4411 03 09

UG-22 (Loadings)

 Pressure including Internal, External, Static head of liquid, Hydrotest, abnormal pressure

2. Weights including weight of the vessel and normal contents under operating or test conditions, weight of attached equipment, internals, vessel supports

- 3. temperature gradients and differential thermal expansion;
- 4. Wind, snow, and seismic reactions
- 5. Cyclic and dynamic reactions

Sequence of design

Hossein Sadeghi

MAXIMUM ALLOWABLE STRESS VALUES

Max. Allowable Tensile

STRESS (Subpart 1 of Section II, Part D. Section II)

Max. Allowable longitudinal compressive stress

Hossein Sadeghi

Section II, Part D-MANDATORY APPENDIX 1

- The maximum allowable stress value is the lowest of the following:
- (1) the specified minimum tensile strength at room temperature divided by 3.5
- (2) the tensile strength at temperature divided by 3.5
- (3) two-thirds of the specified minimum yield strength at room temperature
- (4) two-thirds of the yield strength at temperature

Table 1-100 Criteria for Establishing Allowable Stress Values for Tables 1A and 1B

	Room Ter H	nperature and Selow				Above Room Temper	ature		
Product/Material	Tensile Strength	Yield Strength	Ter	sile Strength	Y	ield Strength	Stress R	upture	Creep Rate
Wrought or cast ferrous and nonferrous	<u>ST</u> 3.5	² / ₃ S _Y	<u>ST</u> 3.5	$\frac{1.1}{3.5}S_TR_T$	² / ₃ S _Y	² / ₃ S _Y R _Y or 0.9 S _Y R _Y [Note (1)]	$F_{avg}S_{Ravg}$	$0.8 S_{R \min}$	1.0 S _c
Welded pipe or tube, ferrous and nonferrous	$\frac{0.85}{3.5}S_T$	$^{2}/_{3} \times 0.85 S_{Y}$	$\frac{0.85}{3.5}S_T$	$\frac{\left(1.1\times0.85\right)}{3.5}S_TR_T$	$^{2}/_{3} \times 0.85 S_{Y}$	$\frac{2}{3} \times 0.85 S_Y R_Y \text{ or } 0.9 \times 0.85 S_Y R_Y \text{ [Note (1)]}$	$(F_{avg} \times 0.85)S_{Ravg}$	$(0.8 \times 0.85) S_{R \min}$	0.85 S _c

NOTE:

(1) Two sets of allowable stress values may be provided for austenitic stainless steels in Table 1A, and nickel alloys and cobalt alloys in Table 1B, having an S_Y/S_T ratio less than 0.625. The lower values are not specifically identified by a footnote. These lower values do not exceed two-thirds of the yield strength at temperature. The higher alternative allowable stresses are identified by a footnote. These higher stresses may exceed two-thirds but do not exceed 90% of the yield strength at temperature. The higher values should be used only where slightly higher deformation is not in itself objectionable. These higher stresses are not recommended for the design of flanges or for other strain-sensitive applications.

• The higher alternative allowable stresses are identified by a footnote to the tables. These stresses exceed two-thirds but do not exceed 90% of the minimum yield strength at temperature. The higher stress values should be <u>used only</u> where slightly higher deformation is not in itself objectionable. These higher stresses are not recommended for the design of flanges or other strain-sensitive applications.

 UG-23(d) permits an increase in allowable stress when earthquake or wind loading is considered in combination with other loads and pressure defined in UG-22. The 1.2 increase permitted is equivalent to a load reduction factor of 0.833. Some standards which define applicable load combinations do not permit an increase in allowable stress, however a load reduction factor (typically 0.75) is applied to multiple transient loads (e.g., wind plus live load, seismic plus live load, etc.).

UG-25 CORROSION

- (a) The user or his designated agent (see U-2) shall specify corrosion allowances other than those required by the rules of this Division.
- (b)corrosion, erosion, or mechanical abrasion
- (c) Material added for these purposes need not be of the same thickness for all parts of the vessel if different rates of attack are expected for the various parts.
- (d) No additional thickness need be provided when previous experience in like service has shown that corrosion does not occur or is of only a superficial nature.
- (e) Telltale Holes : shall have a diameter 1.5 mm to 5 mm and have a depth not less than 80% of the thickness required for a seamless shell of like dimensions.

UG-26 LININGS

• (a) The user Corrosion resistant or abrasion resistant linings, whether or not attached to the wall of a vessel, shall not be considered as contributing to the strength of the wall except as permitted in Part UCL

UG-27

- Hoop (circumferential) stress :
- This is the stress trying to split the vessel open along its length. Confusingly, this acts on the longitudinal weld seam (if there is one).

Figure 7.1 Forces and stresses in a pressurized cylinder.

Figure 7.2 Forces and stresses in a sphere under pressure.

UG-27

• circumferential stress :

 $S_C = \frac{RP}{t}$

where: R = inside radius of the cylinder t = thickness of cylinder P = internal pressure

• Longitudinal stress :

$$S_L = \frac{RP}{2t}$$

where: R = inside radius of the cylinder t = thickness of cylinder P = internal pressure

UG-27 (Questic	on)
----------------	-----

• According to our knowledge about circumferential and longitudinal stresses,

Failure could be happen in a pressure vessel in which direction?

UG-27

• Circumferential Stress (Longitudinal Joints): When the thickness does not exceed one-half of the inside radius, or P does not exceed 0.385SE, the following formulas shall apply:

$$t = \frac{PR}{SE - 0.6P} \quad \text{or} \quad P = \frac{SEt}{R + 0.6t} \tag{1}$$

 Longitudinal Stress (Circumferential Joints). When the thickness does not exceed one-half of the inside radius, or P does not exceed 1.255E, the following formulas shall apply:

$$t = \frac{PR}{2SE + 0.4P} \quad \text{or} \quad P = \frac{2SEt}{R - 0.4t} \tag{2}$$

 Spherical Shells. When the thickness of the shell of a wholly spherical vessel does not exceed 0.356R, or P does not exceed 0.665SE, the following formulas shall apply:

$$t = \frac{PR}{2SE - 0.2P} \quad \text{or} \quad P = \frac{2SEt}{R + 0.2t} \tag{3}$$

Table UW-12 Maximum Allowable Joint Efficiencies for Arc and Gas Welded Joints

				Degre I	e of Radiograj Examination	phic
Type No.	Joint Description	Limitations	Joint Category	(a) Full [Note (1)]	(b) Spot [Note (2)]	(c) None
(1)	Butt joints as attained by double-welding or by other means that will obtain the same quality of deposited weld metal on the inside and outside weld surfaces to agree with the requirements of UW-35. Welds using metal backing strips that remain in place are excluded.	None	A, B, C, and D	1.00	0.85	0.70
(2)	Single-welded butt joint with backing strip other than those included under (1)	 (a) None except as in (b) below (b) Circumferential butt joints with one plate offset; see UW-13(b)(4) and Figure UW-13.1, sketch (i) 	A, B, C, and D A, B, and C	0.90 0.90	0.80 0.80	0.65 0.65
(3)	Single-welded butt joint without use of backing strip	Circumferential butt joints only, not over $\frac{5}{8}$ in. (16 mm) thick and not over 24 in. (600 mm) outside diameter	A, B, and C	NA	NA	0.60
(4)	Double full fillet lap joint	(a) Longitudinal joints not over $\frac{3}{8}$ in. (10 mm) thick (b) Circumferential joints not over $\frac{5}{8}$ in. (16 mm) thick	A B and C [Note (3)]	NA NA	NA NA	0.55 0.55
(5)	Single full fillet lap joints with plug welds conforming to UW-17	(a) Circumferential joints [Note (4)] for attachment of heads not over 24 in. (600 mm) outside diameter to shells not over ¹ / ₂ in. (13 mm) thick	В	NA	NA	0.50
		(b) Circumferential joints for the attachment to shells of jackets not over $\frac{5}{8}$ in. (16 mm) in nominal thickness where the distance from the center of the plug weld to the edge of the plate is not less than $1\frac{1}{2}$ times the diameter of the hole for the plug.	С	NA	NA	0.50
(6)	Single full fillet lap joints without plug welds	(a) For the attachment of heads convex to pressure to shells not over ⁵ / ₈ in. (16 mm) required thickness, only with use of fillet weld on inside of shell; or	A and B	NA	NA	0.45
		(b) for attachment of heads having pressure on either side, to shells not over 24 in. (600 mm) inside diameter and not over ¹ / ₄ in. (6 mm) required thickness with fillet weld on outside of head flange only	A and B	NA	NA	0.45
(7)	Corner joints, full penetration, partial penetration, and/or fillet welded	As limited by Figure UW-13.2 and Figure UW-16.1	C and D	NA	NA	NA

Joint efficiency issue!

UW-3 WELDED JOINT CATEGORY

- The term "Category" as used herein defines the location of a joint in a vessel, but not the type of joint.
- (a) Category A: Longitudinal and spiral welded joints within the main shell, communicating chambers or any other joints.
- (b) Category B: Circumferential welded joints within the main shell, communicating chambers or any other joints.
- (c) Category C. Welded joints connecting flanges and tubesheets, or flat heads to main shell, to formed heads, to transitions in diameter, to nozzles, or to communicating chambers
- (d) Category D. Welded joints connecting communicating chambers66 or nozzles to main shells, to spheres, to transitions in diameter, to heads, or to flat-sided vessels

UW-3 WELDED JOINT CATEGORY

Figure UW-3 Illustration of Welded Joint Locations Typical of Categories A, B, C, and D

Table UW-12 Maximum Allowable Joint Efficiencies for Arc and Gas Welded Joints

				Degre I	e of Radiograj Examination	phic
Type No.	Joint Description	Limitations	Joint Category	(a) Full [Note (1)]	(b) Spot [Note (2)]	(c) None
(1)	Butt joints as attained by double-welding or by other means that will obtain the same quality of deposited weld metal on the inside and outside weld surfaces to agree with the requirements of UW-35. Welds using metal backing strips that remain in place are excluded.	None	A, B, C, and D	1.00	0.85	0.70
(2)	Single-welded butt joint with backing strip other than those included under (1)	 (a) None except as in (b) below (b) Circumferential butt joints with one plate offset; see UW-13(b)(4) and Figure UW-13.1, sketch (i) 	A, B, C, and D A, B, and C	0.90 0.90	0.80 0.80	0.65 0.65
(3)	Single-welded butt joint without use of backing strip	Circumferential butt joints only, not over $\frac{5}{8}$ in. (16 mm) thick and not over 24 in. (600 mm) outside diameter	A, B, and C	NA	NA	0.60
(4)	Double full fillet lap joint	(a) Longitudinal joints not over $\frac{3}{8}$ in. (10 mm) thick (b) Circumferential joints not over $\frac{5}{8}$ in. (16 mm) thick	A B and C [Note (3)]	NA NA	NA NA	0.55 0.55
(5)	Single full fillet lap joints with plug welds conforming to UW-17	(a) Circumferential joints [Note (4)] for attachment of heads not over 24 in. (600 mm) outside diameter to shells not over ¹ / ₂ in. (13 mm) thick	В	NA	NA	0.50
		(b) Circumferential joints for the attachment to shells of jackets not over $\frac{5}{8}$ in. (16 mm) in nominal thickness where the distance from the center of the plug weld to the edge of the plate is not less than $1\frac{1}{2}$ times the diameter of the hole for the plug.	С	NA	NA	0.50
(6)	Single full fillet lap joints without plug welds	(a) For the attachment of heads convex to pressure to shells not over ⁵ / ₈ in. (16 mm) required thickness, only with use of fillet weld on inside of shell; or	A and B	NA	NA	0.45
		(b) for attachment of heads having pressure on either side, to shells not over 24 in. (600 mm) inside diameter and not over ¹ / ₄ in. (6 mm) required thickness with fillet weld on outside of head flange only	A and B	NA	NA	0.45
(7)	Corner joints, full penetration, partial penetration, and/or fillet welded	As limited by Figure UW-13.2 and Figure UW-16.1	C and D	NA	NA	NA

Question!

- The following information is given in a data sheet. Please compute required and selected thickness for shell.
- Cylindrical shell:
- Design pressure : 5 barg
- Design Temperature: 150 °C
- > Material : SA-516 70
- ➤ C.A.: 3 mm
- Vessel I.D : 3000 mm
- Spherical shell:
- Design pressure : 5 barg
- Design Temperature: 150 °C
- Material : SA-516 70
- ➤ C.A.: 3 mm
- Vessel I.D : 3000 mm

 (a) The minimum required thickness at the thinnest point after forming of ellipsoidal, torispherical, hemispherical, conical, and toriconical heads under pressure on the concave side (plus heads) shall be computed by the appropriate formulas in this paragraph

• (c) Ellipsoidal Heads

Hossein Sadeghi

Do research about skirt of head (straight Flange)

Hossein Sadeghi

- (c) Ellipsoidal Heads ($t s/L \ge 0.002$):
- The required thickness of a dished head of semiellipsoidal form, in which half

the minor axis (inside depth of the head minus the skirt) equals one-fourth of

the inside diameter of the head skirt, shall be determined by

$$t = \frac{PD}{2SE - 0.2P}$$
 or $P = \frac{2SEt}{D + 0.2t}$

 NOTE: For ellipsoidal heads with t s/L < 0.002, the rules of 1-4(f) shall also be met

Hossein Sadeghi

- (d) Torispherical Heads With $t s/L \ge 0.002$:
- The required thickness of a The required thickness of a torispherical head for the case in which the knuckle radius is 6% of the inside crown radius and the inside crown radius equals the outside diameter of the skirt [see (i)] shall be determined by

$$t = \frac{0.885PL}{SE - 0.1P}$$
 or $P = \frac{SEt}{0.885L + 0.1t}$

 Torispherical heads made of materials having a specified minimum tensile strength exceeding 70,000 psi (485 MPa) shall be designed using a value of S equal to 20,000 psi (138 MPa) at room temperature and reduced in proportion to the reduction in maximum allowable stress values at temperature for the material

- (e) Hemispherical Heads :
- The When the thickness of a hemispherical head does not exceed 0.356L, or P does not exceed 0.665SE, the following formulas shall apply:

- (f) Conical Heads and Sections (Without Transition Knuckle).
- The required thickness of conical heads or conical shell sections that have a half apex-angle a not greater than 30 deg shall be determined by

File Home Tools View 3D Diagnostics ESL Help Image: Specific stress of the stress of	Options ? INTERGRAPH
Image: Save	v v
File Flements Details Input / Output I Hillsy Auxiliany Analyze Units/Co	
The Elements Details input / Output Othity Advinary Analyze Othits/Co	de
General Input	
(+ + + + + + + + + + + + + + + + + + +	a
∠ Element Data	(D)
Element Description	-
From Node 10 Select the Nozzle Database to use for this Vessel Project	6
To Node 20	
Element Type Cylindrical 💿 ANSI Imperial, units for Nozzle Diameter will be inches	
Diameter Basis ID OANSI Metric Nominal Pipe Size, units for Nozzle Diameter will be millimeters	(Q)
Inside Diameter 96 OMetric Standard units for Notrie Diameter will be milimeters	S
Length, 0 Owned Standard, dirts for Nozze blaneter will be minimeters	۵
Finished Thickness 0.25	0
Nominal Thickness 0	à
Internal Corrosion All. 0.125	**
External Corrosion All. 0	<u>×</u>
Wind Diameter Multiplier 1.2 Note: This selection can be changed in the List Dialog if no Nozzles are defined. OK	0
Material Name SA-516 70	(G
Longitudinal Seam Efficiency 1	St.
Circumferential Seam Efficiency 1	
Internal Pressure 100.006	-
Temp. for Internal Pressure 200	
External Pressure 14.9972	k
Temp. for External Pressure 200	×
Additional Element Data	
	\$
	0
	Ð
	4
	D-
🗎 Gen 🔏 Desi 🔂 Loa 📳 Win 🗐 Seis 🍞 Hea 🚺 2D View 3D View	
for Help, press F1	
📲 🔚 🧿 🧀 🕅 📲 🕑 📴 🌠 📋 👘 👘 Desktop 🖹 Hossein Sadeghi 🔷 👋 🔺 📲 🍢	🔒 🕪 ENG 10:15 PM
Hossein Sadeghi PRESSURE VESSEL (BY PVElite) COURSE	105

<u>v</u> *								PVElite	e - LOI	ntitledj											- U	~
File Home Tools V	'iew 3D	Diagnostics	ESL	Help															۸	Options *	? - IN	TERGRAPH
New Open Save		↓ ↓ ↓				¶ ≊ ∓	Input		er م ش ا		@ 9 0	0) 🛯	▲ ∰ A]		" <u>ix</u>		Units : Design Code	ENGLISH Division	1	v v	
File Eler	ments	0	D	etails		_	Input / C	Dutput		Utility				Auxiliary	_	Anal	lyze		Units/C	lode		
eneral Input			д (-														I	
	_																					
∠ Element Data	_																					
Element Description																						E E
From Node	10																					
To Node	20																					
Element Type	Cylindrical																					
Diameter Basis	ID																					
Inside Diameter	96																					\
Length,	0																					0
Finished Thickness	0.25																					
Nominal Thickness	0																					à
Internal Corrosion All.	0.125																					(*) ()
External Corrosion All.	0																					<u> </u>
Wind Diameter Multiplier	1.2																					¢
Material Name	SA-516 70																					¢.
Longitudinal Seam Efficiency	1																					1
Circumferential Seam Efficiency	y 1																					_
Internal Pressure	100.006																					
Temp. for Internal Pressure	200																					R
External Pressure	14.9972																					k
Temp. for External Pressure	200																					E
Additional Element Data																						
																						.
																						Þ
																						\triangleleft
																						•
🗎 Gen 🔏 Desi 🔣 Loa	🛃 Win	💷 Seis 🏼 🏹	Hea	2D View	3D View	I																
r Help, press F1																		Ne	w Model			SPLM
: 🔒 🧿 🍐			PV 🔹	1									Deskto	p 🚺 Hos	sein Sadeg	hi		»	ail 🛃	1	ENG 10):14 PM

PVElite Software

Hossein Sadeghi

PRESSURE VESSEL (BY PVElite) COURSE

107

PVElite Software

PU =		PVElite - [Untitled]
File Home Tools	View 3D Diagnostics ESL Help	
🚞 Open		
Recent	Import / Export	
in -		
Save		
📑 Save As	Import a HTRI Model	Export Vessel Picture to PCX File
🔋 Import/Export <		
福 Print Setup	Import a Project Template	Export Screen to PCX File
🖶 Preview/Print		Event Verel Compty to D 12 DVE Ein
😨 Help		Export vessel geometry to R12 DAP File
👼 System Folder		
💭 Backup Folder		
Y Evit		
	Tine Drace the Home tab to ration to the input	
	np: rress the nome tab to return to the input	

Hossein Sadeghi

- 🗄 🏢

🤌 🕅 📓

PB

PV

•

PRESSURE VESSEL (BY PVElite) COURSE

🗄 Desktop 👔 Hossein Sadeghi

* 🔺 🚮 🔀 🔒 🌵 ENG 10:12 PM

108

Hossein Sadeghi

				PV	Elite - [L	Intitled]	
ESL	Help	_	_		_	_	
				Input			Ser of
De	tails			Input / Outp	out	Utility	
д		Input / Output	감도 문 한 문 Insert Ele	Lai Q S		Auxiliary	
				nsert an element after the current e	before or element		

VEli	te - [Untitled]			 Optior
CC	₩₩₩ \$ \$ \$ \$ \$			Units : ENGLISH Design Code : Division 1
tput	Utility	Auxiliary	Analyze	Units/Code

Hossein Sadeghi

		-	- 0
		🛎 Options 🕆 🕐	INTE
<i>τ</i> τ Γ	Units :	ENGLISH	*
	Design Code :	Division 1	-
	Division 1		
Analyze	Division 2		
,	PD:5500		
	EN-13445		

			PVElite - [Untitled]				- 0 ×
File Home Tools	View 3D	Diagnostics ESL Help					 Options 	1 INTERGRAPH
New Open Save		↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	🖾 🧓 🚮 👬	740% BIQ		1 🖄 🗋 2 🗋 🖉	Units : ENGLISH Design Code Division 1	*
File E	lements	Details	Input / Output	Utility	Auxiliary	Analyze	Units/Code	
Seneral Input	asheologi al	a	Anticonine and A		M	and the second second	den solden beskelde kale	
14 4 0 al	_							
Element Data		1						
Element Description								8
From Node	10	Select the Noz	zle Database to use for t	this Vessel Project				
To Node	20	12		and resource of eac				9
Element Type	Cylindrical	ANSI Imperial units for Notzle Dis	matar will he inches	1				9
Diameter Basis	ID	All ST Makin Naminal Data City Lung	te for Navela Dismator will be milit		Alex .			0
Inside Diameter	96	O Note Hear I have been and the	is for hozze charieter will be mill	neuers				9
Length,	0	Metho Standard, units for Nozze I	Aameter will be millimeters					٢
Finished Thickness	0.25	O Metric Standards R64, units for No	ozzle Diameter will be milimeters		C201			0
Nominal Thickness	0							à
Internal Corrosion All.	0.125		a the solution of the solution of the					
External Corrosion All.	0	1 aways use the selected databas	se (Don't show me this again)		100			2
Wind Diameter Multiplier	1.2	Note: This selection can be changed	in the List Dialog if no Nozzles are	defined.	ОК			0
Material Name	SA-516 70				.st.			6
Longitudinal Seam Efficiency	1				5			
Circumferential Seam Efficien	icy 1							
Internal Pressure	100.006							
Temp. for Internal Pressure	200							k
External Pressure	14.9972							k
Temp. for External Pressure	200							
Additional Element Data								
								P
								0
								E
								9
🗈 Gen 🔏 Desi 👿 Loa	. 🛃 Win	E Seis DHea 2D View 3D View						
r Help, press F1							New Model	SPLM

				PV	/Elite - [Untitled]						- 0 ×
File Home Tools V	iew 3D	Diagnostics ESL	Help			_			_	 Options 	? INTERGRAPH
n 🗠 🔟 🛯 🗛	AR	14 m			1 14 7 4 6	& II II		オオー	Units :	ENGLISH	
				-					Design Code	Division 1	*
New Open Save 🔜 🔜				Input) (3 🏓	I 🛆 🗄 🔰 💆	GR			
File Elei	ments		Details	Input / Out	put Utility		Auxiliary	Analyze		Units/Code	
General Input		Ģ									
百分少县	_		1								0
Element Data											Ø
Element Description											6
From Node	10										6
To Node	20										8
Element Type	Cylindrical	8									9
Diameter Basis	ID										Q
Inside Diameter	96										Q
Length,	0										٢
Finished Thickness	0.25										0
Nominal Thickness	0										a
Internal Corrosion All.	0.125										0
External Corrosion All.	0										2
Wind Diameter Multiplier	1.2										0
Material Name	SA-516 70										C.
Longitudinal Seam Efficiency	1										
Circumferential Seam Efficiency	y 1										
Internal Pressure	100.006										1
Temp. for Internal Pressure	200										N
External Pressure	14.9972										
Temp, for External Pressure	200										*
Additional Element Data											
											(P)
											0
			1								₽
			1								S
											19
🛯 Gen., 🔗 Desi., 📅 Loa.,	El Win	E Seis DHea	2D View 3D View								
	ET result	1							10	STATE IN	

Hossein Sadeghi

13

The this is

		PVElite - [Untitled]	- 8 🔀
File Home Tools	View 3D Diagnostics ESL Help		A Options* ? / NTERGRAPH
🗁 Open			
📓 Recent	Import / Export		
🕍 Save			
🛒 Save As	Import a HTRI Model	Export Vessel Picture to PCX File	
import/Export			
K Print Setup	Import a Project Template	Export Screen to PCX File	
🚔 Preview/Print			
🕜 Help		DXF Export Vessel Geometry to R 12 DXF File	
📷 System Folder			
👳 Backup Folder			
💥 Exit			
	Tip: Press the Home tab to return to the input		

PV I∓					
File	Home	Tools	View	3D	Diag
New O	pen Save				上 正(
1	File		Elements		
General	Input	0			
	Tools Vi Tools Vi Tools Vi Cylinder Ir	ew 3D	Diagnostics		

0.05

					PVEI	ite - [U	ntitled]		
ESL	Help	_	_				_	_	
				Input	CC	哈 創		@ % 0	G
De	tails		_	Input / C	Output		Utility		
	6	Input / Output	남 명 和 B	SD Q D Q Utility	95		Auxiliary		_
			Insert Eler	ment nsert an eler ifter the curr	ment bef rent elem	ore or tent			

VEli	te - [Untitled]			◆ Option
cc	₩₩₩ ₩₩₩ ₩₩			Units : ENGLISH Design Code : Division 1
tput	Utility	Auxiliary	Analyze	Units/Code

30	to 🙏 🗊 E 📔 🖉	XX C	Units : Design Code
	Element Properti	es sical element es	

Hossein Sadeghi

		 Options 	
tit 🗋	Units :	ENGLISH	*
	Design Code :	Division 1	-
Analyze	Division 1 Division 2 PD:5500 EN-13445		

Die openie i die indie i Die openie Deradic rade s	iera iĝo	
Select to Activate the Settings Print Water Volume in Gallons Print Equations and Substitutions Print Equations and Substitutions Print Flange Calcs for External Pressure Disregard Bolt Space Correction Factor for ASM Use ASME Code Case 2260/2261 Use EigenSolver Use Pre-99 Addenda (ASME VIII-1 Only) Use 2004-A06 Addenda for Drvision 2 Pror ASME VIII, Shell Head Joints Are Tapered Pror ASME VIII-1, Use Table G Instead of Exact 1 Use Nominal Head Thickness When Computing L Nozzle Analysis Directives No Corrosion on Inside Welds Use AD-540.2 Sketch b and Not Sketch d for No Compute Increased Nozzle Thickness Compute Areas per PD:5500 3.5.4.9 Nozzle Opening MAWP Is Not Restricted by the	ent E Flange Design Equation for 'A' ongitudinal Stress rmal Limit (Pre 2007) Shell (ASME)	 No MDMT Calculations No MAWP Calculations Use Bolt Load Instead of Bolt Area * Bolt Stress Syntax Highlighting in Output Reports No Extended ASCII Characters in Output Metric Output Is in Consistent Units Metric Input -> Imperial Output Use ASME Code Case 2286 For ASME VIII-1, Compute X' in Corroded Condition Use ASME Code Case 2695 (Div. 1 Allowables Using Div. 2 Part 4 Moments Add at Lug Supports Due to Seismic Loads ASME MDMT Directives ASME VIII-1 MDMT Option : Use Graphs (Fig. UCS-66) Use the MAWP to Compute the MDMT Do Not Use Nozzle MDMT Interpretation VIII-1-01-37
Allowable Tower Deflection : 6 Wind Shape Factor : 0 Ope. Nat. Freq. (Hz) Optional : 0 Empty Nat. Freq. (Hz) Optional : 0 Test Nat. Freq. (Hz) Optional : 0 Current Model Direction: East: Counter	in./100ft.	Set Material Impact Test Temperatures Use Metric ASME Material Database (if available for the year chosen) ASME Material Database Year : Current Metric Constant Selection : Determine at Runtime Input Echo Language : English

Hossein Sadeghi

Select to Activate the Settings Print Water Volume in Gallons Round Thickness to Nearest Nominal Size Print Equations and Substitutions Increase Blind Flange Thickness for Reinforcement Print Flange Calcs for External Pressure Disregard Bolt Space Correction Factor for ASME Flange Design	No MDMT Calculations No MAWP Calculations Use Bolt Load Instead of Bolt Area * Bolt Stress Syntax Highlighting in Output Reports No Extended ASCII Characters in Output
 Print Water Volume in Gallons Round Thickness to Nearest Nominal Size Print Equations and Substitutions Increase Blind Flange Thickness for Reinforcement Print Flange Calcs for External Pressure Disregard Bolt Space Correction Factor for ASME Flange Design 	No MDMT Calculations No MAWP Calculations Use Bolt Load Instead of Bolt Area * Bolt Stress Syntax Highlighting in Output Reports No Extended ASCII Characters in Output
 Round Thickness to Nearest Nominal Size Print Equations and Substitutions Increase Blind Flange Thickness for Reinforcement Print Flange Calcs for External Pressure Disregard Bolt Space Correction Factor for ASME Flange Design 	No MAWP Calculations Use Bolt Load Instead of Bolt Area * Bolt Stress Syntax Highlighting in Output Reports No Extended ASCII Characters in Output
 Print Equations and Substitutions Increase Blind Flange Thickness for Reinforcement Print Flange Calcs for External Pressure Disregard Bolt Space Correction Factor for ASME Flange Design 	Use Bolt Load Instead of Bolt Area * Bolt Stress Syntax Highlighting in Output Reports No Extended ASCII Characters in Output
 Increase Blind Flange Thickness for Reinforcement Print Flange Calcs for External Pressure Disregard Bolt Space Correction Factor for ASME Flange Design 	Syntax Highlighting in Output Reports No Extended ASCII Characters in Output
Print Flange Calcs for External Pressure Disregard Bolt Space Correction Factor for ASME Flange Design	No Extended ASCII Characters in Output
Disregard Bolt Space Correction Factor for ASME Flange Design	
	Metric Output Is in Consistent Units
Use ASME Code Case 2260/2261	Metric Input -> Imperial Output
V Use EigenSolver	Use ASME Code Case 2286
Use Pre-99 Addenda (ASME VIII-1 Only)	
Use 2004-A06 Addenda for Division 2	For ASME VIII-1, Compute 'K' in Corroded Condition
For ASME VIII, Shell Head Joints Are Tapered	Use ASME Code Case 2695 (Div. 1 Allowables Using Div. 2 Part 4
For ASME VIII-1, Use Table G Instead of Exact Equation for 'A'	Moments Add at Lug Supports Due to Seismic Loads

 Use AD-540.2 Sketch b and Not Sketch d for Normal Limit (Pre 200 Compute Increased Nozzle Thickness Compute and Print Areas for Small Nozzles Compute Chord Length in Hillside Direction Compute Areas per PD:5500 3.5.4.9 Nozzle Opening MAWP Is Not Restricted by the Shell (ASME)
Compute Increased Nozzle Thickness Compute and Print Areas for Small Nozzles Compute Chord Length in Hillside Direction Compute Areas per PD:5500 3.5.4.9 Nozzle Opening MAWP Is Not Restricted by the Shell (ASME)
Compute and Print Areas for Small Nozzles Compute Chord Length in Hillside Direction Compute Areas per PD:5500 3.5.4.9 Nozzle Opening MAWP Is Not Restricted by the Shell (ASME)
Compute Chord Length in Hillside Direction Compute Areas per PD:5500 3.5.4.9 Nozzle Opening MAWP Is Not Restricted by the Shell (ASME)
Compute Areas per PD: 5500 3.5.4.9 Nozzle Opening MAWP Is Not Restricted by the Shell (ASME)
Nozzle Opening MAWP Is Not Restricted by the Shell (ASME)
invalue opening in the investigation of the onen (normal)
ASME MDMT Directives
ASME VIII-1 MDMT Option : Use Graphs (Fig. UCS-66) -
Use the MAWP to Compute the MDMT
Do Not Use Nozzle MDMT Interpretation VIII-1-01-37

Set Material Impact Test Tempe	ratures	
Use Metric ASME Material Database (if available f	for the year chosen)	
ASME Material Database Year :	Current	•
Metric Constant Selection :	Determine at Runtime	•
Input Echo Language :	English	-

Paris Defeulte					
Basic Defaults					
		Create De	fault Bor	der : 📃	
		Create Nozz	le Sched	lule : 🔲	
		Create Bil	ofMate	erial : 🔲	
		Show Or	nly OD Li	nes : 🔽	
		Show	Dimensi	ons : 📃	
		Insert Design Data and Ge	neral No	tes : 🔳	
Paper Size Option	S				
, sper size spass		Drawing Size:	U	· •	
, oper one opposit					
		Scale Factor:	1		
	C	Scale Factor:	1		
	C	Scale Factor:	1		

Hossein Sadeghi

Configuration

b-Specific Parameters	DXF Options	Default Va	alue Settings						
Default Values Used a	t Startup								
	Diameter :	96.000	in.	Ter	mperature for Internal Pressure :	200.000	F		
Finishe	d Thickness :	0.250	in.		External Pressure :	15.000	psig		
Corrosio	n Allowance :	0.125	in.	Ten	perature for External Pressure :	200.000	F		
Interr	al Pressure :	100.000	psig						
AS	ME Material :	SA-516 70	liensen i	Mati.	No Auto Advance on Adding	Details			
PD 5	P235GH		Mati	For ASME, Use the Metric Da	atabase on	Startup			
EN-13445 Material : P2350				Matl.	e Materials				
ASME Noz	zle Material :	SA-106 B		Mati.					
PD 5500 Noz	zle Material :	A-106 B		Mati.	Units File :				Browse
EN-13445 Nozzle Material : p235GH			Mat. ENGLISH.FIL						
No External Nozzle Database Def De	Pressure Repo aults fault Nozzle Da	nt Produced	d When There Is ANSI Imperial (in)	No External Pro	Default Angle Direction and Orie	entation efault 0 Ang	gle Position :	East	
No External Nozzle Database Def De Al	Pressure Repo aults fault Nozzle Da ways Use the i	nt Produced Itabase : Default Noz	d When There Is ANSI Imperial (in) zle Database Spe	No External Pro	Default Angle Direction and Orie	entation efault 0 Ang ault Rotatio	gle Position : on Direction :	East	erClockwise
No External Nozzle Database Def De Al	Pressure Repo aults fault Nozzle Da ways Use the l	rt Produced Itabase : [/ Default Noz	d When There Is ANSI Imperial (in) zle Database Spe	No External Pro	Default Angle Direction and Orie	entation efault 0 Ang ault Rotatio	gle Position : on Direction :	East Counte	erClockwise
No External Nozzle Database Def De Al Autosave Options	Pressure Repo aults fault Nozzle Da ways Use the Autosave Fea	nt Produced ntabase : Default Noz	d When There Is ANSI Imperial (in) zle Database Spe	No External Pro	Default Angle Direction and Orie	entation efault 0 Ang ault Rotatio Files	gle Position : on Direction :	East Counte	erClockwise
No External Nozzle Database Def De Al Autosave Options Enable Save	Pressure Repo aults fault Nozzle Da ways Use the Autosave Fea Interval (min	ort Produced atabase : Default Noz ature utes) : 15	d When There Is ANSI Imperial (in) zle Database Spe	No External Pro	Default Angle Direction and Orie	entation efault 0 Ang fault Rotatio Files late Folder E	gle Position : on Direction : Browse	East	erClockwise
No External Nozzle Database Def De Al Autosave Options Enable Save	Pressure Repo aults fault Nozzle Da ways Use the l Autosave Fea Interval (min erform Backor	atabase : Default Noz ature utes) : 15	d When There Is ANSI Imperial (in) zle Database Spo	No External Pro	Default Angle Direction and Orie Default Angle Direction and Orie Default Default Do Not Compress the Input Templa Check f	entation efault 0 Ang ault Rotatio Files late Folder E for Update (gle Position : on Direction : Browse Options	East Counte	erClockwise
No External Nozzle Database Def De Al Autosave Options Enable Save	Pressure Repo aults fault Nozzle Da ways Use the l Autosave Fea Interval (minu- erform Backgr	atabase : Default Noz ature utes) : 15	d When There Is ANSI Imperial (in) zle Database Spo (Silent) ?	No External Pro	Default Angle Direction and Orie Default Angle Direction and Orie Default Default Do Not Compress the Input Templa Check for Syste	entation efault 0 Ang ault Rotatio Files late Folder B for Update 9 em Folder Br	gle Position : on Direction : Browse Options rowse	East	erClockwise
No External Nozzle Database Def De Al Autosave Options Enable Save	Pressure Repo aults fault Nozzle Da ways Use the l Autosave Fea Interval (minu- erform Backgr Default Save F	ort Produced atabase : Default Noz ature utes) : 15 ound Saves	d When There Is ANSI Imperial (in) zle Database Spe (Silent) ?	No External Pro	Default Angle Direction and Orie Default Angle Direction and Orie Default Default Do Not Compress the Input Templa Check for Syste	entation efault 0 Ang ault Rotatio Files late Folder B for Update 0 em Folder Br Browse	gle Position : on Direction : Browse Options rowse E	East Counte	erClockwise

×

Configuration

Default Values Used at Startup							
						- 52	
Diameter	96.000	in.	Te	mperature for Internal Pressure :	200.000	E	
Finished Thickness	0.250	in.		External Pressure :	15.000	psig	
Corrosion Allowance	0.125	in.	Ter	nperature for External Pressure :	200.000	F	
Internal Pressure	: 100.000	psig					
ASME Material	SA-516 70)	Matl.	No Auto Advance on Adding	Details		
PD 5500 Material	P235GH	200	Matl.	For ASME, Use the Metric Da	atabase on	Startup	
EN-13445 Material	P235GH		Matl.	For ASME, Include Japanese	e Materials		
ASME Nozzle Material	SA-106 B		Matl.]			
PD 5500 Nozzle Material	A-106 B		Matl.	Units File :			Browse
EN-13445 Nozzle Material	: p235GH		Matl.	ENGLISH.FIL			23

.

	Default 0 Angle Position	East	
	Default Rotation Direction	: CounterClockwise	
Do Not Comp	press the Input Files		
Nozzle Datab	ase Defaults		
	Default Nozzle Database : AN	SI Imperial (in)	•
	Always Use the Default Nozzle	Database Specified	: 🔲
Autosave Op	tions		
	Enable Autosave Feature		
	Save Interval (minutes) : 15	A V	

					UMs	1.bin:1 - Mat	erial Database Editor		
ile Home View									
-8 🛨 🕺 🍙 🕢	ett Cancel	A A	Find :	* C	5				
Materials		Edit	Find Mater	nal					
tenal Properties		0 :	×						
Design Code: Division 1	Edit th	e Metric Database	2						
General			1						
Material Name		0	1						
Listing #	0								
Chemical Composition									
Product Form									
UNS Number									
Class/Thickness									
P Number Thickness, in.	0								
P Number									
Group Number	0								
Minimum Tensile Stress, psi	0								
Minimum Yield Stress, psi	0								
External Pressure Curve									
Reserved									
Material Density, Ib./in^3	0	-							
Non-Normalized Curve		1							
Normalized Curve									
Elastic Modulus reference #	1								
Thermal Expansion Coefficient	1								
Minimum Thickness (in.)	-1								
Maximum Thickness (in.)	-1								
Creep Temperature (F)	0:								
MDMT Exemption Temperatur	0		Material Data	100					0.5
Product Form	1		material pace	iease	1000 XV 74 X 11	15205275			
Impact Reduction Temperatur	0		Materials	Listing #	Composition	Form	UNS Number		
ANSI Flange Group/Grade	None								
Maximum Temperature, C	0								
Stresses - Psi									
100	0								
150	0								
			1						

Hossein Sadeghi

Image: Provide the second		_		
Delete Add	Select Cancel Undo Redo	Find : *		
Materials	Edit	Find Material		
Materia Add	rial to the User Database	File Home View		
General	zba	Se Selete Add Edit Mer	ge Select Cancel Undo Redo	Find:
Material Name	0	Materials	Edit	Find Material
Chemical Composition Product Form UNS Number		Material Proper Edit Design Code:	ect a material from the PV Elite data d it to your user database	base and
		General		*
		Material Name		E 189
		Listing #	0	
		Chemical Composition		
		Product Form		
		UNS Number		
		Class/Thickness		
		P Number Thickness, in	. 0	=
		P Number		
		Group Number	0	

Nome View Image: Second Sec	Batt the Metric Databut	Find : Find Materia 9 × 1.05 0.95 0.9 0.95 0.8 0.75 0.7 0.65 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	Topi	9			<u>s</u>	Stress vs. Terr	perature: i	Vew Materi	a!		
Add Edit Merge select of Materials Edit Marge select of Materials Material Properties Design Code: Division 1 Material Name New M Listing # Chemical Composition Product Form UNS Number Class/Thickness P Number Thickness, in. 0 P Number Thickness, in. 0 Minimum Tensile Stress, psi Group Number Group	Edit the Metric Databu	Find : Find Materia 9. X 1.05 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	Help	25			S	Stress vs. Terr	sperature: 4	Veur Materi	al		
Material Properties Design Code: Division 1 Image: Composition Material Name New M Listing # 1 Chemical Composition 1 Product Form UNS Number Class/Thickness 0 P Number Thickness, in. 0 P Number Thickness, pai 0 Minimum Tensile Stress, pai 0 External Pressure Curve 0 Reserved 0 Non-Normalized Curve Not a C Normalized Curve Not a C Material Desity, Ib-/in*3 0 Normalized Curve Not a C Minimum Thickness (O) 1	Edit	Eind Materia 9 X 1 05 0 95 0 9 0 85 0 8 0 75 0 7 0 65 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0	Topi				S	Stress vs. Terr	iperature: i	Vew Materi	al		
terial Properties Design Code: Division 1 Material Name New M Listing # 1 Chemical Composition Product Form UNS Number Class/Thickness P Number Thickness, in. 0 P Number Group Number Group Number 0 Minimum Tensile Stress, psi 0 External Pressure Curve Reserved 0 Material Density, Ib./in *3 0 Non-Normalized Curve Not a C Elastic Modulus reference # 0 Thermal Espansion Coefficient 0] Edit the Metric Databu	9 × ase? 1 05 1 095 0 9 0 85 0 8 0 75 0 7 0 65 0 65 0 55 0 55 0 55 0 45					S	Stross vs. Terr	iperature: i	Vew Materi	al		
Design Code: Division 1 Material Name New M Listing # 1 Chemical Composition Product Form UNS Number Class/Thickness P Number O Minimum Trisile Stress, psi O Material Density, Ib/in*3 O Material Density, Ib/in*3 O Material Density, Ib/in*3 O Listic Modulus reference # 0 Thermal Expansion Coefficient 0 Minimum Technese Co] Edit the Metric Databu	ase? 1 05 1 0 95 0.9 0.85 0.8 0.75 0.7 0.65 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.											
Design Code: Division 1 Image: Composition Material Name New M Listing # 1 Chemical Composition Product Form UNS Number 0 Class/Thickness P P Number Thickness, in. 0 P Number Thickness, psi 0 Minimum Tensile Stress, psi 0 Material Density, Ib/in*3 0 Non-Normalized Curve Not a C Non-Normalized Curve Not a C Normalized Curve Not a C Material Density, Ib/in*3 0 Non-Normalized Curve Not a C Normalized Curve Not a C Material Density Enclose # 0 Thermal Expansion Coefficient 0	Edit the Metric Databa	ase? 1 0 95 0.9 0.85 0.8 0.75 0.7 0.65 0.5 0.5 0.5 0.5 0.5 0.5											
Material Name New M Listing # 1 Chemical Composition Product Form Product Form UNS Number Class/Thickness P P Number 0 P Number 0 Minimum Tensile Stress, psi 0 Minimum Yield Stress, psi 0 External Pressure Curve 0 Material Density, Ib/in ^3 0 Non-Normalized Curve Not a C Istatic Modulus reference # 0 Thermal Espansion Coefficient 0 1	Material	0.9 0.85 0.85 0.85 0.75 0.7 0.65 0.55 0.55 0.55 0.45											
Listing # 1 Chemical Composition Product Form UNS Number Class/Thickness P Number Thickness, in. 0 P Number 0 Minimum Tensile Stress, psi 0 Minimum Yield Stress, psi 0 External Pressure Curve Reserved 0 Material Density, Ib/in*3 0 Non-Normalized Curve Not a C Isatic Modulus reference # 0 Thermal Espansion Coefficient 0 Minimum Picehaes (0) 1		0.85 0.8 0.75 0.7 0.65 0.6 0.6 0.55 0.5 0.5 0.5 0.45											
Chemical Composition Product Form UNS Number Class/Thickness P Number Thickness, in. 0 P Number Group Number 0 Minimum Tensile Stress, psi 0 External Presure Curve Reserved 0 Material Density, Ib/in ^3 0 Non-Normalized Curve Not a C Normalized Curve Not a C Elastic Modulus reference # 0 Thermal Espansion Coefficient 0 Minimum Therhares (0) 1		0.8 0.75 0.7 0.65 8 0.6 55 0.55 0.5 0.5 0.5 0.5											
Product Form UNS Number Class/Thickness P Number Thickness, in. 0 P Number 0 Group Number 0 Minimum Tensile Stress, psi 0 External Pressure Curve Reserved 0 Material Density, Ib/in^3 0 Non-Normalized Curve Not a C Normalized Curve Not a C Elastic Modulus reference # 0 Thermal Expansion Coefficient 0 Minimum Thickness (n) 1		0.75 0.75 0.65 8.0.65 0.55 0.55 0.45											
UNS Number Class/Thickness P Number Thickness, in. 0 P Number 0 Minimum Tensile Stress, psi 0 Minimum Yield Stress, psi 0 External Pressure Curve Reserved 0 Material Density, Ib-/in*3 0 Non-Normalized Curve Not a C Normalized Curve Not a C Normalized Curve Not a C Internal Espansion Coefficient 0 Thermal Espansion Coefficient 0		0.15 0.7 0.65 8. 0.6 8. 0.55 0.5 9. 0.5 9. 0.5 9. 0.5											
Class/Thickness P Number Thickness, in. 0 P Number 0 Minimum Tensile Stress, psi 0 Minimum Yield Stress, psi 0 External Pressure Curve Reserved 0 Material Density, Ib./in*3 0 Non-Normalized Curve Not a C Normalized Curve Not a C Elastic Modulus reference # 0 Thermal Espansion Coefficient 0 Minimum Thickness (n) 1		0.7 0.65 0.65 0.55 0.55 0.5 0.45											
P Number Thickness, in. 0 P Number 0 Group Number 0 Minimum Tensile Stress, psi 0 External Pressure Curve. Reserved 0 Material Density, Ib-/in ^3 0 Non-Normalized Curve Not a C Normalized Curve Not a C Elastic Modulus reference # 0 Thermal Espansion Coefficient 0 Minimum Thickness (n) 1		0.66 0.6 0.55 0.55 0.45											
P Number 0 Group Number 0 Minimum Tensile Stress, psi 0 External Pressure Curve Reserved 0 Material Density, Ib-/in *3 0 Non-Normalized Curve Not a C Normalized Curve Not a C Elastic Modulus reference # 0 Thermal Espansion Coefficient 0 Minimum Thickness (0) 1		E 0.6 E 0.55 E 0.5 0.45											
Group Number 0 Minimum Tensile Stress, psi 0 Minimum Yield Stress, psi 0 External Pressure Curve 0 Material Density, Ib./in.^3 0 Non-Normalized Curve Not a C Normalized Curve Not a C Elastic Modulus reference # 0 Thermal Espansion Coefficient 0 Minimum Thickness (0) 1		E 0.55 0.5 0.45											
Minimum Tensile Stress, psi 0 Minimum Yield Stress, psi 0 External Pressure Curve 0 Reserved 0 Material Density, Ib./in.^3 0 Non-Normalized Curve Not a C Normalized Curve Not a C Elastic Modulus reference # 0 Thermal Expansion Coefficient 0 1		0.5											
Minimum Yield Stress, poi 0 External Pressure Curve 0 Reserved 0 Material Density, Ib./in^3 0 Non-Normalized Curve Not a C Normalized Curve Not a C Elastic Modulus reference # 0 Thermal Expansion Coefficient 0 Minimum Florence (n)		0.45											
External Pressure Curve Reserved 0 Material Density, Ib./in ^3 0 Non-Normalized Curve Not a C Normalized Curve Not a C Elastic Modulus reference # 0 Thermal Expansion Coefficient 0 Minimum Thicheser (n) 1		0.40											
Reserved 0 Material Density, Ib-/in^3 0 Non-Normalized Curve Not a C Normalized Curve Not a C Normalized Curve Not a C Elastic Modulus reference # 0 Thermal Espansion Coefficient 0 1		0.4											
Material Density, IbJin^3 0 Non-Normalized Curve Not a C Normalized Curve Not a C Elastic Modulus reference # 0 Thermal Espansion Coefficient 0 Minimum Thicheses (n) 1		0.4											
Non-Normalized Curve Not a C Normalized Curve Not a C Elastic Modulus reference # 0 Thermal Expansion Coefficient 0 Minimum Thickners (n) 1		0.35											
Normalized Curve Not a C Elastic Modulus reference # 0 Thermal Expansion Coefficient 0 Minimum Thickness (fin) 1	Carbon Steel	0.3											
Elastic Modulus reference # 0 Thermal Expansion Coefficient 0 Minimum Thickneys (m)	Carbon Steel	0.25											
Thermal Expansion Coefficient 0		0.2											
Minimum Thickness (in)		0.15											
CALIFORNIA CONTRACTOR AND		0.1											
Maximum Thickness (in.) -1		0.05											
Creep Temperature (F) -1		0.00											
MDMT Exemption Temperatur 1		0						Terr	perature: I	e.			
Product Form 0			1991.11			_	_	1.201			_		
Impact Reduction Temperatur 0		Material Datab	ise										9
ANSI Flange Group/Grade		Materials	Listing #	Compositio	on Form	UN	IS Number						
Maximum Temperature C 0		New Material	1	11-2020									
Stresses - Psi													
100 0													
150 0													
200 0													

17 A +				matfile1.bin:	Material Database Editor															
els Add Edit Merge 2	Select Cancel Undo Redo	nd :	* CO Help Topics																	
Materials	Edit	Find Material	-																	
energia de la calcata	and the second	1.05			S	tress vs. Temperature: New Material														
Design Code: add it to	material from the PV circe database a your user database	na 1																		
	80151510	0.95																		
Material Name		0.9																		
Listing #	0	0.85																		
Chemical Composition		0.8																		
Product Form		0.75																		
UNS Number		0.75																		
Class/Thickness		0.7																		
P Number Thickness, in.	0	0.65																		
P Number		<u>8</u> 0.6																		
Group Number	0 8	0.55																		
Minimum Tensile Stress, psi	0	2 0.5																		
Minimum Vield Stress, psi	0	0.45																		
External Pressure Curve		0.4																		
Reserved	100	0.35																		
Material Density, Ib./in*3	0	0.35																		
Non-Normalized Curve		0.3																		
Normalized Curve		0.25																		
Elastic Modulus reference #	1	0.2																		
Thermal Expansion Coefficie	r#1	0.15																		
Minimum Thickness (in.)	-1	0.1																		
Maximum Thickness (in.)	-1	0.05																		
Creep Temperature (F)	0	0																		
MDMT Exemption Temperat	ue 0	19752				Temperature: F														
Product Form	1	Manual David	and the first state																	
Impact Reduction Temperate	ur 0	material Database	c manifer on	0000		1920														
ANSI Flange Group/Grade	None	Materials	Listing # C	omposition	Form	UNS Number														
Maximum Temperature, C	0	SA/AS1548	1 0	arbon Steel	Plate															
Stresses - Psi		SA/AS1548	2 C	arbon Steel	Plate															
100	0	SA/AS1548	3 C	arbon Steel	Plate															
150	0	SA/AS1548	4 C	arbon Steel	Plate															
200	0 .	SA/AS1548	5 C	-Mn-Si-Cb	Plate															
		SA/AS 1548	6 C	-Mn-Si-Cb	Plate															
		SA/CSA.GIA 71	1 6	arkon Steel	Diske har															
e 🛨 🔏 🔒 🤆	elect Cancel Undo Redo	ind :	Y G) tp																
------------------------------	---------------------------	--	---------------	---------	----------	----	------	-------------------	------	----------	-----------	------------	----	------	------	-----	----	---	-----	------
Materiais	Edit	Find Material	105	IIICS					_	_		_		_						
erial Properties	# >	19000	10		100		1023	W1	Stre	ss vs. T	'emperatu	me: SA-106	В	1.00		201			0	
esign Code: Division 1	Edit the Metric Database?	17000					_						-							
General	*	15000												N						
Material Name	SA-106 B	10000	-	-			10		1.1		2.1				10					
Listing #	1	14000	-	-											1				1	
Chemical Composition	Carbon Steel	13000	-	-	-	-				-		-			1		-			-
Product Form	Smls. pipe	12000	-	-	1	-	- 7/		-	-		-	-	-						-
UNS Number	K03006	11000	_	-	-	_	_			-					-	1	_			
Class/Thickness	+	· 10000																		
P Number Thickness, in.	1.25											1		-		19	1	1		
P Number	1	9000		-						-							X		-	
Group Number	1	<i>6</i> 8000	-	-	-	10	-		-	-		-	-	-	-	-				1
Minimum Tensile Stress, psi	60000	7000	_	_	_	_	_	_	_	_		_	_	_	_	_	_	1		
Minimum Vield Stress, psi	35000	6000									199							1		11
External Pressure Curve	CS-2	0000			1			1			1		1		-		1		1	1
Reserved	0	5000		-					1.		2		1.		1.12		1		1	2
Material Density, Ib./in^3	0.28	4000		-		-			-	-				-	-	-	-	-		1
Non-Normalized Curve	Curve B	3000		-	2	-		-	-	-		-	-	-	-	-	-	4	-	
Normalized Curve	Curve C	2000	_	_	- 1		-	_		-	-	_		_	_		_	_	_	1.00
Elastic Modulus reference #	1	1000			1		-				-							_		1
Thermal Expansion Coefficien	(1	1000					1.													1
Minimum Thickness (in.)	-1		8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	2 9	2
Maximum Thickness (in.)	-1	(H	-	22	81	8	85	T	4	20	25	8	8	20	76	8	35	3	5 2	5
Creep Temperature (F)	700									Te	mperatur	e: F								
MDMT Exemption Temperatu	a 1	A CONTRACTOR OF A CONTRACTOR OFONTO OFONTO OFONTA CONTRACTOR OFONTO OFONTO OFO	1.200	37/																1
Product Form	3	Material Databa	se: matriet.o	in																
Impact Reduction Temperatu	r 0	Materials	Listing	# Comp	osition		F	orm		UNS	Number									
ANSI Flange Group/Grade	GR11	SA-1010 50	1	12Cr			P	late		S4100	03									
Maximum Temperature; C	0	SA-105	1	Carbo	in Steel		F	orgings		K035	04									
Stresses - Psi		SA-106 A	1	Carbo	n Steel		S	mls. pipe		K025	01									
100	17100	SA-106 B	1	Carbo	in Steel		S	mls. pipe		K030	06									
150	17100 +	SA-106 C	1	Carbo	n Steel		S	mls. pipe		K035	01									
		SA-135 A	1	Carbo	in Steel		V	Vld. pipe												
		CA 456 B		Casha	in Cteal		3.6	If all so that is												

Hossein Sadeghi

PV	T				_		
F	le Home Tools	View	3D Diagr	ostics ES	L Help		
Set	Configuration Select Lock the arameters	e Current It File	Create/Review Units	Units Conversion	Edit/Add Materials *	File Extraction Utility	Export to VU Format
Gen	eral Input		Create/Revie	w Units			
k	14 4 4	_	A Crea	te or review u	nits files		
4	Element Data		(distant)				
	Element Description					•	
	From Node	10					
	To Node	20					
	Element Type	Cylind	drical				
	Diameter Basis	ID					
	Inside Diameter	96					
	Length,	0					
	Finished Thickness	0.25					
	Nominal Thickness	0					
3	Internal Corrosion All.	0.125					
	External Corrosion All.	0					
	Wind Diameter Multiplier	1.2					
	Material Name	SA-51	6 70				

Edit/Add File Extraction Export Materials - Utility For	to VUE Calculator	number the Nodes 9 Model Orientation ter in U-1 Form Info	mation for This Ves	S Compute Ligament Display Driver : OpenC sel
Create a New Units File			1	
Name	System Unit	Constant	User Un	it I
Length	feet	* 1.0000	= ft	
Force	pounds	* 1.0000	= lbf	
Mass(dynamics)	pounds	* 1.0000	= Ibm	
Area	sqinches	* 1.0000	= in ²	
Moments	foot-pounds	* 1.0000	= ft-lb	
Stress	lbs./sq.in.	* 1.0000	= psi	
Temperature Scale	degrees F	* 1.0000	= F	
Pressure	psig	* 1.0000	= psig	
Elastic Modulus	lbs./sq.in.	* 1.0000	= psi	
Pipe Density	Ibs./cu.in.	* 1.0000	= lb/in ¹	
Insulation Density	lbs./cu.ft.	* 1.0000	= lb/ft ²	
Fluid Density	lbs./cu.ft.	* 1.0000	= lb/ft ^s	
Wind Speed	miles/hr	* 1.0000	= mile/hr	a
Tray Weight	lb./sq.ft.	* 1.0000	= lb/ft ²	
Inertia	in.**4	* 1.0000	= in**4	
GLoad	g's	* 1.0000	= g's	
Wind Load	lbs./sq.ft	* 1.0000	= psf	
Elevation	feet	* 1.0000	= ft	
Volume	cubic inches	* 1.0000	= in ¹	
Diameter	inches	* 1.0000	= in	
	inches	* 1.0000	= in	77.0

Hossein Sadeghi

Open		-		s. 1	
🕖 🕞 😺 🕹 🕹	aph CAS + PVElite + 2016 + system +	• 47	Search	system	
Organize 🔻 New fo	lder			}⊞ ▼	61
Y Favorites	Name	Date modifie	d	Туре	
Desktop	Lang Out	9/18/2017 11	:11 AM	File folder	
Downloads	k Styles	9/18/2017 11	:11 AM	File folder	
o the	Translations	9/18/2017 11	11 AM	File folder	
词 Libraries	bars.fil	10/25/2004 4	MA 00:	FIL File	
Documents	bars_UniCode.fil	2/28/2005 7:0)7 AM	FIL File	
👌 Music	cm_kpa_Unicode.fil	11/27/2007 7	MA 60:	FIL File	
E Pictures	cm_UniCode.FIL	11/26/2007 4	:05 PM	FIL File	
Videos	ENGLISH.FIL	10/25/2004 4	MA 00:	FIL File	
	ENGLISH_UniCode.FIL	11/16/2005 7	:54 AM	FIL File	
🖳 Computer	Inches.fil	11/16/2005 8	MA 00:	FIL File	
	Inches_Unicode.fil	11/16/2005 8	MA 00:	FIL File	
Network	Inchlbs.fil	5/25/2004 9:2	21 AM	FIL File	
	*	m		3	
- C1-	name: hars fil	• (Unit Files	: (*.fiD	

Hossein Sadeghi

Name	System Unit	Constant		User Unit	
Length	feet	* 304.799988	.=	mm.	
Force	pounds	* 0.453600		Kgf	
Mass(dynamics)	pounds	* 0.453600	=	kg.	
Area	sqinches	* 6.451600	=	cm ²	
Moments	foot-pounds	* 0.138260	=	Kg-m.	
Stress	Ibs./sq.in.	* 0.006895	=	N./mm ²	
Temperature Scale	degrees F	* 0.555600	=	С	
Pressure	psig	* 0.068946	87 ±	bars	
Elastic Modulus	lbs./sq.in.	* 6.894600	(5=	KPa.	
Pipe Density	lbs./cu.in.	* 0.027680		kg./cm ³	
Insulation Density	lbs./cu.ft.	* 0.000016	=	kg./cm ³	
Fluid Density	lbs./cu.ft.	* 0.000016	=	lb/ft ³	
Wind Speed	miles/hr	* 1.609300	=	kg/cm ³	
Tray Weight	lb./sq.ft.	* 0.000488	=	lb/in ³	
Inertia	in.**4	* 41.623100	S=	kg/m ³	
GLoad	q's	* 1.000000	87 = 1	q`s	

Configuration arameters	urrent Create/Review U Units Conve	nits Edit/Add File Extraction Ext	port to VUE Format	We remember the Nodes Solar Flip Model Orientation We remember the U-1 Form Information for	S Com Display ! r This Vessel	pute Ligam Driver : Op	ent Effic
eral Input		a 🛛					
- to and							-
Element Data		Open					*
Element Description							
From Node	10	Intergr	aph CAS + PVEIde + 201	o i system i 🔹	Search system	_	-
To Node	20	Organize • New fo	older		8	·	0
Element Type	Cylindrical			*			
Diameter Basis	ID	🙀 Favorites	Name	Date mo	dified Type		Si
Inside Diameter	96	Desktop	Lang Out	9/18/201	7 11:11 AM File fol	der	
Length,	0	Downloads	Styles	9/18/201	7 11:11 AM File fol	der	
Finished Thickness	0.25		Translations	9/18/201	713-11 AM File fol	der	
Nominal Thickness	0	The Libertier		10.05.00	OA AOD ANA CIL CL	uer.	
Internal Corrosion All.	0.125	Citoranes	Dars.m	10/25/20	D4 4300 AMI FIL FILE	§.	
External Corrosion All.	0	Documents	bars_UniCode.fil	2/28/200	57:07 AM FIL File	8	
Wind Diameter Multiplier	1.2	J Music	cm_kpa_Unicode.	fil 11/27/20	07 7:09 AM FIL File	2	
Material Name	SA-516 70	Pictures	cm_UniCode.FIL	11/26/20	07 4:05 PM FIL File	87	
Longitudinal Seam Efficiency	1	🚼 Videos	ENGLISH.FIL	10/25/20	04 4:00 AM FIL File	R	
Circumferential Seam Efficiency	1		ENGLISH_UniCod	e.FIL 11/16/20	05 7:54 AM FIL File	10	
Internal Pressure	100.006	r Computer	Inches.fil	11/16/20	05 8:00 AM FIL File		
Temp. for Internal Pressure	200		Inches Unicode.fr	11/16/20	05 8:00 AM FIL File		
External Pressure	14.9972	Network	Inchibs.fil	5/25/200	4 9:21 AM FIL File		
Temp. for External Pressure	200		1	III .	5.5599 (1993) - 1.69 (1993)	-	
Additional Element Data				1990	1 for some some		
		PRI	e name:	•	Unit Files (".fil)		•
					Open +	Cane	cel

-	PV	Elite - [Untitled]			
action Export to VUE ty Format	Calculator	Renumber the Nodes	S Compute Ligament Efficiencies Display Driver : OpenGL *		
		Renumber the Nodes Renumber the nodes on the model			

:\Users\h.sadeghi\Desktop\38687901-000-PO-DR-3009-VDP-0149.pvdb]					
t to VUE	Calculator	Image: Renumber the Nodes So Compute Ligament Efficiencies So Flip Model Orientation Display Driver : OpenGL + There in U-1 Form Information for This Vessel	* Options	INTERGR ¹	
	III.	Fip Model Orientation of the Indeed Strategy Provided Strategy Pro			

Hossein Sadeghi

Hossein Sadeghi

P ₩ -									PV	Elite - [C:\	Users\h.	sadegh	i\Deskto	op\3868790
File	Home	Tool	s V	iew	3D	Diagnosti	cs ESL	Help						
Help Topics	Help Language *	View	Quick Start	Founda 3D Hel	tion	Check for Updates	Email Support	Online Registration	Online Help	What's New				
General k+ ↔	input • ⇒ ⇒	0	QA Manu QA Certif	ual licate			4							
4 Eler	nent Data	tion		Head										
From	n Node	uon		10										
Tol	Vode			20										
Elen	nent Type			Spheri	cal		-							
Diar	meter Basis			ID			-							Head
Insi	de Diameter,	mm.		1527										
Stra	ight Flange l	ength,	mm.	143				1						
Fini	shed Thickne	ess, mm	6	30.23										
Nor	ninal Thickn	ess, mn	٦.	35										
Inte	rnal Corrosio	on Allow	ance, n	n 1.6										
Exte	rnal Corrosio	on Allow	vance, n	n 0				0						
Win	d Diameter I	Multiplie	er	1.3										
Mat	erial Name			SA-510	5 70									

Hossein Sadeghi

(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)						
Element Data						
Element Description						
From Node	10					
To Node	20					
Element Type	Cylindrical 🗸					
Diameter Basis	ID 💌					
Inside Diameter, mm.	2438.4					
Cylinder Length, mm.	3048					
Finished Thickness, mm.	6.35					
Nominal Thickness, mm.	0					
Internal Corrosion Allowance, m	3.175					
External Corrosion Allowance, m	1 0					
Wind Diameter Multiplier	1.2					
Material Name	SA-516 70					
Longitudinal Seam Efficiency	1					
Circumferential Seam Efficiency	1					
Internal Pressure, bars	6.895					
Temp. for Internal Pressure, C	93.342					
External Pressure, bars	1.034					
Temp. for External Pressure, C	93.342					
Additional Element Data						

Hossein Sadeghi

General Input

4 Element Data Element Description

Element Description

From	Node	
To No	ode	

10

20

П

General Input

[() () () () () () () () () () () () () (
Iement Data								
Element Description								
From Node	10							
To Node	20							
Element Type	Cylindrical 🗾 👻							
Diameter Basis	Cylindrical							
Inside Diameter, mm.	Elliptical							
Cylinder Length, mm.	Torispherical							
Finished Thickness, mm.	Spherical							
Nominal Thickness, mm.	Conical							
Internal Corrosion Allowance, m	Welded Flat							
External Corrosion Allowance, m	Body Flange							
Wind Diameter Multiplier	Skirt							
Material Name	SA-516 70							
Longitudinal Seam Efficiency	1							
Circumferential Seam Efficiency	1							
Internal Pressure, bars	6.895							

म

Δ	Element Data	
	Element Description	
	From Node	10
	To Node	20
	Element Type	Cylindrical 🔹
	Diameter Basis	ID 💌
	Inside Diameter, mm.	ID
	Cylinder Length, mm.	OD
	Finished Thickness, mm.	6.35
	Nominal Thickness, mm.	0
	Internal Corrosion Allowance, m	3.175

Inside Diameter, mm.	2438.4
Cylinder Length, mm.	3048
Finished Thickness, mm.	6.35
Nominal Thickness, mm.	0
Internal Corrosion Allowance, m	3.175
External Corrosion Allowance, m	0
Wind Diameter Multiplier	1.2
Material Name	SA-516 70
Longitudinal Seam Efficiency	1
Circumferential Seam Efficiency	1
Internal Pressure, bars	6.895
Temp. for Internal Pressure, C	93.342
External Pressure, bars	1.034
Temp. for External Pressure, C	93.342
Additional Element Data	

Table 3-4 Effective Diameter, D _e *		
D (Vessel Diameter + 2 x Insulation Thickness)	Piping with or Without Ladders	Attached Piping, Ladders, and Platforms
≤ 4ft–0 in. 4 ft–0 in.–8 ft–0 in. > 8 ft–0 in.	D _e = 1.6D D _e = 1.4D D _e = 1.2D	D _e = 2.0D D _e = 1.6D D _e = 1.4D

*Suggested only; not from ASCE.

Table 4-4 Effective diameter, De*

D (Vessel Diameter + 2 x Insulation Thickness)	Piping with or Without Ladders	Attached Piping, Ladders, and Platforms
\leq 4ft – 0 in. 4ft - 0 in. – 8 ft – 0 in.	$D_e = 1.6D$ $D_e = 1.4D$	$D_e = 2.0D$ $D_e = 1.6D$
> 8 ft – 0 in.	$D_e = 1.2D$	$D_e = 1.4D$

* Suggested only; not from ASCE.

PVElite - [Untitled] Input Input / Output Utility Auxiliary

Select Material

Select a material from the material database

PRESSURE VESSEL (BY PVElite) COURSE

Analy

Material Name : SA-516 70 Listing # : 1 Allowable Stress, Ambient : [138.0 N./mm² Allowable Stress, Operating : 138.0 N./mm² Allowable Stress, Hydrotest : 179.4 N./mm² Allowable Stress, Hydrotest : 179.4 N./mm² Nominal Material Density : 0.0077504 kg./cm³ P Number Thickness : 31 mm. Yield Stress, Operating : 240.3 N./mm² UCS-66 Curve : Curve B ¥ External Pressure Chart Name : CS-2 Elastic Modulus reference # : 1 Expansion Coefficient reference # : 1 Has this Material been Impact Tested?	If normalized or quenched and tempered Not Normalized and not quenched and tempered
Material Name : SA-516 70 Listing # : 1 Allowable Stress, Ambient : [138.0 N./mm² Allowable Stress, Operating : 138.0 N./mm² Allowable Stress, Hydrotest : 179.4 N./mm² Allowable Stress, Hydrotest : 179.4 N./mm² Nominal Material Density : 0.0077504 kg./cm³ P Number Thickness : 31 mm. Yield Stress, Operating : 240.3 N./mm² UCS-66 Curve : Curve B V External Pressure Chart Name : CS-2 Elastic Modulus reference # : 1 Expansion Coefficient reference # : 1	If normalized or quenched and tempered Not Normalized and not quenched and tempered
Listing # : 1 Allowable Stress, Ambient : [138.0 N./mm ² Allowable Stress, Operating : 138.0 N./mm ² Allowable Stress, Hydrotest : 179.4 N./mm ² Nominal Material Density : 0.0077504 kg./cm ³ P Number Thickness : 31 mm. Yield Stress, Operating : 240.3 N./mm ² UCS-66 Curve : Curve B V External Pressure Chart Name : CS-2 Elastic Modulus reference # : 1 Expansion Coefficient reference # : 1 Has this Material been Impact Tested?	If normalized or quenched and tempered
Allowable Stress, Ambient : 138.0 N./mm ² Allowable Stress, Operating : 138.0 N./mm ² Allowable Stress, Hydrotest : 179.4 N./mm ² Nominal Material Density : 0.0077504 kg./cm ³ P Number Thickness : 31 mm. Yield Stress, Operating : 240.3 N./mm ² UCS-66 Curve : Curve B V External Pressure Chart Name : CS-2 Elastic Modulus reference # : 1 Expansion Coefficient reference # : 1 Has this Material been Impact Tested?	If normalized or quenched and tempered Not Normalized and not quenched and tempered
Allowable Stress, Operating : 138.0 N./mm ² Allowable Stress, Hydrotest : 179.4 N./mm ² Nominal Material Density : 0.0077504 kg./cm ³ P Number Thickness : 31 mm. Yield Stress, Operating : 240.3 N./mm ² UCS-66 Curve : Curve B V External Pressure Chart Name : CS-2 Elastic Modulus reference # : 1 Expansion Coefficient reference # : 1 Has this Material been Impact Tested?	If normalized or quenched and tempered Not Normalized and not quenched and tempered
Allowable Stress, Hydrotest : 179.4 N./mm ² Nominal Material Density : 0.0077504 kg./cm ³ P Number Thickness : 31 mm. Yield Stress, Operating : 240.3 N./mm ² UCS-66 Curve : Curve B V External Pressure Chart Name : CS-2 Elastic Modulus reference # : 1 Expansion Coefficient reference # : 1 Has this Material been Impact Tested?	If normalized or quenched and tempered Not Normalized and not quenched and tempered
Nominal Material Density : 0.0077504 kg./cm ³ P Number Thickness : 31 mm. Yield Stress, Operating : 240.3 N./mm ² UCS-66 Curve : Curve B v External Pressure Chart Name : CS-2 Elastic Modulus reference # : 1 Expansion Coefficient reference # : 1 Has this Material been Impact Tested?	If normalized or quenched and tempered
P Number Thickness : 31 mm. Yield Stress, Operating : 240.3 N./mm ² UCS-66 Curve : Curve B External Pressure Chart Name : CS-2 Elastic Modulus reference # : 1 Expansion Coefficient reference # : 1 Has this Material been Impact Tested?	Not Normalized and not quenched and tempered
Yield Stress, Operating : 240.3 N./mm ² UCS-66 Curve : Curve B External Pressure Chart Name : CS-2 Elastic Modulus reference # : 1 Expansion Coefficient reference # : 1 Has this Material been Impact Tested?	Not Normalized and not quenched and tempered
UCS-66 Curve : Curve B External Pressure Chart Name : CS-2 Elastic Modulus reference # : 1 Expansion Coefficient reference # : 1 Has this Material been Impact Tested?	
External Pressure Chart Name : CS-2 Elastic Modulus reference # : 1 Expansion Coefficient reference # : 1 Has this Material been Impact Tested?	
Elastic Modulus reference # : 1 Expansion Coefficient reference # : 1 Has this Material been Impact Tested?	
Expansion Coefficient reference # : 1 Has this Material been Impact Tested?	
Has this Material been Impact Tested?	
Has this Material been Impact Tested?	
rido allo ridochar occir impace reolea.	
Check this box if this element's material is impact tested and is suitable for use constraints screen.	at the stated MDMT in the design/analysis
Basic MDMT per Figure UCS-66 -20.0 F, [-28	.9 C]
Emod: 198564496.0 KPa. OK Cancel Yi	ield Stress Properties

Class/Thickness: 70			
Temperature (C)	Stress (N /mm2)	<u>^</u>	Obtain MDMT Exemption Curve
remperature (c)	30233 (4,////////////////////////////////////		
40	262.0		If normalized or quenched and tempered
55	246.0		
100	239.0		
125	235.0		Not Normalized and not guenched and tempered
130	232.0		
200	225.0		
200	221.0		
250	215.0		
275	210.0		
300	204.0		
325	199.0		
350	193.0		
375	187.0		
400	181.0		for use at the stated MDMT in the design/analysis
425	176.0	~	
<		>	
Note: In come encor DV Elit	to may compute viald strass values per	116.28	
NOTE: III SOLLE CUSES EV EIIT	e may compute yiela sitess values per	00-28.	

40 65 100 125 150 175 200 225 250 275	138.0 138.0 138.0 138.0 138.0 138.0 138.0 138.0 138.0 138.0	Jurve
65 100 125 150 175 200 225 250 275	138.0 138.0 138.0 138.0 138.0 138.0 138.0 138.0 138.0	Jurve
100 125 150 175 200 225 250 275	138.0 138.0 138.0 138.0 138.0 138.0 138.0 138.0	Jurve
125 150 175 200 225 250 275	138.0 138.0 138.0 138.0 138.0 138.0 138.0	Jurve
150 175 200 225 250 275	138.0 138.0 138.0 138.0 138.0	
175 200 225 250 275	138.0 138.0 138.0	unched and tempered
200 225 250 275	138.0 138.0	unched and tempered
225 250 275	138.0	inched and tempered
250	138.0	incrica and tempered
275	130.0	
2/3	137.0	
300	136.0	quenched and tempere
325	132.0	
350	128.0	
375	123.0	
400	101.0	
425	83.8	
450	67.1	
475	51.0	
500	33.6	
525	21.3	
550	12.9	he design/analysis
		······
	325 350 375 400 425 450 475 500 525 550	325 132.0 350 128.0 375 123.0 400 101.0 425 83.8 450 67.1 475 51.0 500 33.6 525 21.3 550 12.9

r	Degree of Radiographic Examination and PWHT
	Longitudinal Joint Radiography User Defined
	Circumferential Joint Radiography User Defined
	Heat Treatment
	Element is Post Weld Heat Treated
	Weld is Pre-Heated
	PD:5500 PWHT :
	Vortex Shedding SIF (0 or a value >= 1) : 0
	Post Weld Heat Treatment is not required !
	Long: 1.00 Circ: 1.00 OK Cancel

BAZEL ENERGY PARS Pioneer in value engineering

BEP value engineering services provides a range of services to the oil, gas and petrochemical industries that are tailored to meet individual client requirements. The services available include pre-feasibility and feasibility studies, audits and peer reviews, due diligence studies, process design, conceptual and basic engineering, planning and scheduling, estimating, cost control, project management and owner's team project support.

Our Process and mechanical team comprises experts with a strong foundation in process and mechanical engineering, as well as functional and industry-specific domain knowledge and standards ready to reduce your project cost with an excellent qualified and optimum design.

In addition to process design, conceptual and basic engineering, and project management services, we offer consulting services such as plant or project audits, process troubleshooting, value engineering facilitation and participation, risk and HAZOP studies, and design reviews.

Main field of experience are in:

- Process package development & modification
- Tank farm facilities
- Filter design, upgrading and troubleshooting
- Static equipment including:
 - Towers, reactors and drums
 - > Shell and tube heat exchangers, Heaters, double pipe and hairpin exchangers, Air coolers
- Fixed and Floating storage tanks, elevated and buried storage tanks, Double wall and cryogenic storage tanks.
- Material selection

www.bep-co.com info@bep-co.com

Contact US:

D	es	sign Constraints	.
6		Design Data	
		Design Laternal Dress, have	6 905
		Design Internal Press, bars	1.024
		Design External Press, bars	03.342
		Design Internal Temp, C	93.342
		Design External Temp, C	93.342
		Datum Line Options	click to edit
		Hydrotest Type	Additional Ope. Static Press, bars 0
		Hydrotest Position	
		Projection from Top, mm.	
		Projection from Bottom, mm.	
		Projection from Bottom Ope, m	
		Min. Des Metal Temp, C	
		No UG-20(f) Exemptions	
		Flange Distance to Top, mm.	
		Construction Type	📄 Gen 🎢 Desi 📷 Loa 📰 Win 🖃 Seis 🍞 Hea
		Service Type	
		Degree of Radiography	RT 1
		Miscellaneous Weight %	click for options
		Design Code	Division 1
		User defined MAWP, bars	0
		User defined MAPnc, bars	0
		User defined Hydro. Press, bars	0
		Additional Ope. Static Press, bars	0 ~
Ιī	-		
	2	Gen 🔏 Desi 🕅 Loa	Win Seis Detea

Hossein Sadeghi

Design Constraints

Δ	Design Data	
	Design Internal Press, bars	6.895
	Design External Press, bars	1.034
	Design Internal Temp, C	93.342
	Design External Temp, C	93.342
	Datum Line Options	click to edit
	Hydrotest Type	No Hydro
	Additional One, Static Press	bars 0

Additional Ope, Static Press, bars	0
Use Higher Long. Stress	¥
Consider Vortex Shedding	
No Vortex Shedding for H/D <=	
ls this a heat Exchanger	
Corroded Hydrotest	
Hyd. Allowable is 90% Yield	

Design External Press, bars	1.034	
Design Internal Temp, C	93.342	
Design External Temp, C	93.342	
Datum Line Options	click to edit	
Hydrotest Type		
Hydrotest Desition	Datum Line Options	
The datum line is an optional reference position for Nozzles and some other vessel details.		
Datum is ta	ken from bottom/left tangent or bottom of vessel : Offset : -1747 mm.	
The select	ions made below will be the default values for future models.	
F	or Vertical Vessels	
	Bottom Shell Seam or Bottom of Vessel V	
	Offset (+ or -) distance from seam : -1747 mm.	
F	or Horizontal Vessels	
	Left Shell Seam or Left End of Vessel	
	Offset (+ or -) distance from seam : 0 mm.	
	OK Cancel	

Design Internal Temp, C	95,542
Design External Temp, C	93.342
Datum Line Options	click to edit
Hydrotest Type	No Hydro 📃
Hydrotest Position	UG-99b
Projection from Top, mm.	UG-99c
Projection from Bottom, mm.	UG-99b(36)
Projection from Bottom Ope, mr	UG-100
Min. Des Metal Temp, C	No Hydro
No UG-20(f) Exemptions	User Entered Pressure
Flange Distance to Top, mm.	1.43 * MAWP (PED)
Construction Type	App. 27-4
Service Type	None 🗨
Degree of Radiography	RT 1
Miscellaneous Weight %	click for options
Design Code	Division 1

Design External Temp, C	93.342
Datum Line Options	click to edit
Hydrotest Type	No Hydro
Hydrotest Position	Horizontal 📃
Projection from Top, mm.	Vertical
Projection from Bottom, mm.	Horizontal
Projection from Bottom Ope, mr	0
Min. Des Metal Temp, C	-28.8898

Datum Line Options	click to edit
Hydrotest Type	No Hydro
Hydrotest Position	Horizontal 🗨
Projection from Top, mm.	0
Projection from Bottom, mm.	0
Projection from Bottom Ope, mr	0
Min. Des Metal Temp, C	-28.8898
No UG-20(f) Exemptions	
Flange Distance to Top, mm.	0
Construction Type	Welded 💌
Service Type	None 💌
Degree of Radiography	RT 1 💌
Miscellaneous Weight %	click for options
D 1 C 1	DY 11 A

Design Temperature (UG-20)

UG-20 (f)

• (1) Material is limited to P-No.1 Gr. No.1 or 2 and the thicknesses don't exceed the following:

(-a) 13 mm for materials listed in Curve A of Figure UCS-66;

- (-b) 25 mm for materials listed in Curve B, C, or D of Figure UCS-66.
- (2) The completed vessel shall be hydrostatically tested.
- (3) Design temperature is no warmer than 345°C nor colder than -29°C.
- (4) The thermal or mechanical shock loadings are not a controlling design requirement.
- (5) Cyclical loading is not a controlling design requirement.

Design Temperature (UG-20)

Min. Des Metal Temp, C	-28.8898
No UG-20(f) Exemptions	
Flange Distance to Top, mm.	0
Construction Type	Welded 🗾
Service Type	Welded
Degree of Radiography	Press. Welded
Miscellaneous Weight %	Brazed
Design Code	Resist. Welded
User defined MAWP, bars	0
User defined MAPnc. bars	0

No UG-20(f) Exemptions		
Flange Distance to Top, mm.	0	
Construction Type	Welded	
Service Type	None 💌	
Degree of Radiography	None	
Miscellaneous Weight %	Lethal	
Design Code	Unfired Steam	
User defined MAWP, bars	Direct Firing	
User defined MAPnc, bars	Nonstationary	
User defined Hydro. Press, bars	Air/Water/Steam	
Additional Ope. Static Press, bars	Sour	
Use Higher Long. Stress	Severe Sour	
Consider Vortex Shedding	Amine	
No Vortex Shedding for H/D <=		v

Construction Type	Welded 💌
Service Type	None 🔽
Degree of Radiography	RT 1 📃
Miscellaneous Weight %	RT-1
Design Code	RT-2
User defined MAWP, bars	RT-3
User defined MAPnc, bars	RT-4
User defined Hydro. Press, bars	None
Additional Ope. Static Press, bars	0
Ilas I Balanda ana Chana	_

Degree or radiography	INT 1
Miscellaneous Weight %	click for options
Design Code	Division 1
User defined MAWP, bars	0
User defined MAPnc, bars	0
User defined Hydro. Press, bars	0
Additional Ope. Static Press, bars	0
Use Higher Long. Stress	✓
Consider Vortex Shedding	

Wiscellaneous weight 76	click for options
Design Code	Division 1
User defined MAWP, bars	0
User defined MAPnc, bars	0
User defined Hydro. Press, bars	0
Additional Ope. Static Press, bars	0
Use Higher Long. Stress	v
Consider Vortex Shedding	
No Vortex Shedding for H/D <= 15	
Is this a heat Exchanger	
Corroded Hydrotest	
Hyd. Allowable is 90% Yield	

Additional Ope. Static Press, bars	0
Use Higher Long. Stress	×
Consider Vortex Shedding	
No Vortex Shedding for H/D <= 15	
Is this a heat Exchanger	✓
Corroded Hydrotest	
Hyd. Allowable is 90% Yield	

	is this a freat exchanger	
	Corroded Hydrotest	
	Hyd. Allowable is 90% Yield	
Δ	ASME Steel Stack	
	ASCE Wind Exposure	С 🗸
	Factor of Safety	1.5
	Mean Hourly Wind Speed, Km/hr	0
	Is the Stack Lined?	
	Importance Factor	1
Δ	Design Modification	
	Select Wall Thickness for Internal Pressu	No 💌
	Select Wall Thickness for External Pressu	No 🔽
	Select Stiffening Rings for External Press	No 🔽
	Select Wall Thickness for Axial Stress	No 🔽

Reset Cases	Global Scalar for WI loads : 1 Global Scalar for EQ loads : 1	>
Use and Allow Editing	g of Local Scalars in the load cases	
Set Loa	ad Cases to show WI and EQ Scalars	
Stress Combination	on Load Cases	^
Case 1	NP+EW+WI+FW+BW	
Case 2	NP+EW+EE+FS+BS	
Case 3	NP+OW+WI+FW+BW	
Case 4	NP+OW+EQ+FS+BS	
Case 5	NP+HW+HI	
Case 6	NP+HW+HE	
Case 7	IP+OW+WI+FW+BW	
Case 8	IP+OW+EQ+FS+BS	
Case 9	EP+OW+WI+FW+BW	
Case 10	EP+OW+EQ+FS+BS	
Case 11	HP+HW+HI	
Case 12	HP+HW+HE	
Case 13	IP+WE+EW	
Case 14	IP+WF+CW	
Case 15	IP+VO+OW	
Case 16	IP+VE+EW	
Case 17	NP+VO+OW	~

Wind Data

Wind Design Code :	ASCE-93	¥	
Percent Wind for Hydrotest :	ASCE-93		
Design Wind Speed:	UBC		
Base Elevation:	USER DEFINED		
Exposure Constant:	ASCE-98/02/05/IBC-03		
Importance Factor:	Mexico		
Roughness Factor:	As/Nz 1170:2002 Euro Code		
Beta: Operating/Empty/Full	Brazil NBR 6123 China GB 50009 No Wind Loads		
	IBC 2006 NBC-2005		
	EN-2005		
	IBC 2009		
	NBC-2010		
	JPI-7R-35-2004		
	EN-2010		
	As/Nz 1170.2:2011		
	IBC 2012 SANS 10160-3:2010		
	IBC 2015		

Seismic Data

1.115

Seismic Design Code :	UBC 1994 🗸 🗸	
Percent Seismic for Hydrotest :	ASCE-88 ASCE-93	%
Importance Factor:	UBC 1994 NBC 1995	
Soil Type:	IS-1893 SCM IS-1893 RSM	
Horizontal Force Factor:	ASCE-95 No Seismic Loads	
Seismic Zone:	UBC 1997	
	G Loading	
	Res. Spectrum	
	IBC 2000	
	ASCE 7-02/05 Mexico Sismo	
	IBC 2003	
	China GB 50011 IBC 2006	
	AS/NZ 1170.4	
	NBC 2005	
	PDVSA Chile NCh2369	
	Costa Rica 2002	
	IBC 2009	
	ASCE-2010 NBC 2010	
	IBC 2012	
	SANS 10160-4:2010 IBC 2015	

and the states

Discours.

Apply Allowables per 1612.3.2 :

hx / hr:

Enter a value for the elevation ratio if the vessel is attached to another structure, such as a building. The ratio, needed for proper analysis, is the height in the structure where the vessel is attached *hx* to the average height of the roof *hr*. Generally, this value is less than or equal to **1**. For more information, see Section 1632.2, UBC 1997.

INDUSTRIAL EXCELLENCE DESIGNING RELIABILITY INNOVATION

Your partner in sustainable, efficient and cost-effective for oil and gas services.

PRESSURE VESSEL COURSE

Table 16-Q

Soil Profile Type	Seismic Coefficient <i>Ca</i> for Seismic Zone Factor Z of:				
	Z=0.075	Z=0.15	Z=0.2	Z=0.3	Z=0.4
Sa	0.06	0.12	0.16	0.24	0.32Na
Sb	0.08	0.15	0.20	0.30	0.40Na
Sc	0.09	0.18	0.24	0.33	0.40Na
Sd	0.12	0.22	0.28	0.36	0.44Na
Se	0.19	0.30	0.34	0.36	0.36Na
Sf	Site-specific geotechnical investigation and dynamic site response shall be performed to determine seismic coefficients for soil profile Type Sf.				

Table 16-R

Soil Profile Type	Seismic Coefficient <i>Cv</i> for Seismic Zone Factor Z of:				
	Z=0.075	Z=0.15	Z=0.2	Z=0.3	Z=0.4
Sa	0.06	0.12	0.16	0.24	0.32Nv
Sb	0.08	0.15	0.20	0.30	0.40Nv
Sc	0.13	0.25	0.32	0.45	0.56Nv
Sd	0.18	0.32	0.40	0.54	0.64Nv
Se	0.26	0.50	0.64	0.84	0.96Nv
Sf	Site-specific geotechnical investigation and dynamic site response shall be performed to determine seismic coefficients for soil profile Type Sf.				

Table 16-S

Seismic Source Type	Near-Source Factor <i>Na</i> ¹ for Closest Distance to Known Seismic Source of: ^{2,3}		
	<= 2 km	5 km	>=10 km
A	1.5	1.2	1.0
В	1.3	1.0	1.0
С	1.0	1.0	1.0

Element Data	
Element Description	
From Node	10
To Node	20
Element Type	Cylindrical 🗨
Diameter Basis	ID 💌
Inside Diameter, mm.	2500
Cylinder Length, mm.	3000
Finished Thickness, mm.	6.35
Nominal Thickness, mm.	0
Internal Corrosion Allowance, mm.	3
External Corrosion Allowance, mm.	0
Wind Diameter Multiplier	1.2
Material Name	SA-516 70
Longitudinal Seam Efficiency	1
Circumferential Seam Efficiency	1
Internal Pressure, bars	6.895
Temp. for Internal Pressure, C	93.342
External Pressure, bars	1.034
Temp. for External Pressure, C	93.342
Additional Element Data	

Material Name

Enter the material's name and then press [Enter] or use the database button to select it.

0.00 mr	n. [10]
D	atum Line

Hossein Sadeghi

PRESSURE VESSEL (BY PVElite) COURSE

- 1	n	7
_	5	/
_		

Design Data		^
Design Internal Press, bars	5	
Design External Press, bars	1.034	
Design Internal Temp, C	100	
Design External Temp, C	93.342	
Datum Line Options	click to edit	
Hydrotest Type	UG-99b	-
Hydrotest Position	Horizontal	-
Projection from Top, mm.	0	
Projection from Bottom, mm.	0	
Projection from Bottom Ope, mm.	0	
Min. Des Metal Temp, C	-28.8898	
No UG-20(f) Exemptions		

Design Constraints

Decian Data

À N N I 4 ∞ A N <u>≁</u> ⊥ ∓	Input		i D) 💷 🛶 🎨 🚣 Ji 🌬 🏊 🗐		
Details	Input / Output	Utility	Auxiliary		
.					
	Insert Ne	w Element	×		
Type of Element to Insert					
O Cylinder (Elliptical	 Torispherical 	○ Spherical		
O Conical () Flange	🔾 Skirt	◯ Flat Head		
Insert New Element Before or After the Current Element					
Before	After				
Notes:					
For Exchangers, please be sure to reset the shell side element definitions and tubesheet connectivity information after the element insert process.					
Skirts should be inserted After bottom conical heads.					
		Ok	Cancel		

Hossein Sadeghi

Sturm-Liouville Equations (Singular Sturm-Liouville problems)

T (uniform) α D

In most practical situations an eigenvalue is associated with an important physical characteristic of the problem, such as the frequency of vibration of a string or of a metal plate. In such cases the eigenfunction can be considered to describe a "snapshot" of a particular mode of vibration of the string or plate when it vibrates at the frequency determined by the associated eigenvalue. This application, and others that lead to Sturm–Liouville problems, will be developed in detail when partial differential equations are discussed in the context of *separation of variables*.

Ref. : Advanced engineering mathematics by Alan Jeffrey (*University of Newcastle-upon-Tyne*)

Hossein Sadeghi

Hossein Sadeghi

Figure UG-28.1 Diagrammatic Representation of Lines of Support for Design of Cylindrical Vessels Subjected to External Pressure

UG-28 (External pressure)

As a general Low:

MAWP is always more than Design pressure

And

✤ MAEWP is always more than Exernal Design pressure

If External Design pressure be more than MAWEP (Pa) we have to increase

thickness of vessel or using stiffing ring or using both of them!

So, Simply we must calculate Pa (MAWEP) and compare it with external design pressure

As a general Low:

♦ (1) Cylinders having Do/t values ≥ 10:

$$P_a = \frac{4B}{3(D_o/t)}$$

To compute B we have to Know parameter "A" which is depend to "L", "t", and "D" and could be gain form Figure G of ASME SEC. II, Part D.

Note:

- > 1- For values of L/Do greater than 50, enter the chart at a value of L/Do = 50.
- \triangleright 2- For values of L/Do less than 0.05, enter the chart at a value of L/Do = 0.05.
- 3- For values of A falling to the left of the applicable material/temperature line, the value of Pa can be calculated using the following equation:

$$P_a = \frac{2AE}{3(D_o/t)}$$

UG-28 (External pressure)

GENERAL NOTE: Extrapolation is not permitted except as explicitly allowed by the Construction Code.

Hossein Sadeghi

GENERAL NOTES:

- (a) The external pressure charts do not account for reduction of buckling strength due to creep under long-term loads. The effect of creep on buckling shall be considered at temperatures for which allowable stresses are shown italicized in Tables 1A, 1B, 2A, 2B, 5A, and 5B.
- (b) The external pressure chart assigned for a particular material is obtained from stress tables 1A, 1B, 2A, 2B, 5A, and 5B under the column for External Pressure Chart No. for that material and is mandatory, with the exception of Tables 5A and 5B.

Hossein Sadeghi

- ♦ (2) Cylinders having Do/t values < 10:
- Using the same procedure as given in (1), obtain the value of B. For values of Do/t less than 4, the value of factor A can be calculated using the following equation:

$$A = \frac{1.1}{\left(D_o/t\right)^2}$$

Question!

- The following information is given in a data sheet. Please compute required and selected thickness for shell.
- Cylindrical shell:
- > Design pressure : 5 barg / F.V.
- > Design Temperature: 150 °C
- Material : SA-516 70
- > C.A.: 3 mm
- Vessel I.D : 3000 mm
- Vessel T.L to T.L : 7000 mm

UG-29 (STIFFENING RINGS)

- (a) External stiffening rings shall be attached to the shell by welding or brazing as per UG-30
- the available moment of inertia of a circumferential stiffening ring shall be not less than that determined by one of the following two formulas:

$$I_{S} = \left[D_{o}^{2}L_{s}(t + A_{s}/L_{s})A \right] / 14$$

$$I_{S}^{\prime} = \left[D_{O}^{2} L_{S} \left(t + A_{S} / L_{S} \right) A \right] / 10.9$$

 The adequacy of the moment of inertia for a stiffening ring shall be determined in accordance to UG-29 and could be referred to D.R. Moss hand book

- The Code provides two methods for sizing stiffening rings. Method (a) is based on the stiffening ring providing all additional stiffening, and method (b) is based on a combination of the stiffening ring and a part of the shell providing the additional stiffening. Both methods require that one assume an initial size and shape for the ring.
- (a) Stiffening ring alone:
- (b) The stiffening ring/shell combination:

EASY AS 123

UG-29 (STIFFENING RINGS)

- (a) Stiffening ring alone:
- 1) Determine B, where:

$$B = 0.75 \left(\frac{PD_o}{t + A_S/L_S}\right)$$

As = cross-sectional area of stiffening ring, square inches.

Ls = distance between support lines on both sides of the stiffening ring, inches.

Do = outside diameter of shell, inches.

• 2) Enter appropriate external pressure chart in Section II, Part D and

determine Factor A that corresponds to the calculated Factor B.
• 3) Determine the required moment of inertia of the stiffening ring only, Is:

$$\mathbf{I}_{S} = \frac{\left[\mathbf{D}_{o}^{2}\mathbf{L}_{S}\left(\mathbf{t} + \mathbf{A}_{S}/\mathbf{L}_{S}\right)\mathbf{A}\right]}{\mathbf{14}}$$

- 4) Determine actual moment of inertia of ring only, I, in.4
- 5) I must be equal to or greater than Is

(b) The stiffening ring/shell combination:

1) Determine B, where:

$$B = 0.75 \left(\frac{PD_o}{t + A_S/L_S}\right)$$

- As = cross-sectional area of stiffening ring, square inches.
- Ls = distance between support lines on both sides of the stiffening ring, inches.
- D0 = outside diameter of shell, inches.
- 2) Enter appropriate external pressure chart in Section II, Part D and determine Factor A that corresponds to the calculated Factor B.
- 3) Determine the required moment of inertia of the ring/shell combination, Is', in.4

$$I_{S} = \frac{\left[D_{o}^{2}L_{S}\left(t + A_{S}/L_{S}\right)A\right]}{14}$$
$$I_{S'} = \frac{\left[D_{o}^{2}L_{S}\left(t + A_{S}/L_{S}\right)A\right]}{10.9}$$

- 4) Determine the moment of inertia of the combined ring and shell section acting together, 1', inch4. The length of shell used in the calculation shall not be greater than 1.10 (D0 t)lh. No overlap of contribution is allowed.
- 5) I' shall be equal to or greater than Is'.

• Note that the formulas for B are identical. If the value of B falls below the left end of the material/temperature curve, then A is calculated using A= 2B/E where E is the modulus of elasticity. If different materials are used for the shell and stiffening ring, then use the external pressure chart that gives the lowest value of A.

What is line of support:

- (a) a stiffening ring that meets the requirements of this paragraph;
- (b) a circumferential connection to a jacket for a jacketed section of a cylindrical shell;
- (c) a circumferential line on a head at one-third the depth of the head from the head tangent line as shown on Figure UG-28;
- (d) a cone-to-cylinder junction.

Your partner in sustainable, efficient and cost-effective for oil and gas industry.

www.bep-co.com

- (b) The adequacy of the moment of inertia for a stiffening ring shall be determined in (b) Stiffening rings shall extend completely around the circumference of the cylinder except as permitted in C below. Any joints between the ends or sections of such rings, such as shown in Figure UG-29.1 (A) and (B), and any connection between adjacent portions of a stiffening ring lying inside or outside the shell as shown in Figure UG-29.1 (C) shall be made so that the required moment of inertia of the combined ring-shell section is maintained.
- (c) Stiffening rings placed on the inside of a vessel may be arranged as shown in Figure UG-29.1 (E) and (F) provided that the required moment of inertia of the ring in (E) or of the combined ring-shell section in (F) is maintained within the sections indicated. Where the gap at (A) or (E) does not exceed eight times the thickness of the shell plate, the combined moment of inertia of the shell and stiffener may be used.

Figure UG-29.1 Various Arrangements of Stiffening Rings for Cylindrical Vessels Subjected to External Pressure

• (b) Any gap in that portion of a stiffening ring supporting the shell, such as shown in Figure UG-29.1 (D) and (E), shall not exceed the length of are given in Figure UG-29.2 unless additional reinforcement is provided as shown in Figure UG-29.1 (C) or unless the following conditions are met:

(1) only one unsupported shell arc is permitted per ring; and

(2) the length of the unsupported shell arc does not exceed 90 deg; and

(3) the unsupported arcs in adjacent stiffening rings are staggered 180 deg; and

(4) the dimension L defined in UG-28(b) is taken as the larger of the following: the distance between alternate stiffening rings, or the distance from the head tangent line to the second stiffening ring plus one-third of the head depth.

PRESSURE VESSEL (BY PVElite) COURSE

- (d) When internal plane structures perpendicular to the longitudinal axis of the cylinder (such as bubble trays or baffle plates) are used in a vessel, they may also be considered to act as stiffening rings provided they are designed to function as such.
- (e) Any internal stays or supports used as stiffeners of the shell shall bear against the shell of the vessel through the medium of a substantially continuous ring.
- (f) When closure bars or other rings are attached to both the inner shell and outer jacket of a vessel, with pressure in the space between the jacket and inner shell, this construction has adequate inherent stiffness, and therefore the rules of this paragraph do not apply.

Question!

- The following information is given in a data sheet. Please compute required and selected thickness for shell by using stiffening ring.
- Cylindrical shell:
- Design pressure : 5 barg / F.V.
- Design Temperature: 150 °C
- Material : SA-516 70
- ➤ C.A.: 3 mm
- Vessel I.D : 3000 mm
- Vessel T.L to T.L : 7000 mm

 (a) Stiffening rings may be placed on the inside or outside of a vessel, and except for the configurations permitted by UG-29, shall be attached to the shell by welding or brazing

 (b) Stiffening rings may be attached to the shell by continuous, intermittent, or a combination of continuous and intermittent welds or brazes.

Some acceptable methods of attaching stiffening rings are illustrated in Figure
 UG-30

NOTES: (1) For external stiffeners, $S \le 8t$. (2) For internal stiffeners, $S \le 12t$

(c) Intermittent welding shall be placed on both sides of the stiffener and may
be either staggered or in-line. Length of individual fillet weld segments shall not
be less than 2 in. (50 mm) and shall have a maximum clear spacing between toes
of adjacent weld segments of <u>8t for external rings</u> and <u>12t for internal rings</u>
where t is the shell thickness at the attachment.

- (d) Which type of welds will be acceptable?
- ✤ A continuous full penetration weld is permitted

 Continuous fillet welding on one side of the stiffener with intermittent Welding on the other side is permitted when the thickness tw of the outstanding stiffening element [sketches (a) and (c)] or width w of the stiffening element mating to the shell [sketches (b) and (d)] is not more than 25 mm. The weld segments shall be not less than 50 mm long and shall have a maximum clear spacing between toes of adjacent weld segments of 24t

PRESSURE VESSEL (BY PVElite) COURSE

PRESSURE VESSEL (BY PVElite) COURSE

- (e) Strength of Attachment Welds :
- 1: The radial pressure load from shell, lb/in., is equal to PLs.
- 2: The radial shear load is equal to 0.01PLsDO.

Where,

- Ls = one-half of the distance from the centerline of the stiffening ring to the next line of support on one side, plus one-half of the centerline distance to the next line of support on the other side of the stiffening ring, both measured parallel to the axis of the cylinder.
- P = external design pressure
- Do = outside diameter of cylindrical shell course

Hossein Sadeghi

UG-31 (TUBES, AND PIPE WHEN USED AS TUBES OR SHELLS)

- (a) Internal Pressure. For required wall thickness under internal pressure see UG-27
- (b) External Pressure. For required wall thickness under external pressure see UG-28.
- (C) The thickness as determined under (a) or (b) above shall be increased when necessary to meet the following requirements:
- (1) Additional wall thickness should be provided when corrosion, erosion, or wear due to cleaning operations is expected.

(2)Where ends are threaded, additional wall thickness is to be provided in the amount of 20/n mm (0.8/n in.)

Note : where n equals the number of threads per inch

PVElite Software

PRESSURE VESSEL (BY PVElite) COURSE

PVElite Software

Stiffening Ring Dialog

		_		
From Node :	20			
New Ring Description :	Ring:[1 of 1]			
Distance from "From" Node :	0	mm.	m.	
Ring Material :	SA-516 70		Ring Material	
Ring Location :	OD	-		_
Ring Type :	Bar Type	•	Check "Standard" Bars Section Calculator	
Inside Diameter :	2212	mm.	n	
Thickness :	14	mm.	m. Ring Attachment Parameters	
Outside Diameter :	2544	mm.	m. Ring Fillet Weld Leg Size : 0 mm.	Í
			Ring Attachment Style :	
				J
			Add a Group of Rings at Once	
			Number of Rings to Add : 0	
			Ring Spacing : 0 mm.	
			Cone to Shell Junction Ring ?	
			Bar Size: 14. x 166. mm.	-
Ring:[1 of 1]	Inertia Rec	d: 19	158.32 Inertia Available: 821.28 cm**4 [Ring Passed] [Weld NoCalc]	-
	1			
Previous Ring Add New Ring	Delete		OK Cancel Help	

PRESSURE VESSEL (BY PVElite) COURSE

х

-

Hossein Sadeghi

PRESSURE VESSEL (BY PVElite) COURSE

Hossein Sadeghi

PRESSURE VESSEL (BY PVElite) COURSE

PVElite Software

OPENINGS IN PRESSURE VESSELS

• Note: When the long dimension of an elliptical or obround opening exceeds twice the short dimensions, the reinforcement across the short dimensions shall be increased as necessary to provide against excessive distortion due to twisting moment.

- (1) When the long dimension of an elliptical or obround opening exceeds twice the short dimensions, the reinforcement across the short dimensions shall be increased as necessary to provide against excessive distortion due to twisting moment.
- (2) Openings may be of other shapes than those given in (1) above, and all corners shall be provided with a suitable radius.

- 1- Small opening as defined in UG-37 b and UG-36 (c) (3) Need not be confirmed to calculation of UG-37 :
- (-1) 31/2 in. (89 mm) diameter—in vessel shells or heads with a required minimum thickness of 3/8 in.(10 mm) or less;
- (-2) 23/8 in. (60 mm) diameter—in vessel shells or heads over a required

- 2- Normal size : Not identified as small opening nor large opening is called Normal size and will be design as per UG-37
- 3-Large opening as defined in UG-36 b :

- For openings exceeding these limits, supplemental rules of 1-7 shall be satisfied in addition to the rules of this paragraph.
- Alternatively, openings in cylindrical or conical shells exceeding these limits may be designed for internal pressure using the rules of 1-10

UG-36(b)(2):

- I- Reinforced openings in formed heads and spherical shells are not limited in size
- 2- For an opening in an end closure, which is larger than one-half the inside diameter of the shell, one of the following alternatives to reinforcement may also be used:
- (-a) a conical section as shown in Figure UG-36 sketch (a);
- (-b) a cone with a knuckle radius at the large end as shown in Figure UG-36 sketch (b);
- (-c) a reverse curve section as shown in Figure UG-36 sketches (c) and (d); or
- (-d) using a flare radius at the small end as shown in Figure UG-33.1 sketch (d).

INDUSTRIAL EXCELLENCE DESIGNING RELIABILITY INNOVATION

BEP value engineering services provides a range of services to the oil, gas and petrochemical industries that are tailored to meet individual client requirements. The services available include pre-feasibility and feasibility studies, audits and peer reviews, due diligence studies, process design, conceptual and basic engineering, planning and scheduling, estimating, cost control, project management and owner's team project support.

Our Process and mechanical team comprises experts with a strong foundation in process and mechanical engineering, as well as functional and industry-specific domain knowledge and standards ready to reduce your project cost with an excellent qualified and optimum design.

BAZEL ENERGY PARS

www.bep-co.com

info@bep-co.com

(c) Strength and Design of Finished Openings

- 1- All references to dimensions apply to the finished construction after deduction for material added as corrosion allowance.
- 2- Openings in cylindrical or conical shells, or formed heads shall be reinforced to satisfy the requirements in UG-37 except as noted in UG-36 C,d and 3.
- (-b) Openings in flat heads shall be reinforced as required by UG-39.
- (-c) Openings in cylindrical and conical shells subjected to internal pressure may be designed to satisfy the requirements in Mandatory Appendix 1, 1-9 in lieu of the internal pressure requirements in UG-37.

UG-36 (OPENINGS IN PRESSURE VESSELS)

- 3- Openings in vessels not subject to rapid fluctuations in pressure do not require reinforcement other than that inherent in the construction under the following conditions:
- (a) opening not larger than:
- (-1) 31/2 in. (89 mm) diameter—in vessel shells or heads with a required minimum thickness of 3/8 in.(10 mm) or less;
- (-2) 23/8 in. (60 mm) diameter—in vessel shells or heads over a required minimum thickness of 3/8 in. (10 mm);

UG-36 (OPENINGS IN PRESSURE VESSELS)

- (-b) threaded, studded, or expanded connections in which the hole cut in the shell or head is not greater than 23/8 in. (60 mm) diameter;
- Distance between unreinforced opening:
- (-c) No two isolated unreinforced openings (in accordance with (-a) or (-b) above), shall have their centers closer to each other than the sum of their diameters;
- (-d) no two unreinforced openings, in a cluster of three or more unreinforced openings in accordance with (-a) or (-b) above, shall have their centers closer to each other than the following:
- > for cylindrical or conical shells, $(1 + 1.5 \cos \theta)(d_1 + d_2)$;
- > for doubly curved shells and formed or flat heads $2.5(d_1 + d_2)$
- Where, d1, d2 = the finished diameter of the two adjacent openings

UG-36 (OPENINGS IN PRESSURE VESSELS)

- The centerline of an unreinforced opening as defined in (-a) and (-b) above shall not be closer than its finished diameter to any material used for reinforcement of an adjacent reinforced opening.
- (d) Openings Through Welded Joints. Additional provisions governing openings through welded joints are given in UW-14.

UW-14 (OPENINGS IN OR ADJACENT TO WELDS)

- UG-36 (c) (3) (d) Openings Through Welded Joints. Additional provisions governing openings through welded joints are given in UW-14.
- (a) Any type of opening that meets the requirements for reinforcement given in UG-37 or UG-39 may be located in a welded joint.
- There is two condition for such welds:
- 1- There is a single opening and it is in accordance to UG-36 (C) (3)
- 2- There are multiple opening meeting the requirements given in UG-36 (C) (3)

UW-14 (OPENINGS IN OR ADJACENT TO WELDS)

- 1- There is a single opening and it is in accordance to UG-36 (C) (3)
- may be located in head-to-shell or Category B or C butt welded joints, provided the weld meets the radiographic requirements in UW-51 for a length equal to three times the diameter of the opening with the center of the hole at midlength.

UW-14 (OPENINGS IN OR ADJACENT TO WELDS)

- 2- There are multiple opening meeting the requirements given in UG-36 (C) (3)
- the requirements of UG-53 shall be met or the openings shall be reinforced in accordance with UG-37 through UG-42.

UG-37 (REINFORCEMENT of OPENINGS)

- Rules in this paragraph apply to all openings other than:
- (1) small openings covered by UG-36(c)(3);
- (2) openings in flat heads covered by UG-39;
- (3) openings designed as reducer sections covered by UG-36(e);
- (4) large head openings covered by UG-36(b)(2);
- (5) tube holes with ligaments between them conforming to the rules of UG-53.

Branch Connection with Reinforcing Pad (Set-On type)

 ASME VIII, UG-37 Is the nozzle sufficiently reinforced

 ASME VIII, UW-16 Are the nozzle welds of adequate sizes.

UG-37 (REINFORCEMENT of OPENINGS)

(a)Nomenclature. The symbols used in this paragraph are defined as follows:

- A = total cross-sectional area of reinforcement required in the plane under consideration (see Fig. UG-37.1) (includes consideration of nozzle area through shell if Sn /Sv<1.0)
- A₁=area in excess thickness in the vessel wall available for reinforcement (see Fig. UG-37.1) (includes consideration of nozzle area through shell if Sn /Sv<1.0)
- A₂=area in excess thickness in the nozzle wall available for reinforcement (see Fig. UG-37.1)
- A₃=area available for reinforcement when the nozzle extends inside the vessel wall (see Fig. UG-37.1) (Not in the exam)
- A₅=cross-sectional area of material added as reinforcement (see Fig. UG-37.1)
- A₄₁, A₄₂, A₄₃=cross-sectional area of various welds available for reinforcement (see Fig. UG-37.1)

ASME VIII, UG-37 The code uses the principle of the area replacement method

PRESSURE VESSEL (BY PVElite) COURSE

Without Reinforcing Element

$$= A = dt_{r}F + 2t_{n}t_{r}F(1 - f_{r1})$$

$$= A_{1} \begin{cases} = d(E_{1}t - Ft_{r}) - 2t_{n}(E_{1}t - Ft_{r})(1 - f_{r1}) \\ = 2(t + t_{n})(E_{1}t - Ft_{r}) - 2t_{n}(E_{1}t - Ft_{r})(1 - f_{r1}) \end{cases}$$

$$= A_{2} \begin{cases} = 5(t_{n} - t_{rn})f_{r2}t \\ = 5(t_{n} - t_{rn})f_{r2}t_{n} \end{cases}$$

$$= A_{3} = 5t_{i}f_{r2} \\ = 2h_{i}f_{r2} \end{cases}$$

$$= A_{41} = \text{outward nozzle weld} = (\text{leg})^{2}f_{r2}$$

$$\text{If } A_{1} + A_{2} + A_{3} + A_{41} + A_{43} \ge A \\ \text{If } A_{1} + A_{2} + A_{3} + A_{41} + A_{43} < A \end{cases}$$

Area required

Area available in shell; use larger value

Area available in nozzle projecting outward; use smaller value

Area available in inward nozzle; use smallest value

Area available in outward weld

Area available in inward weld

Opening is adequately reinforced

Opening is not adequately reinforced so reinforcing elements must be added and/or thicknesses must be increased With Reinforcing Element Added

A= same as A, aboveArea requiredA_1= same as A_1, aboveArea available
$$A_1$$
= same as A_1 , aboveArea available $A_2 \begin{cases} = 5(t_n - t_{rn})^{j} f_{r2} t \\ = 2(t_n - t_{rn})^{j} (2.5t_n + t_e)^{j} f_{r2}$ Area available in nozzle projecting outward; use smaller area A_3 = same as A_3 , aboveArea available in inward nozzle A_3 = same as A_3 , aboveArea available in outward nozzle A_3 = ada1= outward nozzle weld = (leg)^2 f_{r3}Area available in outward weld A_42 = outer element weld = (leg)^2 f_{r4}Area available in outer weld A_5 = $(D_p - d - 2t_n)^{j} t_e f_{r4}$ [Note (1)]Area available in elementIf $A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5 \ge A$ Opening is adequately reinforced

4

UG-37 (Required cross sectional area of reinforcement)

• The total cross sectional area of reinforcement A required in any given plane through the opening for a shell or formed head under internal pressure shall be not less than :

Required cross sectional area of reinforcement

Internal pressure :

$$A = dt_r F + 2t_n t_r F (1 - f_{r1})$$

External pressure:

50% of required area for internal

• Reinforcing plates and saddles of nozzles attached to the outside of a vessel shall be provided with at least one telltale hole 11 mm that may be tapped with straight or tapered threads.

• These telltale holes may be left open or may be plugged when the vessel is in service. If the holes are plugged, the plugging material used shall not be capable of sustaining pressure between the reinforcing plate and the vessel wall.

- Segmental reinforcing elements are allowed provided the individual segments are joined by full penetration butt welds. These butt welds shall comply with all the applicable requirements of Part UW. Each segment of the reinforcing element shall have a telltale hole as required by (g). Unless the provisions given below are satisfied, the area A5 as defined in Figure UG-37.1 shall be multiplied by 0.75. The area A5 does not require any reduction if one of the following is satisfied:
- (1) Each butt weld is radiographed or ultrasonically examined to confirm full penetration, or
- (2) For openings in cylinders, the weld is oriented at least 45 deg from the longitudinal axis of the cylinder.

zle Input/A	nalysis: [Noz N1 Fr10]											
e Main Loc	al Stress Analysis [WRC 107, 2	97 or	Annex	G]								
zle Attachme	ent		-				UG-37 (h)	-				
· 57	E TE		Л	FVC	Catalogu	e		Material :	SA-516	70		Matl
े साम				Coupl	ing Look	qu	Pad D	Diameter / Width :	270	50	m	m.
0 57	· R ·	_	1 6		unt Liber			Pad Thickness :	6		m	m.
			L (JL	IST LIKE .		Gro	ove Weld Depth :	6		m	m.
	New Nozzle Description :	No	N1 Fr1	0			Mak	Leo at Pad OD +	4	1	-	m
	Nozzle Material :	SA-	-106 B			Mati	For	For VIII-1 split pads, multiply A5 by 0.75 per l		per UG-3	UG-37(h) : 🔽	
	Schedule Diameter :	40		- 3] in.	Additional Weld D	Data				
	Dia. Basis Thickness Basis :	ID	+	Nominal	•	6	Nozzle	to Pad Fillet Weld	Leg :	10		mm.
	Total CA. Actual Thk. :	3		0	mn	1.	Nozzle to She	ll Inside Fillet Weld	Leg :	0		mm.
	total en friede meri	-		~			Nozzle to Sh	ell Groove Weld De	pth :	5.99999		mm.
	Is this Nozzle Connected to an			another N	other Nozzle?		ASME Weld T		ype :	lone		•
	Parent Nozz	de :										
	Distance from 'From' Node Ele	ev :	0	0	m	ım.	Miscellaneous	-			(a) b	
		1	L	ayout				Flange Material :	SA-1	05		Matl
	Layout And	le :	0	dea.		-	Flar	nge Class Grade :	150	▼ GR 1	1.1	
	Radial Nozi	de · I						Flange Type :	Weld	Neck	•	
	Angled or Lateral Nozz	de :				-	Neglect Areas : None					
	Centerline Tilt And	de el	0	dea			Tappe	ed Hole Area Loss :	0		r	n²
	Cul /Cone Officet Dimension	ue:	0	deg.			Nozz	le Eff. Shell Eff. :	1	1		
	Cyl./Cone Offset Dimension		0	mm.			Local SI	hell Thk. User Tr :	0	0	r	nm.
	Projection Outside Insid	de :	150	0		mm.	E	lind Attached?: 🥅		Manway	y/Acs Op	e ?: 🕅
	Limits [Diameter Thickness	s]:	0	0		mm.	Fatters Cala 2 III	Shell Estimute C	in the later			
	Overriding Weig	ht :	0	kg.	Calc		Fatigue Calc ?:	Shell Patigue C	urve:	able 3.F.1		
									l	Piping A	ttached	***
	Noz:[1 of 1]			Pre	evious No	ozzle	Add New Nozzle	Delete	F	Plot		Help
			Care			Hose	ein Sadeghi					371
					PRES	SURE VESS	EL (BY PVElite) COURSE			OK		Cancel

• The reinforcement rules in this Division are applicable for internal or external pressure and do not address the requirements for openings under the action of externally applied loadings (such as pipe reactions).

m O Global)Mt
© Global Ined Expansion Occasional 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)Mt
ined Expansion Occasional 0 0 0 0 0 0)
	. 9)
		2 .
0 0	Kaf	\bigcirc
		<u>)</u>
0 0		×_/
0 0	Kg-m. VL	7
0 0	MC	ML
· 🔟 🗹 💆 💆 💆		
	Fillet Radius Direction	Cosines
Use Division 2 Stress Indices :	Nozzle: 0 Vess	el :
Use WRC 368 : 📃	Pad: 0 V2	(: 0
Use Kn and Kb (to find SCF): 📃	v	r : 0
Allowable Stress Intensity factors at I	Pad Edge V2	Z: 0
Factor fo	r Memb Stresses: 1.2 Nozz	le :
Fact for Mem	+Bend Stresses: 2.25	c: 0
	N	r: 0
es/Ratios at the nozzle edge and pad ed	dge Pass/Fail Status Na	Z : 0
	Node #	¢: 10
		Hale
		nei
	0 0 0 0 1 1 1	0 0 Kg-m. V_o Include Pressure Trrust : Filet Radus Nozze: 0 Use Division 2 Stress Indices : Use WRC 368 : Pad: 0 Valuable Stress Intensity factors at Pad Edge Pad: 0 0 Allowable Stress Intensity factors at Pad Edge Pad: 0 0 es/Ratios at the nozzle edge and pad edge Pass/Fall Status Noz image: Image: Image: 0 Image: Image: Image: 0 Image: Image: 0 0 Image: Image: 1.2 0 0 Image: Image: Image: 0 0 Image: Image: Image: 0 0 Image: Image: Image: 0 0 0 Image: Image: Image: Image: 0 0 0 0 Image: Image: Image: Image: Image: 0 0 0 0 0 0 0 0 0 0 0 0

PRESSURE VESSEL (BY PVElite) COURSE

UG-40 (LIMITS OF REINFORCEMENT)

• The boundaries of the cross sectional area in any plane normal to the vessel wall and passing through the center of the opening within which metal must be located in order to have value as reinforcement are designated as the limits of reinforcement for that plane.

Required cross sectional area of reinforcement

Normal to vessel wall

Parallel to vessel wall

UG-40

For nozzle wall abutting the vessel wall

Hossein Sadeghi PRESSURE VESSEL (BY PVElite) COURSE ASME VIII Div.1- Charlie Chong/ Fion Zhang/ He Jungang / Li Xueliang

Static equipment design Value engineering Construction consulting Procurement advice Process units design Procedure preparation

BAZEL ENERGY PARS

OIL & GAS

UG-40 (LIMITS OF REINFORCEMENT)

- The limits of reinforcement, measured parallel to the vessel wall is greater of following:
- (1) the diameter d of the finished opening;
- (2) the inside radius, Rn, of the nozzle plus the vessel wall thickness t, plus the

nozzle wall thickness tn.

Max. (d ; (Rn + t + tn)

UG-40 (LIMITS OF REINFORCEMENT)

- The limits of reinforcement, measured normal to the vessel wall is Smaller of following: :
- (1) 21/2 times the vessel wall thickness t;
- (2) 21/2 times the nozzle wall thickness tn plus the thickness te as defined in Figure UG-40.

Min. $(2.5 \pm 2.5 \pm 2.5 \pm 1.5)$

Figure UG-40 Some Representative Configurations Describing the Reinforcement Dimension t_e and the Opening Dimension d

(b-1)

(b-3)

Hossein Sadeghi PRESSURE VESSEL (BY PVElite) COURSE

Figure UG-40 Some Representative Configurations Describing the Reinforcement Dimension t_e and the Opening Dimension d (Cont'd)

OTES: 1) See Figure UW-16.1, sketch (v-2) for limitations. 2) See Figure UW-16.1, sketch (w-2) for limitations.

PRESSURE VESSEL (BY PVElite) COURSE

- The Vessels 18" to 36" I. D. must have a manhole or at least 2 hand holes or two threaded openings
- ✤ All vessels over 36" I. D. must have a manhole
- When inspection openings are required, they must meet the following
- ✓ An elliptical manhole shall not be less than 12" X 16"
- A circular manhole shall not be less than 16"
- \checkmark A handhole shall not be less than 2"x 3"

□ Ref. ASME Continuing education institute booklet

• (a) Material used for reinforcement shall have an allowable stress value equal to or greater than that of the material in the vessel wall.

• IF SUCH MATERIAL IS NOT AVAILABLE ?!

 Lower strength material may be used, provided the area of reinforcement is increased in inverse proportion to the ratio of the allowable stress values of the two materials to compensate for the lower allowable stress value of the reinforcement.

- No credit may be taken for the additional strength of any reinforcement having a higher allowable stress value than that of the vessel wall.
- weld metal outside of either the vessel wall or any reinforcing pad used as reinforcement shall be credited with an allowable stress value equivalent to the weaker of the materials connected by the weld.

Figure UG-41.1 Nozzle Attachment Weld Loads and Weld Strength Paths to Be Considered

Hossein Sadeghi (a) Depicts Typical Nozzle Detail With Neck Inserted Through the Vessel Wall PRESSURE VESSEL (BY PVElite) COURSE

UG-42 (Reinforcement of Multiple Openings)

- When the spacing between two openings is less than two times their average diameter, the reinforcement must satisfy the requirements for multiple openings. There are three general procedures for reinforcing multiple openings. They are:
- (1) standard reinforcement practice with restrictions on the distribution of the reinforcement,
- (2) reinforcement based on a large opening that encompasses the multiple openings
- ↔ (3) the ligaments rules of UG-53.

Ref. : CASTI Guidebook
Figure UG-42 Examples of Multiple Openings

UG-42 (Reinforcement of Multiple Openings)

- When any two openings are spaced such that their reinforcement overlaps, the reinforcement in the plane connecting the centers of the two openings must be equal to or greater than the sum of the area required for each opening and must satisfy all standard reinforcement requirements (UG-37, 38, 40, and 41).
- (1) The overlap area shall be proportioned between the two openings by the ratio of their diameters.
- (2) For cylinders and cones, if the area of reinforcement between the two openings is less than 50% of the total required for the two openings, the supplemental rules of 1-7(a) and 1-7(c) shall be used.

(a) Two Openings Spaced With Limits of Reinforcement Overlapping

(b) When more than two openings are spaced as in (a) above [see Figure UG-42] ٠ sketch (b)], and are to be provided with a combined reinforcement, the minimum distance between centers of any two of these openings shall be 11/3 times their average diameter, and the area of reinforcement between any two openings shall be at least equal to 50% of the total required for the two openings. If the distance between centers of two such openings is less than 11/3 times their average diameter, no credit for reinforcement shall be taken for any of the material between these openings. Such openings must be reinforced as described in (c) below.

(C) Alternatively, any number of adjacent openings, in any arrangement, may be reinforced by using an assumed opening enclosing all such openings. The limits for reinforcement of the assumed opening shall be those given in UG-40(b)(1) and UG-40(c)(1). The nozzle walls of the actual openings shall not be considered to have reinforcing value. For cylinders and cones, when the diameter of the assumed opening exceeds the limit is in UG-36(b)(1), the supplemental rules of 1-7(a) and 1-7(c) shall also be used.

(a) General:

• Nozzles may be attached to the shell or head of a vessel by any of the methods of attachment given in this paragraph, except as limited in UG-36.

(b) Welded Connections :

• Attachment by welding shall be in accordance with the requirements of UW-15 and UW-16.

UW-16 (Minimum requirements for attachment welds at openings)

- Do = outside diameter of neck or tube attached by welding on inside of vessel shell only
- G = radial clearance between hole in vessel wall and outside diameter of nozzle neck or tube
- r1 = minimum inside corner radius, the lesser of 1/4t or 1/8 in. (3 mm)

Radius = 1/8 in. (3 mm) minimum blend radius

- t = nominal thickness of vessel shell or head,
- t1 or t2 = not less than the smaller of 1/4 in. (6 mm) or 0.7tmin
- t c = not less than the smaller of 1/4 in. (6 mm) or 0.7t min (inside corner welds may be further limited by a lesser length of projection of the nozzle wall beyond the inside face of the vessel wall)
- t e = thickness of reinforcing plate, as defined in G-40

Figure UW-16.1 Some Acceptable Types of Welded Nozzles and Other Connections to Shells, Heads, etc.

Full Penetration Welds to Which Separate Reinforcement Plates May Be Added [See UW-16(c)(2) and Note (1)] Hossein Sadeghi

PRESSURE VESSEL (BY PVElite) COURSE

Notes follow on last page of this Figure.

295

Figure UW-16.1 Some Acceptable Types of Welded Nozzles and Other Connections to Shells, Heads, etc. (Cont'd)

Figure UW-16.1 Some Acceptable Types of Welded Nozzles and Other Connections to Shells, Heads, etc. (Cont'd)

Figure UW-16.1 Some Acceptable Types of Welded Nozzles and Other Connections to Shells, Heads, etc. (Cont'd)

(When used for other than square, round, or oval headers, round off corners)

Figure UW-16.1 Some Acceptable Types of Welded Nozzles and Other Connections to Shells, Heads, etc. (Cont'd)

(1) Sketches (a), (b), (c), (d), (e), (f-1) through (f-4), (g), (x-1), (y-1), and (z-1) are examples of nozzles with integral reinforcement.

(2) Where the term Radius appears, provide a 1/8 in. (3 mm) minimum blend radius.

(3) For sketches (v-1) through (w-2):

(a) For applications where there are no external loads, $G = \frac{1}{6}$ in. (3 mm) max.

(b) With external loads

NOTES:

G = 0.005 for $D_o \le 1$ in. (25 mm); G = 0.010 for 1 in. (25 mm) $< D_o \le 4$ in. (100 mm); G = 0.015 for 4 in. (100 mm) $< D_o \le 6\frac{5}{6}$ in. (170 mm) (4) For NPS 3 (DN 80) and smaller, see exemptions in UW-16(f)(2).

Hossein Sadeghi PRESSURE VESSEL (BY PVElite) COURSE

(c) Necks Attached by a Full Penetration Weld.

- Necks abutting a vessel wall shall be attached by a full penetration groove weld.(See Figure UW-16.1 sketches (a) and(b) for examples)
- Necks inserted through the vessel wall may be attached by a full penetration groove weld. See Figure UW-16.1 sketches (c), (d), and (e).
- When complete joint penetration cannot be verified by visual inspection or other means permitted in this Division, backing strips or equivalent shall be used with full penetration welds deposited from one side.
- If additional reinforcement is required it shall be provided as integral reinforcement or by the addition of separate reinforcement elements (plates) attached by welding.

Figure UW-16.1 Some Acceptable Types of Welded Nozzles and Other Connections to Shells, Heads, etc.

Full Penetration Welds to Which Separate Reinforcement Plates May Be Added [See UW-16(c)(2) and Note (1)] Hossein Sadeghi

PRESSURE VESSEL (BY PVElite) COURSE

UW-16 (Integral Reinforcement)

Integral reinforcement is that reinforcement provided in the form of extended or thickened necks, thickened shell plates, forging type inserts, or weld buildup which is an integral part of the shell or nozzle wall and, where required, is attached by full penetration welds. See Figure UW-16.1 sketches (a), (b), (c), (d), (e), (f-1), (f-2), (f-3), (f-4), (g), (x-1), (y-1), and (z-1) for examples of nozzles with integral reinforcement where the F factor in Figure UG-37 may be used.

(d) Neck Attached by Fillet or Partial Penetration Welds

(1) Necks inserted into or through the vessel wall may be attached by fillet or partial penetration welds, one on each face of the vessel wall. The welds may be any desired combination of fillet, single-bevel, and single-J welds. The dimension of t 1 or t 2 for each weld shall be not less than the smaller of 1/4 in. (6 mm) or 0.7tmin, and their sum shall be not less than 11/4tmin. See Figure UW-16.1 sketches (i), (j), (k), and (l).

If additional reinforcement is required, it may be provided in the form of extended or thickened necks, thickened shell plates, forgings, and/or separate reinforcement elements (plates) attached by welding. Weld requirements shall be the same as given in (c)(2) above, except as follows. The welds attaching the neck to the vessel wall or to the reinforcement plate shall consist of one of the following:

- (-a) a single-bevel or single-J weld in the shell plate, and a single-bevel or single-J weld in each reinforcement plate. The dimension tw of each weld shall be not less than 0.7t min. See Figure UW-16.1 sketches (q) and (r).
- (-b) a full penetration groove weld in each reinforcement plate, and a fillet, single-bevel, or single-J weld with a weld dimension tw not less than 0.7tmin in the shell plate. See Figure UW-16.1 sketch (s).

 (2) Nozzle necks, flared necks, and studding outlet type flanges may be attached by fillet welds or partial penetration welds between the outside diameter or the attachment and the outside surface of the shell and at the inside of the opening in the shell. The throat dimension of the outer attachment weld shall not be less than 1/2tmin. The dimension tw of the weld at the inside of the shell cutout shall not be less than 0.7t min. See Figure UW-16.1 sketches (m), (n), (o), and (p).

UW-16 (Integral Reinforcement)

- (f) Standard Fittings: ASME/ANSI or Manufacturer's Standard. The attachment of standard fittings shall meet the following requirements; see (g) for the attachment of bolting pads:
- fittings shall be attached by a full penetration groove weld or by two fillet or partial penetration welds, one on each face of the vessel wall. The minimum weld dimensions shall be as shown in Figure UW-16.1 sketches (x), (y), (z), and (aa).

• Exemptions:

- Fittings not exceeding NPS 3 (sketches (x), (y), (z), (aa), and (bb)) -see UW-16
 (3) and (4)
- Flange-type fittings not exceeding NPS 2

• For access openings and openings used only for inspection:

 $t_{\text{UG-45}} = t_a$

• For other nozzles:

Determine t_b .

 $t_b = \min[t_{b3}, \max(t_{b1}, t_{b2})]$

 $t_{\text{UG-45}} = \max\left(t_a, t_b\right)$

Hossein Sadeghi

PRESSURE VESSEL (BY PVElite) COURSE

where

- t_a = minimum neck thickness required for internal and external pressure using UG-27 and UG-28 (plus corrosion and threading allowance), as applicable. The effects of external forces and moments from supplemental loads (see UG-22) shall be considered. Shear stresses caused by UG-22 loadings shall not exceed 70% of the allowable tensile stress for the nozzle material.
- t_{b1} = for vessels under internal pressure, the thickness (plus corrosion allowance) required for pressure (assuming E = 1.0) for the shell or head at the location where the nozzle neck or other connection attaches to the vessel but in no case less than the minimum thickness specified for the material in UG-16(b).
- t_{b2} = for vessels under external pressure, the thickness (plus corrosion allowance) obtained by using the external design pressure as an equivalent internal design pressure (assuming E = 1.0) in the formula for the shell or head at the location where the nozzle neck or other connection attaches to the vessel but in no case less than the minimum thickness specified for the material in UG-16(b).
- t_{b3} = the thickness given in Table UG-45 plus the thickness added for corrosion allowance.
- t_{UG-45} = minimum wall thickness of nozzle necks

Nozzle Minimum Thickness Requirements		
	Minimum Wall Thickness [See UG-16(d)]	
Nominal Size	in.	mm
NPS 1/8 (DN 6)	0.060	1.51
NPS 1/4 (DN 8)	0.077	1.96
NPS 3/8 (DN 10)	0.080	2.02
NPS 1/2 (DN 15)	0.095	2.42
NPS 3/4 (DN 20)	0.099	2.51
NPS 1 (DN 25)	0.116	2.96
NPS 11/4 (DN 32)	0.123	3.12
NPS 11/2 (DN 40)	0.127	3.22
NPS 2 (DN 50)	0.135	3.42
NPS 21/2 (DN 65)	0.178	4.52
NPS 3 (DN 80)	0.189	4.80
NPS 31/2 (DN 90)	0.198	5.02
NPS 4 (DN 100)	0.207	5.27
NPS 5 (DN 125)	0.226	5.73
NPS 6(DN 150)	0.245	6.22
NPS 8 (DN 200)	0.282	7.16
NPS 10 (DN 250)	0.319	8.11
≥ NPS 12 (DN 300)	0.328	8.34

...

GENERAL NOTE: For nozzles having a specified outside diameter not equal to the outside diameter of an equivalent standard NPS (DN) size, the NPS (DN) size chosen from the table shall be one having an equivalent outside diameter larger than the nozzle outside diameter.

- (a) All pressure vessels for use with:
- ✤ compressed air
- subject to internal corrosion
- having parts subject to erosion or mechanical abrasion

shall be provided with suitable:

- ✓ Manhole
- ✓ Handhole
- \checkmark inspection openings for examination and cleaning.

(a) All pressure vessels for use with:

- ✤ compressed air
- subject to internal corrosion
- having parts subject to erosion or mechanical abrasion

shall be provided with suitable:

- ✓ Manhole
- ✓ Handhole
- \checkmark inspection openings for examination and cleaning.

• (c) Vessels over 12 in. (300 mm) I.D. under air pressure:

that also contain, substances that will prevent corrosion need not have openings for inspection only, provided the vessel contains suitable openings through which inspection can be made conveniently, and provided such openings are equivalent in size and number to the requirements for inspection openings in (f) below.

• (d) For vessels 12 in. (300 mm) or less in inside diameter:

openings for inspection only may be omitted if there are at least two removable pipe connections not less than NPS 3/4 (DN 20).

UG-46 (INSPECTION OPENINGS)

- (e) Vessels less than 16 in. (400 mm) and over 12 in. (300 mm) I.D. :
- shall have at least two handholes
- or two threaded pipe plug inspection openings of not less than NPS 11/2 (DN 40)
- except as permitted by the following:
- when vessels to be installed so that inspection cannot be made without removing the vessel from the assembly, openings for inspection only may be omitted provided there are at least two removable pipe connections of not less than NPS 11/2 (DN 40).

- (f) Vessels that require access or inspection openings shall be equipped as follows.
- (1) All vessels less than 18 in. (450 mm) and over 12 in. (300 mm) I.D. shall have at least two handholes or two plugged, threaded inspection openings of not less than NPS 11/2 (DN 40).
- (2) All vessels 18 in. (450 mm) to 36 in. (900 mm), inclusive, I.D. shall have a manhole or at least two handholes or two plugged, threaded inspection openings of not less than NPS 2 (DN 50).
- (3) All vessels over 36 in. (900 mm) I.D. shall have a manhole, except that those whose shape or use makes one impracticable shall have at least two handholes 4 in. × 6 in. (100 mm × 150 mm) or two equal openings of equivalent area.

UG-46 (INSPECTION OPENINGS)

- (g) When inspection or access openings are required, they shall comply at least with the following requirements:
- (1) An elliptical or obround manhole shall be not less than 12 in. × 16 in. (300 mm × 400 mm). A circular manhole shall be not less than 16 in. (400 mm) I.D.
- (2) A handhole opening shall be not less than 2 in. \times 3 in. (50 mm \times 75 mm), but should be as large as is consistent with the size of the vessel and the location of

the opening.

OIL & GAS TECHNOLOGIES

BAZEL ENERGY PARS

Bazel Energy Pars, is a design and consultation company with high engineering and management headquartered in Tehran, Iran. Since the foundation, BEP has established and improved standard structure. We are an integrated enterprise working in the oil and gas field, We have a team of experienced engineers and technical staffs. We have managed our team to ensure the highest quality is achieved and that all projects are delivered on time to reach our clients satisfaction.

www.bep-co.com

Summary of openings Error and warnings

- 1- Rating of flange has been failed
- 2- Nozzles have clash and do not distanced as per limit of reinforcement
- 3- UG-37 failed
- 4- UG-45 Failed
- 5- WRC at nozzle or pad has been failed

(a) All pressure vessels for use with:

- ✤ compressed air
- subject to internal corrosion
- having parts subject to erosion or mechanical abrasion

shall be provided with suitable:

- ✓ Manhole
- ✓ Handhole
- \checkmark inspection openings for examination and cleaning.

• (c) Vessels over 12 in. (300 mm) I.D. under air pressure:

that also contain, substances that will prevent corrosion <u>need not have openings</u> for inspection only, provided the vessel contains suitable openings through which inspection can be made conveniently, and provided such openings are equivalent in size and number to the requirements for inspection openings in (f) below.

• (d) For vessels 12 in. (300 mm) or less in inside diameter:

openings for inspection only may be <u>omitted</u> if there are at least <u>two removable pipe</u> <u>connections</u> not less than NPS 3/4 (DN 20).

UG-46 (INSPECTION OPENINGS)

- (e) Vessels less than 16 in. (400 mm) and over 12 in. (300 mm) I.D. :
- shall have at least <u>two</u> handholes
- or two threaded pipe plug inspection openings of not less than NPS 11/2 (DN 40)
- except as permitted by the following:
- when vessels to be installed so that inspection cannot be made without removing the vessel from the assembly, openings for inspection only may be omitted provided there are at least <u>two removable pipe connections</u> of not less than NPS 11/2 (DN 40).
- (f) Vessels that require access or inspection openings shall be equipped as follows.
- (1) All vessels less than 18 in. (450 mm) and over 12 in. (300 mm) I.D. shall have at least two handholes or two plugged, threaded inspection openings of not less than NPS 11/2 (DN 40).
- (2) All vessels 18 in. (450 mm) to 36 in. (900 mm), inclusive, I.D. shall have a manhole or at least two handholes or two plugged, threaded inspection openings of not less than NPS 2 (DN 50).
- (3) All vessels over 36 in. (900 mm) I.D. shall have a manhole, except that those whose shape or use makes one impracticable shall have at least two handholes 4 in. × 6 in. (100 mm × 150 mm) or two equal openings of equivalent area.

UG-46 (INSPECTION OPENINGS)

- (g) When inspection or access openings are required, they shall comply at least with the following requirements:
- (1) An elliptical or obround manhole shall be not less than 12 in. × 16 in. (300 mm × 400 mm). A circular manhole shall be not less than 16 in. (400 mm) I.D.
- (2) A handhole opening shall be not less than 2 in. \times 3 in. (50 mm \times 75 mm), but should be as large as is consistent with the size of the vessel and the location of

the opening.

UG-46 (Summary Size of opening)

(a) Reinforcement shall complies with the following rules:

Two-thirds of the required reinforcement shall be within the following limits:
 (1) parallel to vessel wall: the larger of three-fourths times the limit in UG-40(b)(1), or equal to the limit in UG-40(b)(2);

(2) normal to vessel wall: the smaller of the limit in UG-40(c)(1), or in UG-40(c)(2).

(b) In addition to above condition :

- > openings for radial nozzles and with below condition:
- (-a) vessel diameters greater than 60 in. (1 520 mm) I.D.;
- (-b) nozzle diameters that exceed 40 in. (1 020 mm) I.D. and also exceed $3.4\sqrt{Rt}$
- (-c) the ratio Rn/R does not exceed 0.7

1-7 Large openings in cylindrical and conical shells

- Membrane stress Sm shall not exceed S
- The maximum combined membrane stress Sm and bending stress Sb shall not exceed 1.5S at design conditions.

Case A (see Figure 1-7-1)

$$S_m = P\left(\frac{R(R_n + t_n + \sqrt{R_m t}) + R_n(t + t_e + \sqrt{R_n m t_n})}{A_s}\right) \quad (1)$$

Case B (see Figure 1-7-1)

$$S_m = P\left(\frac{R(R_n + t_n + \sqrt{R_m t}) + R_n(t + \sqrt{R_n m t_n})}{A_s}\right) \quad (2)$$

Cases A and B (See Figure 1-7-1 or Figure 1-7-2)

$$M = \left(\frac{R_n^3}{6} + RR_n^e\right)P$$
 (3)

$$a = e + t/2 \tag{4}$$

$$S_b = \frac{Ma}{I} \tag{5}$$

that resists bending moment.

Summary of openings Error and warnings

- 1- Rating of flange has been failed
- 2- Nozzles have clash and do not distanced as per limit of reinforcement
- 3- UG-37 failed
- 4- UG-45 Failed
- 5- WRC at nozzle or pad has been failed

PU ▼						PVElite - [Untitled]
File Home Tools Vie	w 3D Dia	agnostics ES	L Help				
New Open Save	C ⊗ ↓ □ ⊥ ↓	++ ## ⊻ ↓ ⊠E	Details	1 ■ 1	Input	Dutput	
General Input	Noz	de Input		1			
		 Enter in nozz 	le information				
/ Element Data		5					
Element Description							
From Node	10						
To Node	20						
Element Type	Cylindrical		1				
Diameter Basis	ID	-]				
Inside Diameter, mm.	2438.4						
Cylinder Length, mm.	3000						
Finished Thickness, mm.	12						
Nominal Thickness, mm.	0						
Internal Corrosion Allowance, m	3.175						
External Corrosion Allowance, m	0						
Wind Diameter Multiplier	1.2						
Material Name	SA-516 70						
Longitudinal Seam Efficiency	1						
Circumferential Seam Efficiency	1						
Internal Pressure, bars	6.895						
Temp. for Internal Pressure, C	93.342						
External Pressure, bars	1.034						
Temp. for External Pressure, C	93.342						
Additional Element Data							

Hossein Sadeghi

	Pad or Hub Proper	ties –		
alogue				
Like				
Matl				
in.	Additional Weld Da	ata		
•	Nozzle to Shell C	outside Fillet Weld L	eg: 10	mm.
	Nozzle to Shell	Inside Fillet Weld L	eg : 0	mm.
	Nozzle to She	ell Groove Weld Dep	oth : 12	mm.
zle?		ASME Weld Ty	pe : None	-
T				
mm.	Miscellaneous			
		Flange Material :	SA-105	Matl
	Flan	ge Class Grade :	150 - GR 1.	1
		Flange Type :	Weld Neck	•
		Neglect Areas :	None	•
	Таррес	d Hole Area Loss :	0	cm ²
	Nozzłe	Eff. Shell Eff. :	1 1	
	Local She	ell Thk. User Tr :	0 0	mm.
mm.	Bli	nd Attached?: 📃	Manway/	Acs Ope ?: 📃
mm.	Entirus Cala 3: 🕅	Shall Entire Cu		
Calc	Fatigue Caic ?: 💼	Snei Patigue Cu	rve: Table 3.F.1	· · · ·
			Piping At	tached
ous Nozzle	Add New Nozzle	Delete	Plot	Help
	alogue Lookup ike Matl mm. mm. de? mm. mm. mm. calc	Pad or Hub Proper alogue Lookup ike Matl Matl Matl Matl Matl Matl Matl Mozzle to Shell O Nozzle to Shell O Nozzle to Shell O Nozzle to Shell Nozzle to Shell Nozzle to Shell Tapper Nozzle Local She mm. Bi mm. Bi mm. Salc Add New Nozzle	Pad or Hub Properties lookup lookup ike Matl mm. Matl mm. Maximum mm. Miscellaneous Flange Material : Flange Class Grade : Flange Type : Neglect Areas : Tapped Hole Area Loss : Nozzle Eff. Shell Eff. : Local Shell Thk. User Tr : mm. Fatigue Calc ?: Shell Fatigue Culous	Pad or Hub Properties alogue Lookup .ike Matl Matl Matl Matl Matl Matl Matl Matl Matl Matl Matl Matl Matl Matl Matl Nozzle to Shell Outside Fillet Weld Leg : 10 Nozzle to Shell Groove Weld Depth : 12 ASME Weld Type : None Top mm. Miscellaneous Flange Material : SA-105 Flange Class Grade : 150 • GR 1. Flange Type : Weld Neck Neglect Areas : None Tapped Hole Area Loss : 0 Nozzle Eff. Shell Eff. : 1 1 Local Shell Thk. User Tr : 0 0 mm. Blind Attached?: Manway/ mm. Fatigue Calc ?: Shell Fatigue

ttachment Pad or Hub Prop FVC Catalogue FVC Catalogue Coupling Lookup Coupling Lookup Just Like Just Like Existing Nozzle Description : Noz N1 Fr 10 Nozzle Material : SA-106 B Schedule Diameter : 40 40 6 Total CA. Actual Thk. : 3.175 Is this Nozzle Connected to another Nozzle? Parent Nozzle : Parent Nozzle : Distance from 'From' Node Elev : 1000 1000 mm.	n Local Stress Analysis [WRC 107, 297 or Annex G]	
Existing Nozzle Description : Noz N1 Fr 10 Nozzle Material : SA-106 B Schedule Diameter : 40 40 6 Dia. Basis Thickness Basis : ID Nozzle to Shell Nozzle to Shell Total CA. Actual Thk. : 3.175 7.112 mm. Nozzle to Shell Nozzle Connected to another Nozzle? Parent Nozzle : Parent Nozzle : Distance from 'From' Node Elev : 1000 1000 Miscellaneous	ttachment FVC Catalogue FVC Catalogue Coupling Lookup Just Like	Pad or Hub Prop
Is this Nozzle Connected to another Nozzle?	Existing Nozzle Description : Noz N1 Fr 10 Nozzle Material : SA-106 B Schedule Diameter : 40 • 6 in. Dia. Basis Thickness Basis : ID • Nominal • Total CA. Actual Thk. : 3.175 7.112 mm.	Additional Weld I Nozzle to Shell Nozzle to She Nozzle to Sh
	Is this Nozzle Connected to another Nozzle? Parent Nozzle : Distance from 'From' Node Elev : 1000 1000 mm.	Miscellaneous

	Just Like		
riptio	n: Noz N1 Fr 10		
ateria	al : SA-106 B	Make a Selection	
mete	er: 40 🔻 6 🛄	0.125	ata
Basi	is : ID V Nominal V	0.25	Dutside Fillet Weld Leg :
al Thk	k. : 3.175 7.112 mm	0.375	Inside Fillet Weld Leg :
		0.5	ell Groove Weld Depth :
; Noz	zle Connected to another Nozzle? 📃	0.75	ASME Weld Type : [
ent N	Nozzle : 📃 👻	1	Weld
Node	e Elev: 1000 1000 mr	1.25	
	Layout	1.5	Flange Material : SA-10
yout.	Angle : 0 deg.	2	ge Class Grade : 150
dial N	Nozzle : 🔽	2.5	Flange Type : Weld I
aral N	Nozzle :	3	Neglect Areas : None
e Tilt i	Angle : 0 deg.	3.5	d Hole Area Loss : 0
imen	Ision L : 0 mm.	4	e Eff. Shell Eff. : 1
		5	ell Thk. User Tr : 0
de I	Inside : 150 0	6	ind Attached?:
Thickr	ness]: 0 0	8	Shell Fatigue Curve: 1
ng W	Veight: 0 kg. Calc	10	
		12	
394	A2: 0.576 A3: 0.000 A4: 0.855	14	[1-10 Failed] _[UG-45 Faile
	Previous No	16	<u>D</u> elete P
		18	
	Flange Rating:	20	
		24	and the second se

Hossein Sadeghi

Hossein Sadeghi

Pad or Hub Proper	ties							
	Pad Material :	Pad Material : SA-516 70				Matl		
Pad Dia	ameter / Width :	270		50	m	m.		
	Pad Thickness :	10			m	m.		
Groo	ve Weld Depth :	10			m	m.		
Weld	Leg at Pad OD :	8		6.24	+1 m	m.		
For V	III-1 split pads, r	nultiply	A5 by	y 0.75 p	er UG-3	7(h)		
Additional Weld Da	ata							
Nozzle	to Pad Fillet Weld	Leg :	10		3.898	В	mm.	
Nozzle to Shell	Inside Fillet Weld	Leg :	0				mm.	
Nozzle to She	ll Groove Weld D	epth :	12				mm.	
	ASME Weld 1	Type :	None	2		-		
		Weld	d Stre	ength O	ĸ			
Miscellaneous								
	Flange Material	: SA-1	105			М	atl	
F I	- deserves deserves							

		Paul	laterial : So	-516 /0		
Quick Results Dia	log					
Quick Ca	alculation Results	Highlight :			F3 - Sea	arch again
	UES, Nozz	de Description	n: Noz N1 I	Fr10		
Pressure	for Reinforcement Ca	lculations	P	6.895	bars	
Temperatu	re for Internal Pres	sure	Temp	93		
Design Ex	ternal Pressure		Pext	1.03	bars	
Temperatu	re for External Pres	sure	Tempex	93		
Shell Mate	erial			SA-516 70	1	
Shell All	owable Stress at Tem	perature	Sv	137.90	N./mm ^s	
Shell Allo	owable Stress At Amb	ient	Sva	137.90	N./mm²	
Inside Dia	ameter of Cylindrica	l Shell	D	2438.40	mm.	
Design Ler	ngth of Section		L	3000.0000	mm.	
Shell Fin	ished (Minimum) Thic	kness	t	12.0000	mm.	
Shell Inte	ernal Corrosion Allo	wance	с	3.1750	mm.	
Shell Exte	ernal Corrosion Allo	wance	co	0.0000	mm.	
User Ente:	red Minimum Design M	etal Tempera	ture	-17.78		
Type of Ele	ment Connected to the S	hell : Nozzle				
Material				SA-106 B	•	
μ						
		(ОК			
Note: Displaye	ed results are for Pressure Lo	ading only. The a	nalysis for sh	nell "tr" due to be	nding will be includ	led at runtir
	Π		11			

Hossein Sadeghi

A1: 0.394 A2: 1.162 A3: 0.000 A4: 1.495 A5: 7.629 Aav.: 10.680 Ar: 6.928 [UG-45 Failed]

Nozzle Input/Analysis: [Noz N1 Fr10]

Hossein Sadeghi

ASME Weld Ty	/pe : None	•
	Weld Strength OK	
Miscellaneous		
Flange Material :	SA-105	Matl
Flange Class Grade :	150 • GR 1.1	•
Flange Type :	Weld Neck 👻	
Neglect Areas :	Weld Neck Long WN	1
Tapped Hole Area Loss :	Lap Joint	cm²
Nozzle Eff. Shell Eff. :	Silp on Socket Weld	
Local Shell Thk. User Tr :	Threaded Studding Outlet	mm.
Blind Attached?:	None	pe ?: 📃
Fatigue Calc ?: Shell Fatigue Ca	FFWn FFSo FFThrd RTJWn Clog-Thrd	
Aav.: 18.836 Ar: 11.984 [Passed]	Clpg-Sw	}
lext Nozzle Delete	Plot	Help

External Pressure, bars	1.034	100	1401	
Temp. for External Pressure, C	93.342		[i0]	
Additional Element Data				<u>N1</u>
Head Factor	2			-
Inside Head Depth, mm.	609.6			
Sump Head	v			=N2
Parent Nozzle	N1	-		
Head is Cold Spun (EN-13445)?				

Parent Nozzle

Select the nozzle that that this head is attached to.

Vessel Supports!

4.15.3 SADDLE SUPPORTS FOR HORIZONTAL VESSELS

4.15.3.1 Application of Rules.

(a) Design Method - The design method in this paragraph is based on an analysis of the longitudinal stresses exerted within the cylindrical shell by the overall bending of the vessel, considered as a beam on two single supports, the shear stresses generated by the transmission of the loads on the supports, and the circumferential stresses within the cylindrical shell, the head shear and additional tensile stress in the head, and the possible stiffening rings of this shell, by this transmission of the loads on the supports. The stress calculation method is based on linear elastic mechanics and covers modes of failure by excessive deformation and elastic instability. Alternatively, saddle supports may be designed in accordance with Part 5.

(b) Geometry - A typical horizontal vessel geometry is shown in Figure 4.15.1. Saddle supports for horizontal vessels shall be configured to provide continuous support for at least one-third of the shell circumference, or $\theta \ge 120 \text{ deg}$.

(c) Reinforcing Plates - If a reinforcing plate is included in the design to reduce the stresses in the cylindrical shell at the saddle support, then the width of the reinforcing plate, b_1 , shall satisfy Equation (4.15.1) and provide a supporting arc length that satisfies eq. (4.15.2). A typical reinforcing plate arrangement is shown in Figure 4.15.2.

$$b_1 = \min\left[\left(b + 1.56\sqrt{R_m}t\right), 2a\right]$$
 (4.15.1)

$$\theta_1 = \theta + \frac{\theta}{12} \tag{4.15.2}$$

(*d*) Stiffening Rings - Stiffening rings may be used at the saddle support location, on either the inside or outside of the cylindrical shell. The stiffening rings may be mounted in the plane of the saddle (see Figure 4.15.3) or two stiffening rings may be mounted on each side of the saddle support equidistant from the saddle support (see Figure 4.15.4). In the later case, the spacing between the two stiffening rings, h, as shown in Figure 4.15.4 shall not be greater than R_m . If $h \le 1.56\sqrt{R_m t}$ as shown in Figure 4.15.3 Sketch (c), then both of the stiffening rings shall be considered as a single stiffening ring situated in the plane of the saddle in the stress calculations.

4.15.3.2 Moment and Shear Force.

(a) If the vessel is composed of a cylindrical shell with a formed head (i.e. torispherical, elliptical, or hemispherical) at each end that is supported by two saddle supports equally spaced and with $a \le 0.25L$, then the moment at the saddle, M_1 , the moment at the center of the vessel, M_1 , and the shear force at the saddle, T, may be computed using the following equations.

Hossein Sadeghi

nsert New Element	_		×	
Type of Element to I	Insert]	
Cylinder	Elliptical	Torispherical	Spherical	
Conical	Flange	Skirt	Flat Head	
Insert New Element	Before or After the Current B	Element		
Ø Before	After			
Notes:				
Skirts should be inse	e element insert process.	ads.	Cancel	
				Head
		PVElite		×
		Does :	the skirt separate two inde	pendent pressure chambers?
			ſ	Yes No

- Material Consideration
- Skirt length
- Skirt alignment
- Skirt Thickness
- Skirt corrosion and JE
- Base ring Design

- > If Skirt Thk = Shell Course Thk , Then: OD of skirt and shell course should be equal
- > If Skirt Thk > Shell Course Thk , Then: OD of skirt and shell course should be equal
- > If Skirt Thk < Shell Course Thk , Then: Mean Diameter of skirt and Mean Diameter of shell course should be equal (Corroded

Condition) >>>>>> Skirt ID (in corroded Condition) = X - Thk

eral Input	
u む む む む む む	
From Node	10
To Node	20
Element Type	Skirt
Diameter Basis	ID
Inside Diameter, mm.	1527
Skirt Length, mm.	1524
Finished Thickness, mm.	30.23
Nominal Thickness, mm.	35
Internal Corrosion Allowance, m	1.6
External Corrosion Allowance, m	0
Wind Diameter Multiplier	1.3
Material Name	SA-516 70
Longitudinal Seam Efficiency	1
Circumferential Seam Efficiency	1
Internal Pressure, bars	0
Temp. for Internal Pressure, C	86
External Pressure, bars	0
Temp. for External Pressure, C	155
Additional Element Data	
Skirt Diameter at Base, mm.	1527
Perform Basering Analysis	v
Evaluate Holes in Skirt	

Basering Design Data Tailing Lug Data					
Basering Type					
• 🗾 • 🔊 •		•	Set Defau	It Dimensions	
Basering Information	r		Design Temperature:	37.7822 C	
Basering Material:	SA-516 70	Matl	Basering Design Option:	Analyze	-
Basering Thickness:	38.1	mm.	Method for Thkness Calc	Simplified or Steel on Steel	
Basering ID:	1527	mm.	Method for Histess Calc.	Simplified of Steel of Steel	Ť
Basering OD:	1781	mm.	E for Plates:	2.01747e+008	KPa.
Bolt Circle Diameter:	1696.93	mm.	Sy for Plates:	261995	KPa.
Corrosion Allowance:	0	mm.	Gusset Thickness:	19.05	mm.
Bolting Information			Dist. between Gussets:	88.9	mm.
Type of Threads:	UNC	•	Bottom Gusset Width:	96.77	mm.
Nominal Bolt Diameter:	50.8	mm	Top Gusset Width:	96.77	
Number of Balter	0	······	Height of Gussets:	228.6	mm.
Number of Bolts:	8		Top Plate Thickness:	44.45	mm.
Bolt Material:	SA-193 B7	Matl	Top Plate Width:	160.27	mm.
Bolt C.A. (1/2 total):	0	mm.	Radial Width of Top Plate:	96.77	
Bolt Root Area:	0	cm ²	Bolt Hole Dia in Plate:	53.975	mm.
Bolt Shear Allowable:	0	N./mm²			_
			Use EIL Spec.?	Bolt Diameter: 24	✓ mm
Concrete Strength F'c/Fc: 20.685 8.274	N./mm²		0/ seclied to Polt Area * Po	t Streen 100	
Modular ratio Eplates/Ec: 9.833			% applied to boil Area * bo	it Stress: 100	70
Lug Start Apple: 0 deg.				Use AISI Design Meth	nod ? 📃
			Use 2/3rds Yield for Basering/Top F	Plate Allowables per AISC F3	3-1 ? 📃
			Use 75% Yield for Basering/Top F	Plate Allowables per AISC F	2-1?
			Us Allewski A	se 1/3 Increase per AISC As	5.2?
Plot			Use the skirt stress to determine the concrete s	tress for the simplified meth	2.3 ? 📃 and 2 🗐
Help			Determine the Basering design bolt load acc	ounting for Load Case Facto	ors ?
· · · · · · · · · · · · · · · · · · ·					

OK	Cancel	Delete
OK	Cancel	Delete

	Nominal Thickness, mm.	35	
	Internal Corrosion Allowance, mi	1.6	
	External Corrosion Allowance, m	0	
	Wind Diameter Multiplier	1.3	
	Material Name	SA-516 70	
	Longitudinal Seam Efficiency	1	
	Circumferential Seam Efficiency	1	
	Internal Pressure, bars	0	
	Temp. for Internal Pressure, C	86	
	External Pressure, bars	0	
	Temp. for External Pressure, C	155	
Δ	Additional Element Data		
	Skirt Diameter at Base, mm.	1527	
	Perform Basering Analysis	✓	
	Evaluate Holes in Skirt		
LEG

⋈⋈⋈⋒⋒ ⋳ <mark>⋈</mark>	In
Details	Inp
Leg Input Enter leg information	Не

From Node : 30 Leg Description : LEGS Distance from "From" Node : 0 mm. Leg Centerline Diameter : 0 mm. Leg Orientation : Strong Axis Number of Legs : 0 Overall Length of Legs : 0 mm. Effective Leg Length "L" : 0 mm. Leg Database : AISC Section Identifier : W8X24 LookUp	mm. mm.
Leg Description : LEGS Distance from "From" Node : 0 mm. Leg Centerline Diameter : 0 mm. Leg Orientation : Strong Axis Number of Legs : 0 Overall Length of Legs : 0 Distance from "From" Node : 0 mm. Effective Leg Length "L" : 0 mm.	mm.
Distance from "From" Node : 0 mm. Leg Centerline Diameter : 0 mm. Leg Orientation : Strong Axis Number of Legs : 0 Overall Length of Legs : 0 mm. Effective Leg Length "L" : 0 mm. Leg Database : AISC Section Identifier : W8X24 LookUp	mm.
Leg Centerline Diameter : 0 mm. Leg Orientation : Strong Axis Number of Legs : 0 Overall Length of Legs : 0 mm. Effective Leg Length "L" : 0 mm. Leg Database : AISC Section Identifier : W8X24 LookUp	mm.
Leg Orientation : Strong Axis Number of Legs : 0 Overall Length of Legs : 0 Effective Leg Length "L" : 0 Leg Database : AISC Section Identifier : W8X24 LookUp	
Number of Legs : 0 Overall Length of Legs : 0 Effective Leg Length "L" : 0 Leg Database : AISC Section Identifier : W8X24	
Overall Length of Legs : 0 mm. Effective Leg Length "L" : 0 Leg Database : AISC Section Identifier : W8X24	
Effective Leg Length "L": 0 Leg Database : AISC Section Identifier : W8X24 LookUp	mm.
Leg Database : AISC	
Section Identifier : W8X24 LookUp	
	LookUp
Leg Yield Stress: 248.22 N./mm ²	N./mm ²
Effective End Condition "K" : 1 for WRC 107	for WRC 107
Leg Start Angle : 0 deg	
Occasional Load Factor: 1.333	
Optional Pad Parameters	
Perform WRC 107 Analysis ?:	
Pad Width / Length : 0 0 mm.	mm.
Pad Thickness : 0 mm. Compute Centerline Diameter	mm. Compute Centerline Diameter
Are these Pipe Legs? : Final States and the second states and the	Employ directional check for W and C types :
Pipe Leg Inside Diameter : mm.	nm.
Pipe Leg Outside Diameter : mm.	nm.

Leg Orientation

LEG

Select the orientation of the leg cross-section with respect to the centerline. Select:

- Strong Axis The strong axis is perpendicular to the vessel.
- Weak Axis The weak axis is perpendicular to the vessel.
- Diagonal The strong axis is diagonal to the vessel.

LEG

Hossein Sadeghi

Receipte Dimensions		
Length, B:	356	mm.
Width, D:	356	mm.
Thickness:	26	mm.
Material:	SA-516 70	Matl
Bolting Data Thread Series:	Tema Metric	•
Nominal Diameter:	24	mm
Corrosion Allowance:	0	mm.
Number per Baseplate:	4	
Number in Tension:	2	
Distance. from edge to Bolt:	78	mm.
Material:	SA-307 B	Matl
Root Area:	0	cm²
Concrete Properties		
Nominal Compressive Strength:	20.685	N. /mm ²

Hossein Sadeghi

LUG

PRESSURE VESSEL (BY PVElite) COURSE

Hossein Sadeghi

366

Support Design Errors

	Support Design l	Errors
TYPE OF SUPPORTS	Common Errors	Solution
SADDI E	Horn of saddle	saddle contact angle Thk of wear plate Thk of shell width of saddle and wear plate close to head
SAUDEC	head as a stiffner	take distance of head
	tip off saddle	width of saddle
	tip of wear plate	width of wear plate
	Bolt area	Qty. and Size
	Unity check	increase thicknesses
	gusset Thickness	increase thicknesses
	Top plate Thk	increase thicknesses
SKIRT	Base plate Thk	increase thicknesses
	Concrete	increase width of base ring
	Bolt area	Qty. and Size
	Unity check	increase thicknesses
Leg	Bolt area	Qty. and Size
	WRC failed	pad dim. And thk
	Unity check	increase thicknesses
Luo	Bolt area	Qty. and Size
Lug	WRC failed	pad dim. And thk
	Component thk	increase thicknesses

Hossein Sadeghi

3D	Diagnostics ESL Help	
		Input
ts	Details	nput / Out
	Platform Input	
/lindrical		

Ladder and Platform

Platform Dialog

From Node :	10			Angles relative to u	user coordina	te system
New Platform Description	PLAT:[1 OF 1]		Set Defaults			
New Platform Description :	PLAN [1 OF 1]				End Angle	
Distance from "From" Node	0	mm			\frown	
Distance from From Node .	0	dea				
Platform End Angle	0	deg.		(~	Sta	•t Angle
Platform Dailing Weight	0	Vef/mm				
Platform Railing Weight	0	Kgi/mm.			Width	
Platform Grating weight:	0	Kgs/cm*			widin	
Platform Width :	0	mm.			†	_
Platform Height :	U	mm.			Heig L	ght
Clearance	0	mm.				_
Platform Length (Non-Circular) :	0	mm.			Dist "fro	ance m″
Force Coefficient Cf	0				H _↓	
Platform Wind Area	0	Cm ²	Ladder Properties			
						٦.
				Ladder Layout Angle:	0	deg.
Control Options				Ladder Layout Angle: Ladder Start Elevation:	0	deg. mm.
Control Options				Ladder Layout Angle: Ladder Start Elevation: Ladder Stop Elevation:	0 0 0	deg. mm. mm.
Do not include Platform in analysis				Ladder Layout Angle: Ladder Start Elevation: Ladder Stop Elevation: Ladder Unit Weight:	0 0 0 0	deg. mm. mm. Kgf/mm
Control Options Do not include Platform in analysis User Computes and Enters the Platform Area User Computes and Enters the Platform Weight	+			Ladder Layout Angle: Ladder Start Elevation: Ladder Stop Elevation: Ladder Unit Weight: Is this a Cageo	0 0 0 1 Ladder ?	deg. mm. mm. Kgf/mm.
Control Options Do not include Platform in analysis User Computes and Enters the Platform Area User Computes and Enters the Platform Weigh	t			Ladder Layout Angle: Ladder Start Elevation: Ladder Stop Elevation: Ladder Unit Weight: Is this a Caged Platform and Ladder Weig	0 0 0 d Ladder ?	deg. mm. mm. Kgf/mm.
Control Options Do not include Platform in analysis User Computes and Enters the Platform Area User Computes and Enters the Platform Weigh Plat: [1 of 1]	t			Ladder Layout Angle: Ladder Start Elevation: Ladder Stop Elevation: Ladder Unit Weight: Is this a Caged Platform and Ladder Weig	0 0 0 d Ladder ?	deg. mm. Kgf/mm

the same of the sa

x

Liquid

Hossein Sadeghi

Liquid

Liquid Dialog		×
- Liquid Details		
From Node:	30	
Detail Description:		
Distance from "From" Node:	0	mm.
Liquid Density		
Specific Gravity:	0	
	or	
Liquid Density:	0	kg./cm³
Liquid Density:	0.0000	lb./cu.ft.
Liquid Height		
Height in this Element:	0	Full
	or	mm.
Height from Bottom/Fill All:	0	Fill Elements Now
	Delete	OK Cancel Help
V		

Insulation & Lining

Insulation & Lining

Insulation Dialog	
From Node	: 30
Detail Description	:
Distance from "From" Node	: 0 mm.
Height/Length of Insulation	: 0 mm.
Thickness of Insulation	: 0 mm.
Density of Insulation	: 0 kg./cm ³ Set as default
Density of Insulation	: 0.00 lb./cu.ft.
Type of Insulation	:
Delete Full All	OK Cancel Help
	Lining Dialog From Node: 30 Description: I Distance from "From" Node: 0 mm. Height/Length of Lining: 0 mm. Thickness of Lining: 0 mm. Density of Lining: 0 kg./cm³ Density of Lining: 0.00 lb./cu.ft.

Tray

Tray Dialog	
From Node : New Tray Description : Distance from "From" Node : Number of Trays : Tray Spacing : Tray Weight Per Unit Area : Support Ring and Bolting Bar Weight : Height of Liquid on Tray : Density of Liquid on Tray :	20 ITRAY:[10F1] 0 mm. 0 mm. 0 mm. 0 Kgs/cm² 0 Kgf 0 mm. 0 kg./cm³
Tray:[1of1] Previous Tray Group Add New Tray Set	 t Delete OK Cancel Help

Packing

From Node :	20		
New Packing Description :	Pack: [1 of 1]		
Distance from "From" Node :	0	mm.	
Height of Packed Section :	0	mm.	Eull
Packing Density :	0	kg./cm³	Set as default
Packing in place during th acking Liquid Properties Percent Volume Hold Up :	e field hydrote:	st ? %	
Liquid Specific Gravity :	0		
Pack: [1 of 1]	Packi	ng Weight: 0, Liquid	Weight : 0 kg.
Pack: [1 of 1]	Packi	ng Weight : 0, Liquid	Weight : 0 kg.

Generic Clip Local Stress Analysis per WRC 10	7					×
From Node :	20					
New Cip Description :	Clip:[1 of 1]				H (The Ma	
Distance from 'From' Node :	0	mm.			CHARTER COM	
Layout Angle :	0	degrees				
	Is the Clip Circu	lar?				
Clip Parameters						
Circumferential Length [C11] •	101				\nearrow X	
	101			$\leq \bigcirc$	× 60	
	101			-16	1 /	
Inickness :	6				J	
Pad Parameters						
Reinforcing pad used?			- Fatigue Para	ameters		
Circumferential Length [C11p] :	0			U	ise Kn and Kb : 📃	
Longitudinal Length [C22p] ;	0	mm.		Clip	Fillet Radius : 0	
Thickness :	0			Pad	d Fillet Radius : 0 mm.	
Local Attachment Loads at the Shell Surface		Note: These	values do not ao	t globally over t	he vessel cross section.	
1		Sustained	Expansion	Occasional		
	Dadial force D :	0	0	0	1	
Circumferent	tial shear force Vc :	0				
		0	0	0	Kgt	
Longitud	nai shear force VI :	0		U		
Circumfer	ential moment Mc :	0	0	0		
Longit	tudinal moment Ml :	0	0	0	Kg-m.	
Tor	sional moment Mt :	0	0	0	Ca	ancel
	D :					~
Clip:[1 of 1]	Previous		Add New Clip	Dele	Help	UK
Geometry or Applicability Error	r					
1						

Hossein Sadeghi

Clip

Weight

Weight

rionnoue.	20	Se	elect the Active (Cases for this Weight/Mass	
New Weight Description :	WGHT:[1 OF 1]				
Distance from "From" Node :	0	mm.	_	Empty Case :	
Layout Angle :	0	deg.	Op	perating Case : 🔽	
Offset From Element Centerline :	0	mm	пу		
Miscellaneous Mass :	0	kg.	To all to a statula	la d Tabarral D . 🕅	
Area of the weight/mass/equipment for the Win	id Load Calc				
Area of External V	Veight/Piping/Equipmen	it: 0	cm ²		
Distant Datail					
Piping Detail					
Is this a Piping Detail ? :					
Is this a Piping Detail ? :	Pipe Outside Diameter	: 0	mm.	Pipe Lookup	
Is this a Piping Detail ? :	Pipe Outside Diameter Pipe Thickness	: 0 : 0	mm.	Pipe Lookup	
Is this a Piping Detail ? :	Pipe Outside Diameter Pipe Thickness Fluid Specific Gravity	: 0 : 0 : 0	mm.	Pipe Lookup	
Is this a Piping Detail ? :	Pipe Outside Diameter Pipe Thickness Fluid Specific Gravity Insulation Thickness	: 0 : 0 : 0 : 0	mm.	Pipe Lookup	
Is this a Piping Detail ? :	Pipe Outside Diameter Pipe Thickness Fluid Specific Gravity Insulation Thickness Insulation Density	: 0 : 0 : 0 : 0 : 0	mm. mm. mm. kg./cm³	Pipe Lookup	
Piping Detail	Pipe Outside Diameter Pipe Thickness Fluid Specific Gravity Insulation Thickness Insulation Density	: 0 : 0 : 0 : 0 : 0	mm. mm. mm. kg./cm³	Pipe Lookup	
Piping Detail	Pipe Outside Diameter Pipe Thickness Fluid Specific Gravity Insulation Thickness Insulation Density Compu	: 0 : 0 : 0 : 0 : 0 ute Weight and Area	mm. mm. mm. kg./cm ³	Pipe Lookup	
Is this a Piping Detail ? :	Pipe Outside Diameter Pipe Thickness Fluid Specific Gravity Insulation Thickness Insulation Density Compu	: 0 : 0 : 0 : 0 : 0 ute Weight and Area	mm. mm. mm. kg./cm³	Pipe Lookup	

Hossein Sadeghi

Force and Moment						
Force/Moment Dialog	28	6 M G.	S. C. 1	1.00		×
New Force/N	20 F/M:[1 of 1]					
Distance from "From" Node : 0			mm.			
Axis Direction :	X	Y	Z			
Applied Forces :	: 0	0	0	Kgf		
Applied Moments :	: 0	0	0	Kg-m.		
Note: -Y Forces act Downward. +Y Forces act Upward.						
Compute Stresses due to Applied Loads						
Compute Longitudinal Stresses BW normally added to the Wind Case						
Compute Longitudinal Stresses BS normally added to the Seismic Case.						
Force/Moment Combination Method						
SRSS (More Conservative)	SRSS (More Conservative)		ic <mark>(</mark> Less Conserva			
Notes :						
These values act globally over the entire vessel. These values will not be used to rate the nozzle flange.						
Moments on horizontal vessels are not included in the saddle support design for the determination of Q the saddle support load.						
Moments should be converted to equivalent force(s) on horizontal vessels for support load consideration.						
F/M:[1 of 1]						
Previous For/Mom Ad	dd New For/Mom	Delete	ОК	Cancel	Help	

-OIL & GAS TECHNOLOGIES -

For Bazel Energy Pars, delivering projects on time is a huge commitment, while keeping the highest quality is a term that must be never lost.